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Introduction

Anatomy of the eye
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Introduction

Vitreous characteristics and functions

Vitreous composition

The main constituents are

Water (99%);

hyaluronic acid (HA);

collagen fibrils.

Its structure consists of long, thick, non-branching collagen
fibrils suspended in hyaluronic acid.

Normal vitreous characteristics
The healthy vitreous in youth is a gel-like material with visco-elastic mechanical properties,
which have been measured by several authors (Lee et al., 1992; Nickerson et al., 2008;
Swindle et al., 2008).

In the outermost part of the vitreous, named vitreous cortex, the concentration of collagen
fibrils and HA is higher.

The vitreous cortex is in contact with the Internal Limiting Membrane (ILM) of the retina.

Physiological roles of the vitreous
Support function for the retina and filling-up function for the vitreous body cavity;

diffusion barrier between the anterior and posterior segment of the eye;

establishment of an unhindered path of light.
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Introduction

Vitreous ageing

With advancing age the vitreous typically undergoes significant changes in structure.

Disintegration of the gel structure which leads to vitreous
liquefaction (synchisys). This leads to an approximately
linear increase in the volume of liquid vitreous with time.
Liquefaction can be as much extended as to interest the
whole vitreous chamber.

Shrinking of the vitreous gel (syneresis) leading to the
detachment of the gel vitreous from the retina in certain
regions of the vitreous chamber. This process typically occurs
in the posterior segment of the eye and is called posterior
vitreous detachment (PVD). It is a pathophysiologic
condition of the vitreous.
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Introduction

Partial vitreous liquefaction
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Introduction

Retinal detachment

Posterior vitreous detachment (PVD) and
vitreous degeneration:

more common in myopic eyes;

preceded by changes in vitreous
macromolecular structure and in
vitreoretinal interface → possibly
mechanical reasons.

If the retina detaches from the underlying
layers → loss of vision;

Rhegmatogeneous retinal detachment:

fluid enters through a retinal break into the
sub retinal space and peels off the retina.

Risk factors:

myopia;

posterior vitreous detachment (PVD);

lattice degeneration;

...
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Introduction

Scleral buckling and vitrectomy

Scleral bluckling

Scleral buckling is the application of a rubber
band around the eyeball at the site of a retinal
tear in order to promote reachtachment of the
retina.

Vitrectomy

The vitreous may be completely replaced with
tamponade fluids: silicon oils, water, gas, ...,
usually immiscible with the eye’s own aqueous
humor
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Introduction

Intravitreal drug delivery

It is difficult to transport drugs to the retina from ’the outside’ due to the tight blood-retinal
barrier → use of intravitreal drug injections.

Diffusion is usually understood as the principal source for drug delivery, what about advection ?
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Introduction

Motivations of the work

Why do research on vitreous motion?

Possible connections between the mechanism of retinal detachment and
the shear stress on the retina;
flow characteristics.

Especially in the case of liquefied vitreous eye rotations may produce effective fluid mixing.
In this case advection may be more important that diffusion for mass transport within the
vitreous chamber.
Understanding diffusion/dispersion processes in the vitreous chamber is important to predict
the behaviour of drugs directly injected into the vitreous.
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Motion of a viscous fluid in a periodically rotating sphere

The effect of viscosity

Main working assumptions

Newtonian fluid
The assumption of purely viscous fluid applies to the cases of

vitreous liquefaction;
substitution of the vitreous with viscous tamponade fluids .

Sinusoidal eye rotations
Using dimensional analysis it can be shown that the problem is governed by the following
two dimensionless parameters

α =

√
R2

0ω0

ν
Womersley number,

ε Amplitude of oscillations.

Spherical domain
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Motion of a viscous fluid in a periodically rotating sphere

Theoretical model I

David et al. (1998)

Scalings

u =
u∗

ω0R0
, t = t∗ω0, r =

r∗

R0
, p =

p∗

µω0
,

where ω0 denotes the angular frequency of the domain oscillations, R0 the sphere radius and µ
the dynamic viscosity of the fluid.

