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Background

Anatomy of the eye
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Background

Retinal detachment

Posterior vitreous detachment (PVD) and
vitreous degeneration:

more common in myopic eyes;

preceded by changes in vitreous
macromolecular structure and in
vitreoretinal interface → possibly
mechanical reasons.

If the retina detaches from the underlying
layers → loss of vision;

Rhegmatogeneous retinal detachment:

fluid enters through a retinal break into the
sub retinal space and peels off the retina.

Risk factors:

myopia;

posterior vitreous detachment (PVD);

lattice degeneration;

...
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Background

Scleral buckling and vitrectomy

Scleral bluckling

Scleral buckling is the application of a rubber
band around the eyeball at the site of a retinal
tear in order to promote reachtachment of the
retina.

Vitrectomy

The vitreous may be completely replaced with
tamponade fluids: silicon oils, water, gas, ...,
usually immiscible with the eye’s own aqueous
humor
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Background

The retinal detachment: cases considered here

A) horseshoe tear (when large, >90◦, GRT), B) retinal hole
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Background

The retinal detachment: cases considered here
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Motivation

Motivation

Retinal tear and retinal holes are treated using surgery but it is not always clear what type of
retinal break and under what conditions is more prone to further detach.

It would therefore be useful to parametrize (size, attachment angles, size of retinal hole, ...)
different retinal breaks during eye motion and evaluate a measure of the tendency to further
detach.
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The model

The model - tear configuration
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The model

The model - hole configuration
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The model

Governing equations
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For the viscous incompressible fluid

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u + f

∇ · u = 0
,

Periodicity is imposed at ∂Ωleft and ∂Ωright , and symmetry at ∂Ωtop and ∂Ωbottom. Non slip
boundary conditions are imposed on solid surfaces.

For the slender 1D structure
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The structure is clamped at a certain angle θ at the wall, which moves according to Xp(t).
Incompressibility of the structure is imposed and non-slip/no penetration of the fluid is enforced.
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The model

Dimensionless parameters

The governing equations can be non-dimensionalized with the following characteristic scales:

x∗ =
x

L
, u∗ =
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U∞
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fL
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∞
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FL
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∞

Doing so, several dimensionless parameters arises:

Re =
U∞L

ν
, Fr =

gL
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∞
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, γ =
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ρ1U2
∞L2
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The model

Plate imposed motion

We model isolated rotations using the analytical relationship proposed by Repetto et al. (2005).
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The angle is 8◦

The maximum velocity is 0.061 m/s

The duration is 0.045 s
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Parameters

Parameters used in the computations

Quantity Value Reference

Properties of the retinal flap

Density ρS 1300 kg/m3

Length L 1.5 − 2.5 mm
Thickness 70 µm Alamouti and Funk (2003), Foster et al. (2010),

Ethier et al. (2004), Bowd et al. (2000),
Wollensak and Eberhard (2004),
Dogramaci and Williamson (2013)

Bending stiffness Kb 2.98 · 10−11 Nm2 Eh3/12

Young’s modulus E 1.21 · 103 N/m2 Jones et al. (1992), Wollensak and Eberhard (2004),
Reichenbach et al. (1991), Sigal et al. (2005)

Properties of the fluid

Density ρF 1000 kg/m3 Foster et al. (2010)

Dynamic viscosity µ 1.065 · 10−3 kg/ms Foster et al. (2010)

Table: Parameter values used for the simulations and corresponding references when available.
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Results

Dynamics for retinal tear

L=2 mm, θ = 33.6◦

Movie 1
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Results

Dynamics for retinal hole

L=2 mm, θ = 33.6◦, ∆ = 0.17 mm

Movie 2
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Results

Clamping force and torque evaluation
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We evaluate the wall-normal force (Fc,n) and torque (Mc ) at the clamping point as a function of
time. These values are then used to model the tendency to further detach.
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Results

Winkler theory

kT

r(s)

s

v(s)
Fc,n

Mc
s

Semi-infinite foundation (in green) subject to a punctual force Fc,n and torque Mc at the finite
end, and supported by elastic spring of stiffness kT (in red). The soil reaction r(s) (in blue) is
proportional to the foundation displacement v(s).

v(s) =
e−αs

2α3γ
{αMc [cos (αs)− sin (αs)] + Fc,ncos (αs)},

d = max(v |s=0, 0) = max(
αMc + Fc,n

2α3γ
, 0),

where α is the ratio between the soil spring rigidity kT and the foundation beam stiffness γ.

d is the tendency to detach
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Results

Tendency to detach
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d attains a maximum value for a finite value of t/D
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Results

Different filament lengths L: maximum tendency to detach

clamping angle θ = 33.56◦, ∆ = 0.17mm (retinal hole)
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Increasing L increases the maximum value of d
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Results

Different clamping angles θ: maximum tendency to detach

length L = 2 mm, ∆ = 0.17mm (retinal hole)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

15 17.5 20 22.5 25 27 30 33.56

d
m

a
x
/

d
m

a
x
,θ

=
2

5

θ [degrees]

Tear

0.25

0.5

0.75

1

15 25 33.56 45 55
d

m
a

x
/

d
m

a
x
,θ

=
3

3
.5

6

θ [degrees]

Hole

A maximum value of d is found
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Results

Comparison horseshoe tear & hole: maximum tendency to detach

clamping angle θ = 33.56◦, ∆ = 0.17mm (retinal hole)
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The retinal hole is more prone to detach compared to horseshoe tear
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Conclusion

Conclusions

Numerical investigation of the tendency to further detach two types of retinal breaks
(horseshoe tear & hole)

Achieved solving a fluid-structure interaction problem using a finite-volume code developed
in Matlab c© with an immersed boundary approach

The parameters used are realistic for the human eye (according to the literature)

The main results show:
Increasing the length L increases the tendency to detach (both hole & tear).

The maximum tendency to detach is found for a clamping angle of ≈ 25◦ and ≈ 34◦ for tear and
hole, respectively.

The inter tip distance ∆ (hole size) has little effect on the tendency to detach.

The tendency to detach of a retinal hole, compared to a tear, is 2 - 3 times larger for retinal
filaments of 1.5 - 2.5 mm, with increasing values of d for increasing values of the filament length.

Collaborations with a surgeon confirms that these results will give useful guidelines for
treatment of retinal breaks.
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