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Outline

Course outline

Topic : Hydrodynamic stability (Linear, temporal, parallel shear flows)

Hours : 10

Lectures : Aula A12 (Ex-DISEG)
Wednesday 13/06 9-11 & 14-16
Thursday 14/06 9-11 & 14-16
Friday 15/06 9-11 & 11-13 (Exercise optional)

Please bring your laptop for the numerical analysis

Credits : 2

Content :
1 Introduction
2 Definitions
3 Inviscid analysis
4 Viscous analysis
5 Exercises : analytical & numerical

Book : Schmid P. J. & Henningson D. S., Stability and Transition in Shear Flows, Springer
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Introduction

Hydrodynamic stability

Hydrodynamic stability theory is concerned with the respons of laminar flow to a disturbance of
small or moderate amplitude.

The flow is generally defined as

Stable : If the flow returns to its original laminar state.

Unstable: If the disturbance grows and causes the laminar
flow to change into a different state.

Stability theory deals with the mathematical analysis of the evolution of disturbances superposed
to a laminar base flow.

In many cases one assumes the disturbances to be small so that further simplifications can be
justified. In particular, a linear equation governing the evolution of disturbances is desirable.

As the disturbance velocities grow above a few % of the base flow, nonlinear effects become
important and linear equations no longer accurately predict the disturbance evolution.

Although the linear equations have a limited region of validity they are important in detecting
physical growth mechanisms and identifying dominant disturbance types.
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Introduction

Reynolds pipe flow experiment (1883)

Original 1883 appartus

Dye into center of pipe

Critical Re = 13.000

Lower today due to traffic
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Introduction

History of shear flow stability and transition

Reynolds pipe flow experiment (1883)

Rayleigh’s inflection point criterion (1887)

Orr (1907) Sommerfeld (1908) viscous eq.

Heisenberg (1924) viscous channel solution

Tollmien (1931) Schlichting (1933) viscous Boundary
Layer solution

Schubauer & Skramstad (1947) experimental
TS-wave verification

Klebanoff, Tidström & Sargent (1962) 3D breakdown
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Introduction

Routes to transition : highly dependent on Tu

	  

Tu ∼ 0.1%

Tu ∼ 10%
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Introduction

Classical route to transition : low Tu, Modal analysis

	  

1 Receptivity: Initial amplitudes of unstable waves need to
be estimated to capture transition ”location”

2 Disturbance growth is initially linear and accurately
predicted by Linear Stability Theory (LST)

3 Breakdown of disturbances, nonlinear process, finally
leading to turbulence	  
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Introduction

More examples of instabilities I
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Introduction

More examples of instabilities II

Movie 2
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Definitions

Disturbance equations

∂ui

∂t
= −uj

∂ui

∂xj
−
∂p

∂xi
+

1

Re
∇2ui

∂ui

∂xi
= 0

ui (xi , 0) = u0
i (xi )

ui (xi , t) = 0 on solid boundaries

Re = U∗∞δ
∗/ν∗

ui = Ui + u′i decomposition

p = P + p′

Introduce decomposition, drop primes, subtract eq’s for {Ui ,P}
∂ui

∂t
= −Uj

∂ui

∂xj
− uj

∂Ui

∂xj
−
∂p

∂xi
+

1

Re
∇2ui − uj

∂ui

∂xj

∂ui

∂xi
= 0
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Definitions

Disturbance equations

∂ui

∂t
= −uj

∂ui

∂xj
−
∂p

∂xi
+

1

Re
∇2ui

∂ui

∂xi
= 0

ui (xi , 0) = u0
i (xi )

ui (xi , t) = 0 on solid boundaries

Re = U∗∞δ
∗/ν∗

ui = Ui + u′i decomposition

p = P + p′

Introduce decomposition, drop primes, linearize

∂ui

∂t
= −Uj

∂ui

∂xj
− uj

∂Ui

∂xj
−
∂p

∂xi
+

1

Re
∇2ui − uj

∂ui

∂xj

∂ui

∂xi
= 0
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Definitions

Stability definitions I

E(t) =
1

2

∫
Ω

ui (t)ui (t) dΩ

Stable : lim
t→∞

E(t)

E(0)
→ 0

Conditionally stable : ∃ δ > 0 : E(0) < δ ⇒ stable

Globally stable : Conditionally stable with δ →∞

Monotonically stable : Globally stable and
dE

dt
≤ 0 ∀t > 0
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Definitions

Stability definitions II

Monotonical

	  