Dimensionless equations

α2 ∂

∂t
u + α2u ·∇u + ∇p −∇2u = 0, ∇ · u = 0, (1)

u = v = 0, w = ε sinϑ sin t (r = 1), (2)

where ε is the amplitude of oscillations. We assume ε� 1.

Asymptotic expansion

u = εu1 + ε2u2 +O(ε3), p = εp1 + ε2p2 +O(ε3).

Since the equations and boundary conditions for u1, v1 and p1 are homogeneous the solution is
p1 = u1 = v1 = 0.
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Motion of a viscous fluid in a periodically rotating sphere

Theoretical model II

Velocity profiles on the plane orthogonal to the axis of rotation at different times.

Limit of small α: rigid body rotation;

Limit of large α: formation of an oscillatory boundary layer at the wall.
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Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus I

Repetto et al. (2005), Phys. Med. Biol.
The experimental apparatus is located at the University of Genoa.

Perspex cylindrical
container.

Spherical cavity with
radius R0 = 40 mm.

Glycerol (highly viscous
Newtonian fluid).
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Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus II
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Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements

Typical PIV flow field
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Motion of a viscous fluid in a periodically rotating sphere

Comparison between experimental and theoretical results

Radial profiles of <(g1), =(g1) and |g1| for two values of the Womersley number α.
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Motion of a viscoelastic fluid in a sphere

The case of a viscoelastic fluid I

As we deal with an sinusoidally oscillating linear flow we can obtain the solution for the
motion of a viscoelastic fluid simply by replacing the real viscosity with a complex viscosity.

In terms of our dimensionless solution this implies introducing a complex Womersley
number.

Rheological properties of the vitreous (complex viscosity) can be obtained from the works of
Lee et al. (1992), Nickerson et al. (2008) and Swindle et al. (2008).

It can be proved that in this case, due to the presence of an elastic component of vitreous
behaviour, the system admits natural frequencies that can be excited resonantly by eye
rotations.
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Motion of a viscoelastic fluid in a sphere

Formulation of the problem I

The motion of the fluid is governed by the momentum equation and the continuity equation:

∂u

∂t
+ (u · ∇)u +

1

ρ
∇p −

1

ρ
∇ · d = 0, (3a)

∇ · u = 0, (3b)

where d is the deviatoric part of the stress tensor.

Assumptions

We assume that the velocity is small so that nonlinear terms in (3a) are negligible.

For a linear viscoelastic fluid we can write

d(t) = 2

∫ t

−∞
G(t − t̃)D(t̃)dt̃ (4)

where D is the rate of deformation tensor and G is the relaxation modulus.

Therefore we need to solve the following problem

ρ
∂u

∂t
+∇p −

∫ t

−∞
G(t − t̃)∇2u dt̃ = 0, (5a)

∇ · u = 0, (5b)
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour I

We assume that the solution has the structure

u(x, t) = uλ(x)eλt + c.c., p(x, t) = pλ(x)eλt + c.c.,

where uλ, pλ do not depend on time and λ ∈ C.
It can be shown that the deviatoric part of the stress tensor takes the form

d(t) = 2

∫ t

−∞
G(t − t̃)D(t̃)dt̃ = 2D

G̃(λ)

λ
, (6)

where

G̃(λ) = G ′(λ) + iG ′′(λ) = λ

∫ ∞
0

G(s)e−λsds

is the complex modulus.

G ′: storage modulus;

G ′′: loss modulus;

This leads to the eigenvalue problem

ρλuλ = −∇pλ +
G̃(λ)

λ
∇2uλ, ∇ · uλ = 0, (7)

which has to be solved imposing stationary no-slip conditions at the wall and regularity
conditions at the origin.

Jan Pralits (University of Genoa) Dynamics of the vitreous humour October 19, 2013 20 / 48



Motion of a viscoelastic fluid in a sphere

Relaxation behaviour II

This eigenvalue problem can be solved analytically by expanding the velocity in terms of vector
spherical harmonics and the pressure in terms of scalar spherical harmonics (Meskauskas et al.,
2011).
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Spatial structure of the first two eigenfunctions.
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Motion of a viscoelastic fluid in a sphere

Relaxation behaviour III

In order to determine the eigenvalues it is necessary to specify the model for the vitreous humour
viscoelastic behaviour.

