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We consider the motion of two immiscible viscous fluids induced by periodic oscil-
lations of a flat solid surface along its plane. The interface between the two fluids
is parallel to the solid wall; one fluid occupies the region between the wall and the
interface and the other extends from the interface to infinity. We study numerically the
linear stability of the interface with respect to two-dimensional perturbations using
the normal mode analysis and assuming quasi-steady flow conditions. The analysis is
motivated by the need of understanding the behavior of vitreous substitutes inserted in
the vitreous chamber of the eye after vitrectomy. This is a common surgical procedure
adopted to treat retinal detachments, whereby the vitreous humor is removed from
the eye and replaced by fluids immiscible with water. Owing to their hydrophobic
nature, vitreous substitutes coexist in the vitreous chamber with a certain amount
of aqueous humor (the fluid produced in the anterior part of the eye) and, typically,
a thin layer of aqueous separates the tamponade fluid from the retina. A common
problem with this treatment is that, in some cases, the interface between the two
fluids breaks down and this might eventually lead to the generation of an emulsion.
It is believed that mechanics plays an important role in this process but the problem
remains very poorly understood. We find that instability of the interface is possible
in a range of parameters that is relevant for the problem that motivated the present
analysis. This suggests that shear instability is likely a possible mechanism triggering
the onset of vitreous substitutes–aqueous interface instability. C 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4902163]

I. INTRODUCTION

Retinal detachment (RD) occurs when the sensory layer of the retina detaches from the retinal
pigment epithelium.1 This is a serious condition that might lead to permanent loss of vision and
needs immediate treatment. A commonly adopted surgical procedure to treat RD is vitrectomy:
the vitreous body is removed from the vitreous chamber and replaced with a “vitreous substitute.”
Various fluids can be used after vitrectomy, depending on the particular condition of the patient.
In this paper, we focus on vitreous substitutes that are immiscible with water. In this category
fall silicon oils, perfluorocarbon liquids, and semifluorinated alkane liquids. Mechanical properties,
indications for adoption, and main complications associated with the existing vitreous substitutes
are extensively described in the literature.2–4

The primary role of vitreous substitutes is to interrupt the communication that was estab-
lished through the retina break between the subretinal space/retinal pigment epithelial cells and the
pre-retinal space. Depending on the location of the retinal damage, tamponade fluids with densities
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either smaller (for breaks in the superior part of the chamber) or larger than the aqueous density can
be adopted.

At present no vitreous substitute exists that can be left indefinitely in the vitreous chamber,
since various complications might arise. In particular, the interface between the vitreous substitute
and the aqueous humor might break down and, eventually, an emulsion of droplets might form in
the aqueous. This can lead to various postoperative complications, including cataract, keratopathy,
and glaucoma.5

Owing to the hydrophobic properties of vitreous substitutes, the fluid might not be in direct
contact with the retina and some aqueous humor is likely to line the wall of the eye. Winter et al.6

estimated the minimum thickness of the aqueous layer separating the tamponade fluid from the
retina to be of the order of 5–10 µm. Vitreous substitute–aqueous interface breakdown may occur
both at the wall (in correspondence of this thin film)7,8 and at the tamponade fluid–aqueous free
interface where, in the case of incomplete filling of the vitreous chamber, the thickness of the
aqueous pocket can be quite large, see Fig. 1.

Several clinical studies have investigated the conditions leading to the formation of an emul-
sion. It is generally believed that shear stresses at the tamponade fluid–aqueous interface generated
during eye rotations play a crucial role on the generation of the interface instability.7,9 This prob-
lem remains, however, poorly understood from the mechanical point of view and no modeling
approaches have yet been attempted to investigate it.

We speculate that, if the interface breakdown is originated at the wall, it can indeed be related to
shear flow instability at the interface between the tamponade fluid and the aqueous. If, on the other
hand, it occurs at the free interface between the two fluids, in the case of incomplete filling of the
vitreous chamber, other physical mechanisms might play a role, such as sloshing. We focus in this
paper on the possible role of shear flow instability.

Obviously, the generation of an emulsion is a highly nonlinear process that cannot be under-
stood through a linear stability analysis. However, it seems conceptually relevant to investigate the
role that each of the physical quantities involved in the problem has in producing the instability of
the vitreous replacement fluid–aqueous interface, which we regard as a possible very initial step
toward emulsification.