Conditional
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Definitions

Critical Reynolds numbers

ReE : Re < ReE flow monotonically stable

ReG : Re < ReG flow globally stable

ReL : Re < ReL flow linearly stable (δ → 0)
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Definitions

Critical Reynolds numbers

Flow ReE ReG Retr ReL

Hagen-Poiseuille 81.5 − 2000 ∞
Plane Poiseulle 49.6 − 1000 5772

Plane Couette 20.7 125 360 ∞

Critcial Reynolds numbers for a number of wall-bounded shear flows compiled from the literature.
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Definitions

Evolution of disturbances in shear flows

	  

Jan Pralits (University of Genoa) Hydrodynamic stability Giugno 13-15, 2012 16 / 51



Definitions

Reynolds-Orr equation

ui
∂ui

∂t
= −ui uj

∂Ui

∂xj
−

1

Re

∂ui

∂xj

∂ui

∂xj

+
∂

∂xj

[
−

1

2
ui ui Uj −

1

2
ui ui uj − ui pδij +

1

Re
ui
∂ui

∂xj

]
⇒

dE

dt
=

∫
Ω
−ui uj

∂Ui

∂xj
dΩ−

1

Re

∫
Ω

∂ui

∂xj

∂ui

∂xj
dΩ

Theorem : Linear mechanisms required for energy growth

Proof :
1

E

dE

dt
independent of disturbance amplitude
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Definitions

Linear growth mechanisms

1

E

dE

dt
=

d

dt
ln E
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Linear Inviscid Analysis

Inviscid Analysis
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Linear Inviscid Analysis

Parallel shear flows : Ui = U(y)δ1i I

∂u

∂t
+ U

∂u

∂x
+ vU′ = −

∂p

∂x
∂v

∂t
+ U

∂v

∂x
+ = −

∂p

∂y

∂w

∂t
+ U

∂w

∂x
+ = −

∂p

∂z

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

Initial conditions :

{u, v ,w}(x , y , z, t = 0) = {u0, v0,w0}(x , y , z)

Boundary conditions :

v(x , y = y1, z, t) · n = 0 solid boundary 1

v(x , y = y2, z, t) · n = 0 solid boundary 2
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Linear Inviscid Analysis

Parallel shear flows : Ui = U(y)δ1i II

We can reduce the original 4 eq’s & 4 unknowns to a system of 2 eq’s and 2 unknowns
This is in two steps

1 Take the divergence of the momentum equations. This yields

∇2p = −2U′
∂v

∂x
.

2 The new pressure equation is introduced in the momentum equation for v . This yields[(
∂

∂t
+ U

∂

∂x

)
∇2 − U′′

∂

∂x

]
v = 0.

The three-dimensional flow is then analyzed introducing the normal vorticity

η =
∂u

∂z
−
∂w

∂x
,

where η satisfies [
∂

∂t
+ U

∂

∂x

]
η = −U′

∂v

∂z
.

with the boundary conditions

v = η = 0 at a solid wall and in the far field (or second solid wall)
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Linear Inviscid Analysis

The Rayleigh equation I

	  

Assume wave-like solutions:

v(x , y , z, t) = ṽ(y) exp i(αx + βz − ωt)

Introduce the ansatz in the v equation.
We limit ourselves to study the v-equation. This yields

(−iω + iαU)(D2 − k2)ṽ − iαU′′ṽ = 0

substitute ω = αc ⇒

(
D2 − k2 −

U′′

U − c

)
ṽ = 0

Here, k2 = α2 + beta2 and D i = ∂ i/dy i , and the boundary conditions are

ṽ(y = y1) = ṽ(y = y2) = 0 solid boundaries
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Linear Inviscid Analysis

The Rayleigh equation II

The Rayleigh equation poses an eigenvalue problem of second order with c as the complex
eigenvalue. The coefficients of the operator are real. Any complex eigenvalue will therefore
appear as complex conjugate pairs. So, if c is an eigenvalue, so is c∗.

It has a regular singular point at U(yc ) = c, a condition where the order of the equation is
reduced (critical layer).