Two-parameter model

dashpot: ideal viscous element

spring: ideal elastic element

G̃(λ) = µK + ληK .

Four-parameter model

G̃(λ) =
ληmµm(µK + ληK )

(µm + ληm)(ληmµm/(µm + ληm) + µK + ληK )
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Motion of a viscoelastic fluid in a sphere

Some conclusions

For all existing measurements of the rheological properties of the vitreous we find the
existence of natural frequencies of oscillation.

Such frequencies, for the least decaying modes, are within the range of physiological eye
rotations (ω = 10− 30 rad/s).

The two- and the four-parameter model lead to qualitatively different results:
Two-parameter model: only a finite number of modes have complex eigenvalues;
Four-parameter model: an infinite number of modes have complex eigenvalues.

Natural frequencies could be resonantly excited by eye rotations.
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Motion of a viscous fluid in a weakly deformed sphere

The effect of the geometry I

Myopic Eyes
In comparison to emmetropic eyes, myopic eyes are

larger in all directions;

particularly so in the antero-posterior direction.

Myopic eyes bear higher risks of posterior vitreous detachment and vitreous degeneration →
increased the risk of rhegmatogeneous retinal detachment.

The shape of the eye ball has been related to the degree of myopia (measured in dioptres D) by
Atchison et al. (2005), who approximated the vitreous chamber with an ellipsoid.
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(a) horizontal and (b) vertical cross sections of the domain for different degrees of
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Motion of a viscous fluid in a weakly deformed sphere

Formulation of the mathematical problem

Meskauskas et al., submitted to Invest. Ophthal. Vis. Scie.

Equation of the boundary
R(ϑ, ϕ) = R0(1 + δR1(ϑ, ϕ)),

where

R0 denotes the radius of the sphere with the same volume as the vitreous chamber;

δ is a small parameter (δ � 1);

the maximum absolute value of R1 is 1.

Expansion
We expand the velocity and pressure fields in therms of δ as follows

U = U0 + δU1 +O
(
δ2
)
, P = P0 + δP1 +O

(
δ2
)
.

Solution
The solution at the order δ can be found analytically expanding R1, U1 and P1 in terms of
spherical harmonics.
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Motion of a viscous fluid in a weakly deformed sphere

Myopic eyes I

Maximum stress on the retina as a function of the refractive error
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Maximum (over time and space) of the (a) tangential and (b) normal stress on the retina as a function of the

refractive error in dioptres. Values are normalised with the corresponding stress in the emmetropic (0 D) eye.

The different curves correspond to different values of the rheological properties of the vitreous humour taken

from the literature.
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Steady streaming in a periodically rotating sphere

Non-linear effects and implications for fluid mixing

Back to viscous fluids . . .

Flow visualisations on planes containing the axis of rotation.
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Steady streaming in a periodically rotating sphere

Theoretical model I

Second order solution

u = εu1 + ε2u2 +O(ε3), p = εp1 + ε2p2 +O(ε3).

We decompose the velocity u2 and the pressure p2 into their time harmonics by setting

u2 = u20 +
{

u22e
2it + c.c.

}
, p2 = p20 +

{
p22e

2it + c.c.
}
, u1 ·∇u1 = F0 +

{
F2e

2it + c.c.
}
,

where u20, u22, p20, p22, F0 and F2 are independent of time.

Governing equations for the steady component

∇2u20 −∇p20 = α2F0, ∇ · u20 = 0, (8a)

u20 = v20 = w20 = 0 (r = 1). (8b)
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Steady streaming in a periodically rotating sphere

Comparison between experimental and theoretical results I

The steady streaming flow can be directly measured experimentally by cross-correlating
images that are separated in time by a multiple of the frequency of oscillation.

This procedure filters out from the measurements the oscillatory component of the flow.