Owing to the lack of understanding of this instability process, we consider a highly idealized
problem that, in our view, represents the suitable starting point to understand the basic mecha-
nisms underlying the instability process. We consider a flat solid surface representing the vitreous
chamber wall (located at y∗ = 0), performing sinusoidal oscillations along the x∗ direction, see
Fig. 2. Throughout the paper, superscript asterisks denote dimensional variables. We assume that
two immiscible fluids occupy the region of space y∗ ≥ 0. The interface between the two fluids is
at y∗ = d∗; fluid 1 (representing the aqueous) occupies the region 0 ≤ y∗ ≤ d∗, and fluid 2 (rep-
resenting the vitreous substitute) extends in the y∗ direction from d∗ to infinity. This geometrical

FIG. 1. Schematic sketch of a cross-section on the vitreous chamber filled with a tamponade fluid.
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FIG. 2. Sketch of the geometry considered and notation. Note that gravity can act both in the positive and negative directions
of y∗, depending on the orientation of the wall.

configuration represents well the real case when the thickness of the aqueous layer is much smaller
than the radius of the eye, so that the curvature is negligible and the retina can be thought of as a
flat surface. Obviously, real eye movements are not exactly harmonic in time. However, a sequence
of saccadic rotations in opposite directions can be roughly thought of as a periodic harmonic move-
ment. This is what has been assumed in most theoretical and experimental studies of vitreous humor
dynamics (see for instance Refs. 10–15). Moreover, assuming harmonic oscillations of the plate
allows us to find an analytical solution of the basic flow.

The idealized problem shown in Fig. 2 resembles studies which can be found in the literature.
Most of these studies16–21 are based on the so-called quasi-steady approach and/or a Floquet anal-
ysis. In the quasi-steady approach, the linear stability problem is solved by “freezing” the basic
flow at each instant in time and the method is valid when the frequency of the basic flow is much
smaller than that of the perturbation. This cannot be known a priori and must be verified from the
numerical results. The Floquet analysis, on the other hand, does not depend on the aforementioned
scale separation. In the quasi-steady approach, it is possible to find unstable solutions during an
interval within the oscillating cycle of the basic flow. However, this does not necessarily imply that
amplification of the perturbation is sustained over the whole period.

In the limit in which density and viscosity of the two fluids are the same and the surface tension
vanishes, we obtain the case of the flat Stokes layer. Results16–18 show that the critical Reynolds
number, based on the displacement thickness of the boundary layer, is less than 200 in the case of
the quasi-steady approach while the Floquet analysis gives a critical Reynolds number of about 708.

Several investigations19–21 concern one or more fluids above an oscillating wall. The most
pertinent cases, in relation to the current study, are the investigations by Yih19 and Or,20 who studied
the stability of a single fluid layer over an oscillating flat wall. In the case of quasi-steady flow
conditions and long waves Yih was the first to find that instability occurs during certain phases of
the cycle if ω2Re2/5 > Fr−2, where Re is the Reynolds number and Fr is the Froude number, both
according to the definitions given in Sec. II.

The paper is organized as follows: In Sec. II, we formulate the mathematical problem and
estimate the range of variation of the dimensionless parameters involved. We then show the results
of the stability analysis in Sec. III. Finally, discussion and conclusions follow in Sec. IV.

II. FORMULATION OF THE MATHEMATICAL PROBLEM

We consider two immiscible and incompressible fluids occupying the regions of space 0 ≤
y∗ < d∗ and y∗ > d∗, respectively, with densities ρ∗1 and ρ∗2 and dynamic viscosities µ∗1 and µ∗2. The
flow is induced by periodic motion of the rigid wall located at y∗ = 0 (see Fig. 2), and the oscillation
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is described by

u∗w = V ∗0 cos(ω∗t∗) = V ∗0
2
(eiω∗t∗ + c.c.), (1)

where V ∗0 is a velocity representing the amplitude of the oscillations, t∗ is time, ω∗ is the angular
frequency, and c.c. denotes the complex conjugate. Let u∗i be the velocity vector and p∗i the pressure,
where the index i is taken to be equal to 1 for the fluid closer to the wall and 2 for the other fluid.

