Introduction	Mathematical model	Results	Conclusions	Ongoing tasks

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

Krystyna Isakova Rodolfo Repetto Jan Pralits

University of Genova

September 17, 2013

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

University of Genova

Introduction to Eye Anatomy

Figure: Eye anatomy

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

<ロ> <四> <四> <日> <日> <日</p>

Figure: Retinal detachment

Warning signs of retinal detachment:

- Flashing lights.
- Sudden appearance of floaters.
- Shadows on the side or periphery of your vision.
- Gray curtain moving across your field of vision.

イロト イポト イヨト イヨ

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

University of Genova

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Motivation				

- Vitreous substitutes are often used after vitrectomy to treat retinal detachments.
- Vitreous substitutes cannot be left in the vitreous chamber for too long since they tend to produce emulsifications.
- How do the physical parameters of the fluids influence the tendency of the system to produce emulsification?

University of Genova

イロト イポト イヨト イヨト

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Introduct	ion			

Figure: Emulsification of vitreous substitutes in the vitreous chamber

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

< ロ > < 同 > < 回 > < 回

Fluids commonly used as a vitreous substitutes

Silicone oils;

- $960 \le \rho^* \le 1290 \text{ kg/m}^3$
- $10^{-4} \le \nu^* \le 5 \times 10^{-3} \text{ m/s}^2$
- $\sigma^* \approx 0.05 \ \mathrm{N/m}$

Perfluorocarbon liquids;

- ▶ 1760 $\le \rho^* \le$ 2030 kg/m³
- $8 \times 10^{-7} \le \nu^* \le 8 \times 10^{-6} \text{ m/s}^2$
- $\blacktriangleright \ \sigma^* \approx 0.05 \ \mathrm{N/m}$

Semifluorinated alkane liquids;

- ▶ $1350 \le \rho^* \le 1620 \text{ kg/m}^3$
- $4.6 \times 10 \le \nu^* \le 10^{-3} \text{ m/s}^2$
- ▶ 0.035 $\leq \sigma^* \leq$ 0.05 N/m

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

(日) (同) (三) (三)

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Mativation				
IVIOLIVATION				

The mechanisms leading to emulsification are still unclear

- Shear layer instability of the aqueous-tamponande fluid interface
- Release by the retina of surfactants that decrease the surface tension at the aqueous-tamponande fluid interface

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

Formulation of the problem. Mathematical model

Figure: Geometry of the problem

Assumptions:

- ► d* << R*
- 2D-model;
- flat wall oscillating harmonically;
- semi-infinite domain;
- small perturbations;
- quasi-steady approach.

< ロ > < 同 > < 三 > < 三

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks

Scaling and Dimensionless Parameters

$$\mathbf{x} = \frac{\mathbf{x}^{*}}{d^{*}}, \quad \mathbf{u}_{i} = \frac{\mathbf{u}_{i}^{*}}{V_{0}^{*}}, \quad p_{i} = \frac{p_{i}^{*}}{\rho_{1}^{*}V_{0}^{*2}}, \quad t = \frac{V_{0}^{*}}{d^{*}}t, \quad \omega = \frac{d^{*}}{V_{0}^{*}}\omega^{*}$$
$$m = \frac{\mu_{2}^{*}}{\mu_{1}^{*}} \qquad \qquad \gamma = \frac{\rho_{2}^{*}}{\rho_{1}^{*}}$$
$$R = \frac{V_{0}^{*}d^{*}}{\nu_{1}^{*}} \qquad \qquad Fr = \frac{V_{0}^{*}}{\sqrt{g^{*}d^{*}}}$$
$$S = \frac{\sigma^{*}}{\rho_{1}^{*}d^{*}V_{0}^{*2}}$$

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

・ロト ・回ト ・ヨト ・ヨト

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Basic flow				

$$\begin{aligned} &U_1 = (c_1 e^{-ay} + c_2 e^{ey}) e^{i\omega t} + c.c., &P_1 = -Fr^{-2}y + const, \\ &U_2 = c_3 e^{-by} e^{i\omega t} + c.c., &P_2 = -\gamma Fr^{-2}y + const \end{aligned}$$

where

$$a = \sqrt{i\omega R}$$
 $b = \sqrt{\frac{i\gamma\omega R}{m}}$

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

< ≣ ► ≣ ৵ ৭ ে University of Genova

・ロン ・回 と ・ ヨン ・ ヨン

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Basic flow				

<き> ヨークへの University of Genova

・ロト ・回ト ・ヨト ・ヨト

Range of variability of the dimensionless parameters

Figure: Relationship between R and ω and S and ω obtained adopting feasible values of eye movement. From thin to thick curves: $d = 1 \times 10^{-5}$ m, $d = 5 \times 10^{-5}$ m, $d = 1 \times 10^{-4}$ m

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

Image: A math a math

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Outline c	of the Solution			

Flow is decomposed:

$$\mathbf{u_i} = \mathbf{U_i} + \mathbf{u_i}', \quad p_i = P_i + p_i'$$

Stream function:

$$ar{u}_i = rac{\partial \psi_i}{\partial y}, \ ar{v}_i = -rac{\partial \psi_i}{\partial x}$$

which is expanded in Fourier modes in such a way:

1

$$\psi_i = e^{i\alpha(x-\Omega t)}\hat{\psi}_i(y,\tau) + c.c$$

where

$$0 \leq \tau \leq 2\pi/\omega$$

The system governing the stability is consist of **two** Orr-Sommerfeld equations and boundary conditions.

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

University of Genova

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Nautural Cours				

Figure:
$$S = 14$$
, $\gamma = 1.0$, $R = 12$, $\omega = 0.003$

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

æ University of Genova

э.

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Depender	nce on <i>m</i>			

Figure: S = 14, $\gamma = 1.0$, R = 12, $\omega = 0.003$

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

・ロト ・回 ト ・ヨト ・ヨ

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Depende	nce on S			

Figure: R = 12, m = 5.0, $\gamma = 1.0$, $\omega = 0.003$

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

University of Genova

Image: A math a math

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Depende	nce of R			

Figure: S = 14, m = 5.0, $\gamma = 1.0$, $\omega = 0.003$

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

・ロト ・回 ト ・ヨト ・ヨ

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Depender				
Depender				

Figure: S = 14, m = 5.0, R = 12, $\omega = 0.003$

Krystyna Isakova, Rodolfo Repetto, Jan Pralits

University of Genova

・ロト ・回ト ・ヨト ・ヨ

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Conclusions				

- Linear stability analysis of two fluids having the same densities and different viscosities shows that waves long enough are linearly unstable during certain phases of the cycle.
- The length of unstable waves becomes longer with viscosity ratio.
- The system can be destabilized either by decreasing the surface tension or by increasing the Reynolds number.
- Heavier fluid on top together with the gravity effect bring system to unstable region.
- The shortest unstable perturbation has a dimensional wavelength L* = 6mm. This value is twice as small as the eye radius.

イロト イポト イヨト イヨト

University of Genova

Krystyna Isakova, Rodolfo Repetto, Jan Pralits Stability of the interface between two immiscible fluids over a periodically oscillating flat surface

Introduction	Mathematical model	Results	Conclusions	Ongoing tasks
Future de	evelopments			

- Extension of the present work:
 - Energy analysis;
 - Floquet analysis;
 - Non-modal analysis;
- Changing geometry:
 - Including the roughness of the surface;
 - Including the curvature of the surface;
 - Building 2D and 3D model

University of Genova

イロト イポト イヨト イヨト