Repetto et al. (2008), J. Fluid Mech.

Numerical Experimental
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Steady streaming in a periodically rotating sphere

Conclusions

Eye movements during reading: ≈ 0.16 rad, ≈ 63 s−1 (Dyson et al., 2004).

Kinematic viscosity of the vitreous: ν ≈ 7× 10−4 m2s−1 (Lee et al., 1992).

Eye radius: R0 = 0.012 m.

Womersley number: α = 3.6.

Streaming velocity: U = ε2δmax(|u(0)
21 |) ≈ 6× 10−5 m s−1.

Diffusion coefficient of fluorescein: D ≈ 6× 10−10 m s−1 (Kaiser and Maurice, 1964)

Peclèt number: Pe ≈ 1200.
In this case advection is much more important than diffusion!
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Stability of the interface after vitreoretinal surgery

Stability of the interface between aqueous humor and vitreous
substitutes after vitreoretinal surgery

Retinal detachment

Warning signs of retinal detachment:

Flashing lights.

Sudden appearance of floaters.

Shadows on the periphery of your vision.

Gray curtain across your field of vision.

Vitrectomy

The vitreous may be completely replaced with
tamponade fluids: silicon oils, water, gas, ...

Denoted tamponade liquids

Purpose: Induce an instantaneous
interruption of an open communication
between the subretinal space/retinal
pigment epithelial cells and the pre-retinal
space.

Healing: a scar should form as the cells
absorb the remaining liquid.
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Stability of the interface after vitreoretinal surgery

Fluids commonly used as a vitreous substitutes

Silicone oils;
960 ≤ ρ∗ ≤ 1290 kg/m3

10−4 ≤ ν∗ ≤ 5 × 10−3 m/s2

σ∗ ≈ 0.05 N/m

Perfluorocarbon liquids;
1760 ≤ ρ∗ ≤ 2030 kg/m3

8 × 10−7 ≤ ν∗ ≤ 8 × 10−6 m/s2

σ∗ ≈ 0.05 N/m

Semifluorinated alkane liquids;
1350 ≤ ρ∗ ≤ 1620 kg/m3

4.6 × 10 ≤ ν∗ ≤ 10−3 m/s2

0.035 ≤ σ∗ ≤ 0.05 N/m

The choice of tamponade liquid depends on the
specific case

The tabulated fluids are immiscible with
water and commonly used in surgery

A lighter fluid (cf. water) is used to
tamponade in the upper part

A heavier fluid is used to tamponade in the
lower part

High surface tension is preferred to a low
value (EXPERIENCE)

High value of viscosity (cf. water) is
preferred to a low value (EXPERIENCE)

What could happen otherwise ?
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Stability of the interface after vitreoretinal surgery

Emulsification

Emulsification leads to loss of vision, not satisfactory

Figure: Emulsification of vitreous substitutes in the vitreous chamber
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Stability of the interface after vitreoretinal surgery

Summary & Motivation

Summary
From experience it is known that tamponade fluids with high surface tension and high
viscosity (compared to water) are less prone to emulsify

It is also know that initially ”good” tamponade fluids tend to change with time, for instance
a decrease of surface tension due to surfactants, which leads to emulsification.

It is generally believed that shear stresses at the tamponade fluid-aqueous interface
generated during eye rotations play a crucial role in the generation of an emulsion.

The tamponade liquid needs to stay for a period of months so it is of interest to know how
emulsification can be avoided.

Our analysis
We want understand how emulsification, or the initial stages leading to emulsification, are
related to the parameters (surface tension, viscosity, density, real conditions).

As a first study we focus on the stability characteristics of the interface in order to see if it
has any role.