The governing equations are made dimensionless using V ∗0 , d∗, ρ∗1 as reference velocity, length,
and density, respectively. The dimensionless variables can therefore be written

x =
x∗

d∗
, ui =

u∗i
V ∗0
, pi =

p∗i
ρ∗1V

∗2
0

, t =
V ∗0
d∗

t∗, ω =
d∗

V ∗0
ω∗, (2)

where x = (x, y, z) is the vector of spatial coordinates with x, y , and z being the streamwise,
wall-normal, and spanwise coordinates, respectively. The stability analysis is performed by intro-
ducing a decomposition of the solution of the governing equations as

ui = Ui + ui, pi = Pi + pi, (3)

where capital letters indicate the basic flow and small letters with a bar refer to perturbation
quantities.

A. Basic flow

We consider the case in which the basic flow is laminar and fully developed in the stream-
wise direction. The solution, Ui = [Ui(y, t),0,0] (i = 1, . . . ,2) is obtained by solving the following
system of non-dimensional equations:

∂U1

∂t
=

1
Re

∂2U1

∂ y2 , (4a)

∂P1

∂ y
= −Fr−2, (4b)

∂U2

∂t
=

m
γ

1
Re

∂2U2

∂ y2 , (4c)

∂P2

∂ y
= −γFr−2, (4d)

where Re = V ∗0 d∗ρ∗1/µ
∗
1 is the Reynolds number, Fr =

V ∗0√
g∗d∗

is the Froude number, m = µ∗2/µ
∗
1

is the ratio between the dynamic viscosities, and γ = ρ∗2/ρ
∗
1 between the densities. The boundary

conditions impose that the fluid velocity at the wall is given by Eq. (1), that continuity of velocity
and stress is satisfied at the interface and that the velocity vanishes at infinity. The pressure has
hydrostatic distribution and the solution for the velocities U1 and U2 is readily found to be

U1 = [c1e−ay + c2eay]eiωt + c.c., (5a)

U2 = c3e−byeiωt + c.c., (5b)

where

a =
√

iωRe, (6a)

b =

γ

m
iωRe, (6b)

c1 =
ea−b

2[ea−b(a + mb) + e−a−b(a − mb)] , (6c)
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c2 =
e−a−b

2[ea−b(a + mb) + e−a−b(a − mb)] , (6d)

c3 =
a

ea−b[mb + a] + e−a−b[mb − a] . (6e)

At the beginning of Sec. II, we defined the characteristic scales adopted to make our governing
equations dimensionless. In particular, we use the thickness of the layer d∗ as the characteristic
length, in analogy to what was done in previous similar works.19–21 In other investigations involv-
ing a single fluid and, specifically, in the literature on the stability of the Stokes boundary layer,
it is common to use as reference length scale the thickness of the boundary layer at the wall,
δ∗ =


2ν∗1/ω

∗. In order to allow one to easily compare our findings with those relative to the
stability of the Stokes layer, we provide below expressions for converting one set of dimensionless
parameters into the other. Denoting ReS and αS the Reynolds number and streamwise wavenumber
for the Stokes boundary layer case, we obtain

ReS =
1
2
δ∗

d∗
Re, αS = α

δ∗

d∗
, where

δ∗

d∗
=


2

ωRe
. (7)

B. Linear stability analysis

The governing equations for the linear stability analysis are derived adopting a quasi-steady
approach, i.e., it is assumed that perturbations evolve on a time scale that is significantly smaller
than the characteristic scale of the basic flow. This implies that we study the stability of a “frozen”
basic flow at time τ, with 0 ≤ τ < 2π/ω. The suitability of this approach can be verified a posteriori
by checking the relative magnitude of the time scale of perturbations with respect to that of the basic
flow.

It is well known from Squire’s theorem that, for a steady parallel shear flow, the flow first
becomes unstable to two-dimensional perturbations.22 The validity of this theorem has also been
shown for quasi-steady flows.23 Thus, we consider only two-dimensional perturbations, so that
ui = (ui, v i,0). This allows us to introduce the stream functions

ui =
∂ψi

∂ y
, v i = −

∂ψi

∂x
. (8)

Taking advantage of the infinite extension of the domain in streamwise direction, we expand
the solution in Fourier modes as

ψi = eiα(x−Ωt)ψi(y, τ) + c.c., (9)

where α is the real-valued dimensionless wavenumber and Ω is the complex-valued phase velocity.
Stable and unstable solutions are defined by ℑ(Ω) < 0 and ℑ(Ω) > 0, respectively.

