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Introduction

Motivation

Here we study the dynamics of flexible, inextensible and massive filaments (permeable and
impermeable), similar to the well-know flag problem.

What are the applications of such study?

Paper processing

Energy harvesting

Turbulence control, flight control

Behaviour of biological structures, such as leaves, in windy environments

Locomotion of animals

... to just mention of few.
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Introduction

A fluid-structure interaction problem

Two monks were arguing about the temple flag waving in teh wind. One said, ”The flag moves.” The other

said, ”The wind moves.” They argued back and forth but could not agree. Hui-neng, the sixth Patriarch, said:

”Gentlemen! It is not the flag that moves. It is not the wind that moves. It is your mind that moves.” The

two monks were struck with awe.
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Introduction

How has this problem been studied?

Experimental studies:

Study of flags made of various fabrics and shapes hanging in a vertical wind tunnel

Flexible filament made of silk thread and immersed in a running soap film

Heavy, streamlined, and elastic body interacting with a fluid in a water tunnel

Paper flutter: a potentially destructive phenomenon in high-speed printing

Inviscid simulations:

Flag allowed to shed a vortex sheet from its trailing edge

Thin-airfoil theory approximation

Small displacements, neglecting vortex shedding and neglecting the tension

Viscous simulations: FSI DNS

Immersed boundary (IB) method

ALE finite-element method
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Introduction

Observed behaviours

Let us focus on the two-dimensional case

Movie 1

a) The stretched-straight state,
b) Flapping,
c) Coherent periodic flapping,
d) Aperiodic flapping (∼ chaotic)
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Linear stability- & sensitivity analysis of impermeable filament

Linear stability- & sensitivity analysis
of

an impermeable filament
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Linear stability- & sensitivity analysis of impermeable filament

The aim of this analysis

For a viscous coupled problem where the structure has a rigidity, mass and is thin (filament),
study:

Linear stability (global modes)

Structural sensitivity, Giannetti & Luchini (2007)

To ascertain the role of the control parameters in the behaviour of the system, in particular
the bifurcation curves.
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Linear stability- & sensitivity analysis of impermeable filament

The model

The dynamics of the flow is governed by the incompressible Navier-Stokes equations with suitable
boundary conditions

∂u

∂t
+ (u · ∇)u +∇p −

1

Re
∇ · (∇u +∇uT ) = 0, (1)

∇ · u = 0, (2)[
pn̂f −

1

Re
∇ · (∇u +∇uT ) · nf

]
ΓN

= 0, (3)

u|Γin = uin, (4)

u|Γs =
∂X

∂t
, (5)

where nf is the outward pointing normal verso of the fluid domain. And the system of equations
for the structure is given as

∂2X

∂t2
=

∂
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∂X

∂s

)
−

∂2
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(
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∥∥∥∥∂2X
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∥∥∥∥ ∂n̂

∂s

)
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∂X

∂s
·
∂X

∂s
= 1 (7)

The force F = S+ · n̂+ + S− · n̂− is the difference in the fluid stress tensor between the upper (+)

and lower (-) side of the filament, and S = −∇p +
1

Re
∇ · (∇u +∇uT ).
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Linear stability- & sensitivity analysis of impermeable filament

Non-dimensional parameters

The governing parameters of the problem are

mass ratio: m = ρs
Lρ0

bending stiffness: γ = EJ
L2U2

∞ρs

Reynolds number: Re = ρ0LU∞
µ
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Linear stability- & sensitivity analysis of impermeable filament

Verifying the code

The case analyzed here uses the following parameters:
Reduced velocity Us = K−0.5

b , with Kb = mγ (Lee et al. (2014), Connell & Yue (2007), ...)
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Linear stability- & sensitivity analysis of impermeable filament

Reynolds number dependency

Increasing the Reynolds number there are two clear asymptotic behaviors.

However, for intermediate values of Us and m the picture is less evident.