A linear stability analysis, of wave like solutions, is used.
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Stability of the interface after vitreoretinal surgery

Mathematical model I

The geometry
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Stability of the interface after vitreoretinal surgery

Mathematical model II

Underlying assumptions

Figure: Geometry of the problem

d∗ << R∗

2D-model;

flat wall oscillating harmonically;

semi-infinite domain;

small perturbations;

quasi-steady approach.
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Stability of the interface after vitreoretinal surgery

Scaling and Dimensionless Parameters

x =
x∗

d∗
, ui =

u∗i
V ∗0

, pi =
p∗i

ρ∗1V
∗2
0

, t =
V ∗0
d∗

t, ω =
d∗

V ∗0
ω∗

m =
µ∗2
µ∗1

γ =
ρ∗2
ρ∗1

R =
V ∗0 d∗

ν∗1
Fr =

V ∗0√
g∗d∗

S =
σ∗

ρ∗1d
∗V ∗2

0
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Stability of the interface after vitreoretinal surgery

Basic flow

Analytical solution

U1(y , t) = (c1e
−ay + c2e

ey )e iωt + c.c.,

U2(y , t) = c3e
−by e iωt + c.c.,

∂P1

∂y
= −Fr−2,

∂P2

∂y
= −γFr−2,

where

a =
√
iωR, b =

√
iγωR

m
.
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Stability of the interface after vitreoretinal surgery

Linear stability analysis

Flow decomposition:
ui = Ui + ui

′, vi = vi
′ pi = Pi + p′i

Boundary conditions:

u′1(0, t) = v ′1(0, t) = 0 and u′2(y , t)→ 0, v ′2(y , t)→ 0 as y →∞

Interface: (y∗ = d∗) introducing also the perturbation of the interface η′

Continuity of the perturbation velocity components across the interface

Continuity of the tangential stress of across the interface

The wall normal stress is balanced by the surface tension

Wave-like solutions are assumed:

ξi = e iα(x−Ωt)ξ̂i (y , τ) + c.c

where
0 ≤ τ ≤ 2π/ω

The system of equations is reduced introducing the perturbation stream function giving two
Orr-Sommerfeld equations, discretized using finite differences, solved using an inverse iteration
algorithm.
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Stability of the interface after vitreoretinal surgery

Range of variability of the dimensionless parameters
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Figure: Relationship between R and ω and S and ω obtained adopting feasible values of eye movement. From
thin to thick curves: d = 1 × 10−5m, d = 5 × 10−5m, d = 1 × 10−4m
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Stability of the interface after vitreoretinal surgery

Neutral Curves
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Figure: S = 14, γ = 1.0, R = 12, ω = 0.003

The arrow indicates increasing value of the parameter m (viscosity ratio).
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Stability of the interface after vitreoretinal surgery

Dependence on m

The shortest unstable wave length as a function of the viscosity ratio m.
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Figure: S = 14, γ = 1.0, R = 12, ω = 0.003
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Stability of the interface after vitreoretinal surgery

Dependence on S

The shortest unstable wave length as a function of the surface tension S.
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Stability of the interface after vitreoretinal surgery

Dependence of R

The shortest unstable wave length as a function of the Reynolds number R.
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Stability of the interface after vitreoretinal surgery

Dependence on γ

The shortest unstable wave length as a function of the density ratio γ.
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Stability of the interface after vitreoretinal surgery

Conclusions and Continuation

Monitoring the shortest unstable wave length (critical wave length) we have seen that:

Increasing the viscosity, ratio the critical wave length increases (stabilizing for the Eye)

Increasing the surface tension, the critical wave length increases (stabilizing for the Eye)

Increasing the Reynolds no., the critical wave length decreases (destabilizing for the Eye)

Increasing the density ratio, the critical wave length decreases (destabilizing for the Eye)

The first two is ”in line” with realistic observations.

For realistic values of R,S , γ,m, ω, d∗ the critical wave length ≈ 6 mm, which is about half
the Eye radius.

However, the growth rate is instantaneous and the waves unstable only during certain
intervals of one period. (cf. turbulent burst in the classical Stokes II problem). No sustained
growth over one period is guaranteed.

This analysis is far from explaining the onset of emulsion but a first step to rule out (or not)
different physical mechanisms.

Next step...

Budget of disturbance kinetic energy (Reynolds-Orr) (ongoing)

Floquet analysis (ongoing)
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