Analytical solution for the eigenfunctions exists (Tollmien, 1928)

Instability must depend on U(y) (only parameter). U can be any base flow

We look for base flows where the perturbations become unstable

By definition perturbations in time behave as ∼ exp(−iαcr t)exp(αcit)

Take α > 0. If αci > 0 the corresponding mode grows exponentially in time
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Linear Inviscid Analysis

Interpretation of modal results I

ω = αc

v = Real{|ṽ(y)| exp iφ(y) exp i [αx + βz − α(cr + ici )t]}

= |ṽ(y)| expαci t cos[α(x − cr t) + βz + φ(y)]

ω angular frequency

cr phase speed

ci temporal growth rate

α streamwise wave number

β spanwise wave number
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Linear Inviscid Analysis

Interpretation of modal results II

	  

ũ‖ =
1

k
(α, β) ·

(
ũ
w̃

)
=

1

k
(αũ + βw̃) = −

1

ik

dṽ

dy

ũ⊥ =
1

k
(−β, α) ·

(
ũ
w̃

)
=

1

k
(αũ − βw̃) = −

1

ik
η̃
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Linear Inviscid Analysis

Rayleigh’s inflection point criterion (1887) I

Here we consider a parallel shear flow in a domain y ∈ (−1, 1) and prove a necessary condition
for instability.

THEOREM : If there exist perturbations with ci > 0, then U′′(y) must vanish for some
ys ∈ [−1, 1]

PROOF :
The proof is given by multiplying the Rayleigh equation by ṽ∗ and integrating y from −1 to 1.
This yields

−
∫ 1

−1
ṽ∗
(

D2ṽ − k2ṽ −
U′′

U − c
ṽ

)
dy =

∫ 1

−1

(
|Dṽ |2 + k2|ṽ |2

)
dy +

∫ 1

−1

U′′

U − c
|ṽ |2dy = 0

The first integral is positive definite. The equation equals zero if the second integrand of the
second equation changes sign.
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Linear Inviscid Analysis

Rayleigh’s inflection point criterion (1887) II

This is analyzed by multiplying and dividing the second integral with U − c∗. This yields∫ 1

−1

(
|Dṽ |2 + k2|ṽ |2

)
dy +

∫ 1

−1

U′′(U − c∗)

(U − c)(U − c∗)
|ṽ |2dy = 0

The real part is ∫ 1

−1

U′′(U − cr )

|U − c|2
|ṽ |2dy = −

∫ 1

−1

(
|Dṽ |2 + k2|ṽ |2

)
dy ,

the imaginary part states : U′′ must change sign to render the integral equal to zero if c 6= 0.∫ 1

−1

U′′ci

|U − c|2
|ṽ |2dy = 0.
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Linear Inviscid Analysis

Fjørtoft’s criterion (1950) I

Here we consider the same flow as in the Rayleigh’s criterion.

THEOREM : Given a monotonic mean velocity profile U(y), a necessary condition for instability
is that U′′(U − Us ) < 0 for some y ∈ [−1, 1], with Us = U(ys ) as the mean velocity at the
inflection point, i.e. U′′(ys ) = 0

PROOF : Consider again the real part∫ 1

−1

U′′(U − cr )

|U − c|2
|ṽ |2dy = −

∫ 1

−1

(
|Dṽ |2 + k2|ṽ |2

)
dy ,

We add to the left side the following integral which is identically 0

(cr − Us )

∫ 1

−1

U′′

|U − c|2
|ṽ |2dy = 0.

We then get ∫ 1

−1

U′′(U − Us )

|U − c|2
|ṽ |2dy = −

∫ 1

−1

(
|Dṽ |2 + k2|ṽ |2

)
dy ,

For the integral on the LHS to be negative the value of U′′(U −Us ) must be negative somewhere
in the flow.
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Linear Inviscid Analysis

Fjørtoft’s criterion (1950) II

Here are two examples of parallel monotonic shear flow.

	   	  

Both profiles lead to unstable solutions according to Rayleigh’s criterion; however the inflection
point has to be a maximum of the spanwise vorticity (not a minimum).

LEFT : unstable according to Fjørtoft RIGHT : stable according to Fjørtoft
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Linear Inviscid Analysis

Solutions to piecewise linear velocity profiles I

Before computers were available to researchers in the field of hydrodynamic stability theory, a
common technique to solve inviscid stability problems was to approximate continuous mean
velocity profiles by piecewise linear profiles. It allows to find analytical expression for the
dispersion relation c(α, β) and the eigenfunctions.