Re = 200, κ = 106 Re = 100, 200, 300, κ = 106

Critical values:
Us = 4.98, mRe=100 = 0.33, mRe=200 = 0.16, mRe=300 = 0.11
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Linear stability- & sensitivity analysis of impermeable filament

A closer look at the eigenfunctions

P1 P2

P4 P7
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Linear stability- & sensitivity analysis of impermeable filament

Direct & adjoint modes
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Linear stability- & sensitivity analysis of impermeable filament

Structural sensitivity

P1 P2

P4 P7
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Linear stability- & sensitivity analysis of impermeable filament

Conclusions

A framework and numerical code has been set up, and verified, to perform LST, structural
sensitivity (pseudo spectrum analysis, continuation method).

For a given Reynolds number 2 asymptotic regimes are found (small bending stiffness/small
mass SBM, high bending stiffness/high mass HBM). These regimes are related to
hydrodynamic instabilities and structural instabilities, respectively.

The structural sensitivity in the SBM case is a single region along the filament with a peak
close to the trailing edge, while in the HBM case two distinct regions are found with the
peak close to the trailing edge.

For intermediate values of mass and bending stiffness ”cusps” are found where nodes appear
in the structure, and the position along the filament varies with the parameters. The nodes
have zero vertical displacement during the flapping period.

P2 P4 neutral curve
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Porous filament

Porous filament

Jan O. Pralits (University of Genoa) Retinal detachment October 19, 2015 17 / 29



Porous filament

Motivations

The aim of the work is to explore numerically how different structural parameters (mass, bending
stiffness and permeability) affect the dynamics of biological tissues, or biomimetical surfaces
when exposed to fluid flows.

With such a study our objective is:

to understand the underlying physics

understand if there is a potential of porosity as a passive control device
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Porous filament

Short on the state of the art

Zhu and Peskin, Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the
Immersed Boundary Method (2002), stretching and bending rigidity.

Kim and Peskin, 2-D Parachute Simulation by the Immersed Boundary Method (2006),
stretching rigidity and porosity.

Kim and Peskin, Penalty Immersed Boundary Method for an Elastic Boundary with Mass
(2007), stretching and bending rigidity and mass.

In our model we introduce a filament with, simultaneously, stretching and bending rigidity,
porosity and mass.
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Porous filament

The FSI model

The filament Γ (in red) described by a set of Lagrangian points X(s, t) (in blue) immersed in the
fluid domain Ω discretized by the Eulerian grid (in gray). The initial configuration (dotted line) of
the filament is a straight line with a certain angle θ.
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Porous filament

Governing equations

For the viscous incompressible fluid
∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u + f

∇ · u = 0
, (8)

and for the 1D slender structure

∂2X

∂t2
=

∂

∂s

(
T
∂X

∂s

)
−

∂2

∂s2

(
γ
∂2X

∂s2

)
+ Fr

g

g
− F, (9)

∂X

∂s

∂2

∂s2
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T
∂X

∂s

)
=

1

2

∂2

∂t2

(
∂X

∂s

∂X
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)
−

∂2X

∂t∂s

∂2X

∂t∂s
−
∂X

∂s

∂

∂s
(Fb − F). (10)

For the fluid we impose a constant velocity at the inlet, a convective condition at the outlet and
symmetry condition in the cross-flow direction. The filament is hinged at the upstream point and
conditions giving a free end is imposed at the trailing edge.

The following dimensionless parameters appear.

Re =
U∗∞L∗

ν∗
, Fr =

g∗L∗

U∗2
∞

, ρ =
ρ∗1
ρ∗0L
∗ , γ =

K∗b
ρ∗1U

∗2
∞L∗2
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Porous filament

How to model porosity?

Velocity-based approach by allowing a relative slip in the normal direction between the IB and
the surrounding flow, given by:

u = uimp + λ(Fimp · n)n (11)

This ”classical” approach has a serious drawback since it uses the local (and often noisy) values
of the force.