Moreover, let η denote the dimensionless perturbation of the interface position, measured in
units of d∗. We impose

η = η(τ)eiα(x−Ωt) + c.c. (10)

The governing stability equations are derived by introducing the flow decomposition (3),
stream functions (8), and solution forms (9) and (10) into the Navier–Stokes equations, and neglect-
ing nonlinear perturbation terms. The two equations, one for each fluid, read

ψ ′′′′1 − 2α2ψ ′′1 + α
4ψ1 + iαRe


ψ1
∂2U1

∂ y2 −U1
�
ψ ′′1 − α

2ψ1
�
= −iαReΩ

�
ψ ′′1 − α

2ψ1
�
, (11a)

ψ ′′′′2 − 2α2ψ ′′2 + α
4ψ2 +

iαγ
m

Re

ψ2
∂2U2

∂ y2 −U2
�
ψ ′′2 − α

2ψ2
�
= −

iαγ
m

ReΩ
�
ψ ′′2 − α

2ψ2
�
, (11b)

where the superscript ′ denotes derivation with respect to y and the basic flow velocity Ui is
computed at the generic time τ. The above equations have to be solved subject to the following
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boundary conditions:

ψ1 = 0 (y = 0), (12a)

ψ ′1 = 0 (y = 0), (12b)

U1η + ψ1 = Ωη (y = 1), (12c)

ψ ′1 + η
∂U1

∂ y
= ψ ′2 + η

∂U2

∂ y
(y = 1), (12d)

ψ ′′1 + α
2ψ1 + η

∂2U1

∂ y2 = m

ψ ′′2 + α

2ψ2 + η
∂2U2

∂ y2


(y = 1), (12e)

iαRe
�
ψ1U ′1 −U1ψ

′
1

�
− iαRe

�
ψ2U ′2 −U2ψ

′
2

�
+

+
�
ψ1
′′′ − 3α2ψ ′1

�
− m

�
ψ2
′′′ − 3α2ψ ′2

�
− iα3ReSη = −iαReΩ

�
ψ ′1 − ψ

′
2

� (y = 1), (12f)

ψ2 = 0 (y → ∞), (12g)

ψ ′2 = 0 (y → ∞), (12h)

with S = σ∗

ρ∗1d
∗V ∗20

being the dimensionless surface tension, where σ∗ represents the dimensional

surface tension.
Conditions (12a) and (12b) are the no-slip conditions at the wall. Continuity of the tangential

and normal components of the velocity at the interface is enforced by (12c) and (12d). Condi-
tion (12e) imposes the continuity of the tangential stress at the interface and (12f) states that
the difference between the normal stresses across the interface is balanced by surface tension.
Finally, (12g) and (12h) enforce vanishing velocity as y → ∞. Note that, owing to linearization, the
conditions at the interface are imposed in the undisturbed position of the surface, y = 1.

The above system of Eqs. (11) and (12) has been discretized using a second-order finite-
difference scheme on discrete points with constant spacing. Boundary conditions (12g) and (12h)
are enforced using standard asymptotic inviscid solutions. The discrete system can be written as a
generalized eigenvalue problem

Av = ΩBv, (13)

where v = (ψ1, η,ψ2)T . The solution of (13) is found using an inverse iterative approach.
The physical solution of the linear stability problem is given as a function of the discrete

Fourier modes obtained from the solution of Eq. (13). It is well known17,24,25 that the solution of the
linear stability problem of parallel flows in semi-infinite domains is composed of a set of discrete
modes and a continuous spectrum. This is true also in this case. The eigenfunctions corresponding
to the discrete modes have their maximum value within the boundary layer, while the continuous
modes are traveling waves which are bounded far from the wall and decay in time.

A grid convergence study was performed and the domain size and resolution were chosen
such that the eigenvalue had an error of less than 1%. Further, the solution of the numerical code
was compared with results found in Yih,19 who studied the stability of a single fluid layer over
an oscillating flat wall. In the case of quasi-steady flow conditions and long waves, he found that
instability occurs during certain phases of the cycle if ω2Re2/5 > Fr−2. We checked our numerical
solution in the limit γ → 0 and α → 0 against this analytic result, finding excellent agreement.