General considerations:

U′′ = 0 which simplifies the Rayleigh equation
(except at the connecting points)

Matching conditions must be imposed where U is
continuous but U′′ is discontinuous

	  
	  
	  
	  
	  
	  
	  
	  
	   	  	  	  

U(y)	  
	  

II	  

III

	  

	  I

	  

y	  
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Linear Inviscid Analysis

Solutions to piecewise linear velocity profiles II

Matching condition
We can rewrite the Rayleigh equation as

D[(U − c)Dṽ − U′ṽ ] = (U − c)k2ṽ

and integrating over the discontinuity in U and/or U′ located at yD we get

[(U − c)Dṽ − U′ṽ ]
yD +ε
y

D
−ε = k2

∫ yD +ε

y
D
−ε

(U − c)ṽdy

As ε→ 0 the RHS → 0 which gives the first matching condition

J(U − c)Dṽ − U′ṽK = 0, Condition 1

which is equivalent to matching the pressure across the discontinuity which in
Fourier-transformed form reads

p̃ =
iα

k2
(U′ṽ − (U − c)Dṽ).
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Linear Inviscid Analysis

Solutions to piecewise linear velocity profiles III

A second condition is derived by dividing the pressure p̃ by iα(U − c)/k2. This yields

−
k2p̃

iα(U − c)2
=

Dṽ

U − c
−

U′ṽ

(U − c)2
= D

[
ṽ

U − c

]
Integrating across the discontinuity in the velocity profile gives[

ṽ

U − c

]yD +ε

y
D
−ε

= −
k2

iα

∫ yD +ε

y
D
−ε

p̃

(U − c)2
dy

Again, as ε→ 0 we obtain the second matching condition

s
ṽ

U − c

{
= 0, Condition 2

which, for continuous U, corresponds to matching ṽ .
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Linear Inviscid Analysis

Solutions to piecewise linear velocity profiles IV

Summary :
To solve the Rayleigh equation for a piecewise linear velocity profile we need to solve

(D2 − k2)ṽ = 0

in each subdomain and impose boundary and matching conditions

J(U − c)Dṽ − U′ṽK = 0,
s

ṽ

U − c

{
= 0,

to determine the coefficients of the fundamental solution and finally the dispersion relation c(k).
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Linear Inviscid Analysis

Solutions to piecewise linear velocity profiles V

Exercise : piecewise linear mixing layer

Velocity profile

U(y) =

 1 for y > 1
y for −1 ≤ y ≤ 1
−1 for y < −1

Boundary conditions

ṽ → 0 as y → ±∞

A general solution can be written

ṽI = A exp(−ky) for y > 1
ṽII = ... for −1 ≤ y ≤ 1
ṽIII = ... for y < −1

Derive
c = c(k)

Make a plot of c(k) for k ∈ [0, 2] and discuss the results.

	  
	  
	  
	  
	  
	  
	  
	  
	   	  	  	  

U(y)	  
	  

II	  

III

	  

	  I

	  

y	  
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Linear Inviscid Analysis

Solutions to piecewise linear velocity profiles VI

Results : Piecewise mixing layer

c = ±

√(
1−

1

2k

)2

−
(

1

4k2

)
exp(−4k)

For 0 ≤ k ≤ 0.6392 the expression under the square root is negative resulting in purely
imaginary eigenvalues

For k > 0.6392 the eigenvalues are real, and all disturbances are neutral

As the wave number goes to zero, the wavelength associated with the disturbances is much
larger than the length scale associated with U(y). The limit of small k is equivalent to the
limit of zero thickness of region II .
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Linear Viscous Analysis

Viscous Analysis

Only linear or parabolic velocity profiles satisfy the steady viscous equations (Couette,
Poiseuille)

Inviscid criteria state that Poiseuille flow is stable

Common sense would suggest that viscosity acts as a damping

However, viscous Poiseuille flow undergoes transition: viscosity destabilizes the flow
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Linear Viscous Analysis

Parallel shear flows : Ui = U(y)δ1i I

∂u

∂t
+ U

∂u

∂x
+ vU′ = −

∂p

∂x
+

1

Re
∇2u

∂v

∂t
+ U

∂v

∂x
+ = −

∂p

∂y
+

1

Re
∇2v

∂w

∂t
+ U

∂w

∂x
+ = −

∂p

∂z
+

1

Re
∇2w

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

Initial conditions :

{u, v ,w}(x , y , z, t = 0) = {u0, v0,w0}(x , y , z)

Boundary conditions : depend on flow case

{u, v ,w}(x , y = y1, z, t) = 0 solid boundaries

Semi-infinite domain :

{u, v ,w}(x , y →∞, z, t) → 0 free stream

Closed domain :

{u, v ,w}(x , y = y2, z, t) = 0 solid boundary 2
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Linear Viscous Analysis

Parallel shear flows : Ui = U(y)δ1i II

We can reduce the original 4 eq’s & 4 unknowns to a system of 2 eq’s and 2 unknowns
This is in two steps

1 Take the divergence of the momentum equations. This yields

∇2p = −2U′
∂v

∂x
.