Forced-based approach by decreasing the force extert on the structure in the normal direction:

F = (1− λ) · (Fimp · n)n + (Fimp · τ)τ (12)

With this approach the non-slip condition is obtained, to a certain accuracy, by using Goldstein’s
feedback rule

Fimp = α

∫ t

0
(Uib −

∂X

∂t
)dt′ + β(Uib −

∂X

∂t
), (13)

where α and β are chosen such that the non-slip condition is enforced. Moreover, the velocity on
the IB is computed as

Uib(s, t) =

∫
Ω

u(x, t)δ(x− X(s, t))dΩ. (14)

In a similar way the forcing of the Navier-Stokes equation is obtained as

f(x, t) = ρ

∫
Γ

F(s, t)δ(x− X(s, t))ds. (15)
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Porous filament

Benchmark using Darcy’s law I

An inextensible membrane (left, thick solid line) simply supported at both ends is subject to a
uniform flow from left (streamlines with thin solid lines) and (right) pressure profile along x.
Notice the sudden pressure drop around membrane location (x = 0) within the space of two grid
points.
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Porous filament

Benchmark using Darcy’s law II

Darcy’s law Uib − ∂X
∂t

= −kD∇p

Goldstein’s feedback law Fimp = β(Uib − ∂X
∂t

)

Since the drag on a flat plate normal to the flow is only due to the pressure difference reduced by
porosity one can assume that

Fimp(1− λ)

δ
∼
∂p

∂x
,

where δ is the width of the membrane. This gives

kD = −
δ

β(1− λ)
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Porous filament

Validation with analytical model for impermeable filament

Connel & Yue (2007) proposed an analytical model based on slender body theory. It givens the
following dispersion relation

(ρ+ ρa)(1.3Re−0.5 + γk2)− ρρa ≥ 0

where the added mass ρa = 2/k comes from potential theory and k is the wave number
associated with the filament shape when flapping.

Comparison between analytical models and DNS simulations for Re = 200 and different values of
ρ and γ.
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Porous filament

Porosity I

Neutral curve on the plane (γ, ρ) for Re = 200, Fr = 0 and λ = 0 obtained numerically. The
analytical curve for λ = 0 is taken from Connel & Yue (2007) and shown with a dotted line,
whereas the solid lines with symbols represent neutral curves for different porosity.

Note that large values of λ are needed for a ”damping” effect.
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Porous filament

Porosity II

Peak-to-peak oscillation amplitude and flapping Strouhal number as function of porosity.

Clearly, ”critical” values for λ, for which oscillations vanish, is close to unity. This can be
estimated by comparing the characteristic time scales of porosity and hydrodynamical instabilities.
We define the porous time scale τ∗por as the time it takes for the flow to reduce the pressure
difference across the filament. The hydrodynamical time scale is simply τ∗hdr = L∗/U∗∞. This
gives an estimate of the critical porosity coefficient as

λc,t ≈ 1 +
ρah

δβ

Note that β < 0. Eg. Curve B (γ = 1.5 · 10−3): λc,n = 0.95, λc,t = 0.91.

Jan O. Pralits (University of Genoa) Retinal detachment October 19, 2015 27 / 29



Porous filament

Porosity III

Maximum values of lift and drag over a flapping period as a function of porosity (case C)

The lift/drag ratio is maximized for λ ≈ 0.6
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Porous filament

Conclusions

A novel way of handling simultaneously porosity and bending resistance of a massive filament.

It has been derived and verified a relation between the free model parameter λ and the
porosity parameter kD appearing in Darcys law and found that kD ∼ (1− λ)−1

It is found that porosity effectively increases the stability zone only when the porosity
parameter λ is greater that a critical value λc .

We propose a simple resonance mechanism between a characteristics porous time-scale and
the standard characteristic hydrodynamic time-scale, and the theoretical value is in
qualitative agreement with the DNS simulations.

We observed reduction of both lift and drag forces induced by porosity, ascribing it to the
penetration velocity that reduces the pressure difference between the two sides of the
structure, and find an optimum value of λ that maximizes the lift-to-drag ratio.

Jan O. Pralits (University of Genoa) Retinal detachment October 19, 2015 29 / 29


	Introduction
	Linear stability- & sensitivity analysis of impermeable filament
	Porous filament