C. Energy analysis

In this section, we explore the evolution of the disturbance kinetic energy of the two-fluid
system. An equation for the kinetic energy is obtained by first taking the scalar product between
the velocity vector and the linearized Navier-Stokes equations, and then integrating over the respec-
tive domain Vi. For a given volume, the energy is defined as Ei =

1
2


Vi

ui ·ui
2 dVi and the total

disturbance kinetic energy is given by

E = E1 + γE2. (14)
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In vector form, the evolution equation for the disturbance kinetic energy, for the domainVi, reads

dEi

dt
= −


Vi

ui·(∇Ui)uidVi −
1

Re


Vi

ui·∆uidVi +


S

ui·σindS, (15)

where σi is the stress tensor, S denotes the surface of the interface, and ∆ denotes the Laplacian
operator. The first term on the right hand side of the above expression is the contribution due to
the base flow shear, the second is due to dissipation, and the third to the interface between the
two fluids. Some conclusions regarding these three integrals can be drawn if (15) is rewritten using
integration by parts and Gauss’ theorem. The resulting equation, in primitive variable form reads

α

2π
dE
dt
= −

 1

0
u1v1U ′1dy − γ

 +∞

1
u2v2U ′2dy

−
1

Re

 1

0

 ∂u1

∂x

2
+

 ∂u1

∂ y

2
+

 ∂v1

∂x

2
+

 ∂v1

∂ y

2
dy

−
m
Re

 +∞

1

 ∂u2

∂x

2
+

 ∂u2

∂ y

2
+

 ∂v2

∂x

2
+

 ∂v2

∂ y

2
dy


v1

(γ − 1)Fr−2 + α2S

η −

v1

Re
(∂v1

∂ y
− m

∂v2

∂ y
) + 1

Re
(u1

∂u1

∂ y
− mu2

∂u2

∂ y
) ����y=1

. (16)

Inspection of Eq. (16) shows that the dissipation terms are always negative, thus they invariably
have a damping effect on the energy evolution. We further note that the effect of the interface
disappears in the case when S = 0, γ = 1, and m = 1, i.e., the case of a single fluid.

By definition, the growth rate ℑ(Ω) obtained from the solution of Eq. (13) is equal to the
logarithmic derivative of the disturbance kinetic energy

1
2αE

dE
dt
= Im(Ω). (17)

Therefore, by multiplying the left and right-hand side of Eq. (16) with π/(α2E) we can compare the
contributions to the total growth rate from the individual terms in the right hand side of (16).

D. Estimation of the range of variability of the dimensionless parameters

In this section, we estimate the range of variation of the dimensionless parameters Re, ω, m,
γ, Fr , and S, that govern the stability problem, referring to the ocular application that motivates
this work. Saccadic eye rotations are the fast movements performed when the direction of sight
is redirected from one target to another. Becker26 reports that the relationship between saccade
duration T∗ and saccade amplitude A is well described by the following linear relationship:

T∗ = T∗0 + t∗A, (18)

with t∗ ≈ 0.0025 s/deg and 0.02 ≤ T∗0 ≤ 0.03 s. In (18), the amplitude A has to be expressed in
degree. In this work, we approximate a sequence of eye rotations by describing the eye wall velocity
as a sinusoidal function of time, according to (1). Assuming that this periodic motion is the result of
successive eye rotations in opposite directions we can estimate a relationship between the frequency
and the amplitude of eye rotations as ω∗ = 2π/(2T∗), with T∗ computed from Eq. (18). Since,
owing to (1), A = V ∗0 /(ω∗R∗eye), with R∗eye ≈ 0.01 m being the radius of the eye, this establishes a
relationship between the dimensionless parameters Re and ω, which is plotted in Fig. 3(a). The
different curves in the figure correspond to different values of the thickness of the aqueous layer
d∗; each point of the curves refers to a different value of the amplitude A, with small values of ω
corresponding to large amplitude rotations.

The density and viscosity of the aqueous humor are approximately equal to those of water, thus
we assume ρ∗1 = 103 kg/m3 and ν∗1 = 10−6 m2/s.

Vitreous substitutes are characterized by physical properties varying in a very wide range. In
this paper, we do not focus on the behavior of a particular vitreous substitute. Rather, we investigate
the role of the mechanical properties of the fluid on the instability mechanism. Thus, we will vary
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FIG. 3. Relationship between Re and ω (a), S (b) and Fr (c) obtained adopting feasible values for eye movements. From
thin to thick curves: d∗ = 1 × 10−5 m, d∗ = 3 × 10−5 m, d∗ = 1 × 10−4 m. Each point on the curves corresponds to a different
value of A.

the parameters m and γ within a fairly large range of values (1 ≤ m ≤ 200, 0.8 ≤ γ ≤ 2). We note,
however, that in the case of silicon oils much higher values of the ratio m than those considered here
can be attained.