2 The new pressure equation is introduced in the momentum equation for v . This yields[(
∂

∂t
+ U

∂

∂x

)
∇2 − U′′

∂

∂x
−

1

Re
∇4

]
v = 0.

The three-dimensional flow is then analyzed introducing the normal vorticity

η =
∂u

∂z
−
∂w

∂x
,

where η satisfies [
∂

∂t
+ U

∂

∂x
−

1

Re
∇2

]
η = −U′

∂v

∂z
.

with the boundary conditions

v = v ′ = η = 0 at a solid wall and in the far field (or second solid wall)
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Linear Viscous Analysis

Orr-Sommerfeld and Squire equations

Assume wave-like solutions:

v(x , y , z, t) = ṽ(y) exp i(αx + βz − ωt)

Introduce the ansatz in the equations for {v , η}. This yields

[
(−iω + iαU)(D2 − k2)− iαU′′ −

1

Re
(D2 − k2)2

]
ṽ = 0[

(−iω + iαU)−
1

Re
(D2 − k2)

]
η = −iβU′ṽ

Here, k2 = α2 + β2 and D i = ∂ i/dy i .

Orr-Sommerfeld modes : {ṽn, η̃
p
n , ωn}N

n=1

Squire modes : {ṽ = 0, η̃m, ωm}M
m=1
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Linear Viscous Analysis

Squire modes I

THEOREM : Squire modes are always damped, i.e. ci < 0 ∀α, β,Re

Rewriting the homogeneous Squire equation we get

(U − c)η̃ =
1

iαRe
(D2 − k2)η̃

Multiplying by η̃∗ and integrating

c

∫ 1

−1
|η̃|2dy =

∫ 1

−1
U|η̃|2dy −

1

iαRe

∫ 1

−1
η̃∗(D2 − k2)η̃dy

Taking the imaginary part and integrating by parts yields

ci

∫ 1

−1
|η̃|2dy = −

1

αRe

(
k2|ṽ |2 + |

∂ṽ

∂y
|2
)
< 0
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Linear Viscous Analysis

Squire’s transformation and theorem I

Let’s consider 3D and 2D Orr-Sommerfeld equation with ω = αc

(U − c)(D2 − k2)ṽ − U′′ṽ −
1

iαRe
(D2 − k2)2ṽ = 0

(U − c)(D2 − α2
2D )ṽ − U′′ṽ −

1

iα2D Re2D

(D2 − α2
2D )2ṽ = 0

α2D = k =
√
α2 + β2

α2D Re2D = αRe

⇒
Re2D = Re

α

k
< Re
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Linear Viscous Analysis

Squire’s transformation and theorem II

Each 3D Orr-Sommerfeld mode corresponds to a 2D Orr-Sommerfeld mode at a lower Re, i.e.

Re2D = Re
α

k
< Re

We can therefore define a critical Reynolds number for parallel shear flows as

Rec ≡ min
α,β

ReL(α, β) = min
α

ReL(α, 0)

since the growth rate increases with the Reynolds number.
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Linear Viscous Analysis

Discretization of the equations in y

The Orr-Sommerfeld equations[
(−iω + iαU)(D2 − k2)− iαU′′ −

1

Re
(D2 − k2)2

]
ṽ = 0[

(−iω + iαU)−
1

Re
(D2 − k2)

]
η = −iβU′ṽ

including boundary conditions ṽ = Dṽ = η = 0 y = ±1, can, after suitable discretization
(Chebyshev polynomials, finite-differences), be written on the following compact form

ωq̃ = Aq̃ with q̃ = (ṽ , η̃)

where A is a matrix ∈ C2N×2N . This is an eigenvalue problem from which a solution is obtained
for the eigenvalue ωn and eigenvector q̃n. Note that N is the number of discrete points in the
wall-normal direction.
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Linear Viscous Analysis

Solutions of Eigenvalue analysis I

Plane Poiseuille flow

Neutral curve & spectrum (Re = 10.000, α = 1, β = 0)