We finally note that, once values for d∗ and σ∗ are prescribed, relationships between Re and S,
Fig. 3(b), and between Re and Fr , Fig. 3(c), can be established.

III. RESULTS

We first consider pure shear instability and neglect the effect of density differences between
the two fluids, thus assuming γ = 1. Note that in the equations governing the stability problem,
the Froude number only appears in the boundary condition (12f), where it is multiplied by (1 − γ).
Therefore Fr does not play a role in the stability of the system when the two fluids have the same
density.

In order to determine baseline values for the dimensionless parameters, we assume that the
layer of fluid 1 has a thickness d∗ = 3 × 10−5 m, and that the dimensional surface tension is
σ∗ ≈ 0.02 N/m. The actual value of the surface tension between silicon oils used in vitreoretinal
surgery and aqueous humor can vary within a relatively wide range, owing to the possible presence
of surfactants. Here we have chosen a relatively small value for σ∗ that is representative of what
happens in patients who develop oil emulsification, in which cases surfactants are likely to be pres-
ent.27 Referring to the curves reported in Fig. 3, we assume as baseline values Re = 7, ω = 0.001,
and S = 14. We note that in all cases discussed in the following αℜ(Ω) (which is a measure of
the dimensionless frequency of perturbations) is significantly larger than ω, thus ensuring the sepa-
ration of time scales required for the quasi-steadiness approach to be valid (see Figure 8 and the
related discussion). Employing Eq. (7) from the above dimensionless parameters, we can compute
the values of the Reynolds number ReS and of the streamwise wavenumber αS, based on the use
of the thickness of the boundary layer as the characteristic length, which is the usual choice in the
analysis of the Stokes layer. We find ReS = 59, LS = 2π/αS ≈ 0.06L.

In Fig. 4, we show neutral stability curves, i.e., curves on which ℑ(Ω) = 0, on the plane
(ωt/π) − L, where L = 2π/α is the dimensionless wave length of the perturbation. Each curve
corresponds to a different value of the ratio between fluid viscosities m, and all other dimensionless
parameters are kept fixed. In the range of values of the parameters shown in the figures, sufficiently
long waves are linearly unstable during certain phases of the basic flow cycle. Note, however, that in
all cases shown in the figure, the interface is stable during most time instants. Whether amplification
will actually occur, over one or more periods, depends on the value of the growth rate and on the
initial magnitude of perturbations.

By definition, the growth rate computed with the energy analysis presented in Sec. II C coin-
cides with that computed solving the eigenvalue problem (13). However, the energy analysis allows
us to obtain a better insight on the mechanisms governing the instability. In Fig. 5, we show how
the various contributions to the energy change appearing in Eq. (16) depend on L, for a given time
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FIG. 4. Neutral stability curves in the (ωt/π) − L plane for different values of the parameter m (= 5, 10, 15, 20). Re = 7,
ω = 0.001, S = 14, γ = 1.

(Fig. 5(a)) and on ωt, for a given perturbation wave length (Fig. 5(b)). In the figure, we also plot the
growth rate ℑ(Ω), suitably scaled to fit in the plot (ℑ(Ω) has been multiplied by 300). The figure
shows that the leading energy production term is related to the existence of the interface, i.e., the
term computed in y = 1 in Eq. (16). Note that this contribution vanishes when m = 1, S = 0, and
γ = 1, i.e., when a single fluid is present.

In Fig. 6, we show the effect of changing the ratio m between the two fluid viscosities. In the
figure, we plot the value of the growth rate ℑ(Ω) versus m, for different values of the perturbation
length L. As the value of m increases, the minimum length of unstable waves grows. However,
there exists a value of m (≈ 21.6) for which a maximum value of ℑ(Ω) is attained. Thus increasing
m has a twofold effect: on one hand short waves are stabilized, on the other hand, for relatively
small values of m (/ 21.6), the system becomes effectively more unstable, since the growth rate
also increases. For m ' 21.6, further increase of the ratio between the fluid viscosities has an overall
stabilizing effect.