	  

	  

A (cr → 0), P (cr → 1), S (cr = 2/3), Mack (1976)
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Linear Viscous Analysis

Solutions of Eigenvalue analysis II

A, P, S- Eigenfunctions for PPF
Re = 5000, α = 1, β =?
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Linear Viscous Analysis

Solutions of Eigenvalue analysis III

Blasius boundary layer

Neutral curve & spectrum (Re = 500, α = 0.2, β = 0)
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Linear Viscous Analysis

Critical Reynolds numbers

Flow αcrit Recrit crcrit

Plane Poiseulle 1.02 5772 0.264

Blasius boundary layer flow 0.303 519.4 0.397

Plane Poiseuille Flow & Blasius boundary layer
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Linear Viscous Analysis

Continuous spectrum

As y →∞ the OSE reduces to

(D2 − k2)2ṽ = iαRe[(U∞ − c)(D2 − k2)]ṽ

If we assume that

ṽ(y) = v̂ exp(λny)

then the solution is analytical with eigenvalues

λ1,2 = ±
√

iαRe(U∞ − c) + k2, λ3,4 = ±k

Assuming that iαRe(U∞ − c) + k2 is real and negative
which means that ṽ and Dṽ are bounded, λ1,2 = ±iC

⇒ αReci + k2 < 0, αRe(U∞ − cr ) = 0

From which we can derive analytically c(k,Re)

c = U∞ − i(1 + ξ2)
k2

αRe

Example : Blasius boundary layer
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Numerical solution of the Orr-Sommerfeld equation

Numerical solution of the Orr-Sommerfeld equations I

The Orr-Sommerfeld equations

−iωṽ = −(D2 − k2)−1

[
iαU(D2 − k2)− iαU′′ −

1

Re
(D2 − k2)2

]
ṽ

−iωη = −
[

iαU −
1

Re
(D2 − k2)

]
η − iβU′ṽ

including boundary conditions ṽ = Dṽ = η = 0 y = ±1, can, after suitable discretization, be
written on the following compact form

−iωq̃ = Aq̃ with q̃ = (ṽ , η̃)

Once we have the discrete problem on this form any available solver can be used to compute the
corresponding eigenvalues ωn and eigenvectors q̃n.

Exercise: Solve numerically for the Plane Poiseuille flow

Start by plotting the eigenvalue spectrum and one mode from each branch (A,P,S)

Verify Squire’s theorem

The neutral curve ci (α, β = 0,Re) = 0

Find the critical Reynolds number

A matlab program is available in which the discrete A has been discretized using Chebyschev
polynomials.
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Numerical solution of the Orr-Sommerfeld equation

A matlab script

%%%% parameters

Re=1000; %reynolds number (based on channel half width)

N=50;%number of collocation points in wall normal direction

kx=1;%streamwise wave number

kz=0;%spanwise wave number

%%%% differentiation matrices

[yvecT,DM] = chebdif(N+2,2);

yvec=yvecT(2:end-1);

%%%% the velocity profile

U.u = 1-yvec.^2;

U.P = -2*yvec;

U.PP= -2*ones(size(yvec));

% implement homogeneous boundary conditions

D2=DM(2:N+1,2:N+1,2);

% fourth derivative with clamped conditions

[y,D4]=cheb4c(N+2);

%%%% laplacian

I=eye(N);

k2=kx^2+kz^2;

delta=(D2-k2*I);

delta2=(D4-2*k2*D2+k2*k2*I); % laplacian squared

%%%% compute dynamic matrix

LOS = i*kx*diag(U.u)*delta -i*kx*diag(U.PP) -delta2/Re ;

LC = -i*kz*diag(U.P) ;

LSQ = -i*kx*diag(U.u) + delta/Re;

A = [-delta\LOS zeros(N,N); LC LSQ ];
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Numerical solution of the Orr-Sommerfeld equation

Some hints

recall that the eigenvalue solution is −iω, so if you want to plot c you must first...

compute eigenvalues using [V,D]=eig(A). D is a diagonal matrix of eigenvalues and V is a
full matrix where the columns correspond to the eigenvalues in D.

Only the least stable solution is needed. Note that it is not necessarily unstable.

the function sort can be used to find the least stable eigenvalue

make it automatic by setting up a double loop (over α and Re). For each combination
(α,Re) use eig and sort to find the least stable mode.

use the function contour to plot the neutral curve.
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