In Figs. 7(a) and 7(b), we investigate the effect of modifying the values of S and R (keeping
m fixed and equal to 5). In particular, we show how the shortest unstable wavelength changes
with these parameters. As one would intuitively expect, when the surface tension parameter S is
decreased, the flow becomes more unstable, in the sense that progressively shorter waves become
unstable. In a similar manner, the flow becomes more unstable if the Reynolds number is increased.

FIG. 5. Contributions to the perturbation energy growth versus L for ωt/π = 0.4 (a) and ωt/π for L = 200 (b) (see
Eq. (16)). Thin solid curve: volume integral production term. Dashed curve: volume integral dissipation term. Dotted curve:
surface integral on the interface. In the figures, we also report with a thick solid curve the growth rate as computed solving
the eigenvalue problem (13), suitably scaled for readability. This curve allows one to distinguish stable and unstable regions
in the plot. In both figures Re = 7, S = 14, m = 5.
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FIG. 6. Growth rate ℑ(Ω) versus m for different values of the perturbation length L (= 200, 300, 500, 800, 1000, 1400). The
arrow points to decreasing values of L. ω = 0.001, Re = 7, S = 14, γ = 1.

We finally consider the effect of changing the value of γ. Obviously, if the lighter fluid is on
top, the effect of gravity is to stabilize the interface. We therefore focus on cases in which the
aqueous layer is very thin and the heavier fluid is on top. This means that we consider either the
lower portion of the vitreous chamber when a heavier than water vitreous substitute is adopted, or
the upper region of the retina when a lighter than water fluid is used. As discussed in the Intro-
duction, these situations are believed to possibly occur in practice.7,8,27 Fig. 7(c) shows that if γ
increases, the system moves toward instability, again meaning with this statement that progressively
shorter waves are found to be unstable.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have considered the geometry depicted in Fig. 2 and studied the linear stability
of the interface between the two immiscible fluids 1 and 2, assuming that fluid motion is induced
by periodic oscillations of the solid wall along the x∗-direction. We have adopted a quasi-steady
approach, thus assuming that perturbations evolve on a time scale which is shorter than the time
scale of evolution of the basic flow.

We first considered the case in which the two fluids have the same density and different
viscosities (γ = 1, m , 1). The linear stability analysis shows that, for the range of the controlling
parameters considered, long enough waves are linearly unstable during certain phases of the cycle.

A value of the ratio m = µ∗2/µ
∗
1 between the viscosities of the two fluids exists for which the

instability of the interface is maximized. When m is large enough or when the viscosities of the two

FIG. 7. Length of the shortest unstable perturbation Lmin versus S (a), Re (b), and γ (c) with ω = 0.001 and m = 5. The
values of Re = 7 in (a) and (c), S = 14 in (b) and (c), and γ = 1 in (a) and (b), respectively.
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fluids are almost matching, the system is found to be stable, in the range of values of the controlling
parameters considered here.

Investigation of the dependency of results on the other controlling parameters has shown that
the system can be destabilized either by decreasing the surface tension parameter S or increasing
the Reynolds number characteristic of the flow. We have also considered the effect of changing the
ratio γ between fluid densities. In particular, we have focused on the case in which the heavier fluid
is on top. As expected, in this case the system moves toward instability. Among the considered
dimensionless parameter, those with a larger influence on the stability of the system are found to be
the ratio m between fluid densities and the surface tension parameter S.

The present work is motivated by the need of understanding the stability conditions of the inter-
face between the aqueous humor layer close to the retina and a vitreous substitute in vitrectomized
eyes. We have adopted a highly idealized geometry and fluid flow structure, which obviously,
represent a gross simplification of the fluid dynamics inside of a real eye. However, our idealized
geometry can provide insight on the onset of the aqueous–vitreous substitute interface instability
in the case in which the thickness of the aqueous layer is much smaller than the eye radius and
perturbations are not too long. We note that no theoretical models have been proposed so far to
explain, on mechanical grounds, the onset of the aqueous–vitreous substitute interface instability.
Therefore, this exploratory work, in spite of the significant simplifying assumptions it is based
on, represents a suitable starting point to understand the mechanics of this problem. In particular,
we believe, it has the strength of allowing us to assess the role of all parameters involved in the
instability mechanism.

We now discuss whether and to what extent the present results can be directly applied to
interpret and predict the occurrence of the vitreous substitute–aqueous humor breakdown in eyes.

We first note that our findings are in qualitative agreement with empirical observations, to
which they therefore provide a sound physical foundation. In particular, our results are in agreement
with the observation that highly viscous vitreous substitutes are more resistant to emulsification
than less viscous ones.28–30 Moreover, the stabilizing role of the surface tension parameter is in
agreement with empirical observations,31,32 according to which the tendency to emulsification is
significantly enhanced by the presence of surfactants that decrease the surface tension between the
two fluids. Finally, the model predicts that the system becomes more unstable as the Reynolds num-
ber of the flow is increased, which explains why patients with increased eye mobility are more prone
to develop emulsification.33 Notwithstanding the fact that the stabilizing role of surface tension and
the destabilizing role of the Reynolds number are not surprising from the mechanical point of view,
the model allows us to quantify their effect.

Throughout the paper as baseline dimensional values we have assumed d∗ = 3 × 10−5 m for
the thickness of the aqueous layer and σ∗ = 0.02 N/m for the surface tension between the two
fluids. Based on these values, Fig. 7(a) shows that the shortest unstable perturbation has a dimen-
sional wavelength L∗ = Ld∗ ≈ 5 mm. This value has to be compared with the radius of the eye
(R∗eye ≈ 12 mm). Following the above estimates, our model’s direct applicability to the eye might
be questioned, since the length of the shortest unstable wave is not much smaller than the eye
radius and, therefore, additional effects that have been neglected here, such as the sphericity of the
domain, might not be negligible. Results, however, show that once additional effects are accounted
for (possibly in combination to one another), such as, in particular, changes in the surface tension,
increased eye mobility, or gravitational effects in the case in which the heavier fluid is on top of the
lighter one, the wavelength of unstable perturbations is small enough for the model to be a good
representation of the real case. Thus we can conclude that shear instability is likely to be a possible
mechanism triggering the onset of vitreous substitutes–aqueous interface instability.

Several other assumptions underlie the present work, which are listed and briefly discussed in
the following.

(i) Our stability analysis is based on the quasi-steady approach. In other words, we have
assumed that a separation of time scales exists, such that perturbations evolve on a shorter
time scale than the basic flow. This assumption holds in certain parameter regimes, on which
we have focused our attention. In particular, this implies considering large amplitude and
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FIG. 8. Neutral stability curve (solid line) in the (ωt/π) − L plane for the case m = 5, Re = 7, ω = 0.001, S = 14, γ = 1.
The dotted lines show the values of the ratio αℜ(Ω)/ω.

relatively low frequency eye rotations. In Fig. 8, we report a verification of the scale separa-
tion, by plotting the contour lines of the ratio αℜ(Ω)/ω of the perturbation frequency to the
frequency of the basic flow (dashed curves). In the figure we also plot, with the solid line, the
neutral stability curve corresponding to m = 5, the same as was shown in Fig. 4. As discussed
earlier, in order for the assumption of scale separation to hold the ratio αℜ(Ω)/ω should be
significantly larger than one in most of the unstable region. This is indeed shown to be the
case in the figure. The same analysis has been carried out for all results shown in this paper
(not shown here).

In order to account for high frequency oscillations of the wall, a stability analysis based
Floquet’s theory should be adopted,34 an endeavor that we plan to undertake in the near
future.

(ii) We have assumed that the retina has a perfectly smooth surface. In reality, the retinal surface
is characterized by a roughness that might have an amplitude comparable to the thickness of
the aqueous layer, when the latter is very thin. The presence of this roughness is likely to
contribute to the destabilization of the interface between the two fluids.

(iii) We have assumed periodic rotations of the eye. Real eye rotations are not necessarily periodic
and not sinusoidal in time. Adoption of a more realistic time law for the wall motion might
have some influence on the results presented in this paper.

(iv) We have focused our attention on the instability mechanism induced by shear between the
two fluids. In the case of incomplete filling of the vitreous chamber with the vitreous substi-
tute, a thick pocket of aqueous forms in the chamber (see Fig. 1). In this case, the interface
instability can also be triggered by other physical mechanisms, such as sloshing.

Accounting for all complexities inherent to the real fluid motion inside an eye in the presence
of vitreous replacement fluids would need a fully numerical approach to the problem. However,
we strongly believe that stability analyses such as the one proposed here can contribute to high-
light basic physical mechanisms and are an indispensable tool to guide and interpret more realistic
numerical simulations.
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