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Outline

Lecture Outline
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Jan Pralits (University of Genoa) Adjoints: theory and applications January 14, 2014 2 / 30



Introduction

Introduction and Motivation I

Let’s assume we have a physical model.

Ex: A linear model of an aeroelasticity problem. The
result x = (w ,Θ) gives us the vertical motion w(y , t) and
rotation Θ(y , t).

Determine: torsion and flutter.
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‖ · ‖ means norm in the spanwise direction.
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Introduction

Introduction and Motivation II

Let’s now assume we want to improve some
characteristics.
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Ex: Reduce fluctuations x = (w ,Θ) using the flap (avoid flutter).

Objective: J =
1

2

∫ T

0
‖x(t)‖2 dt + l2

1

2

∫ T

0
‖u(t)‖2 dt

State: ẋ = Ax + Bu, x(0) = x0, 0 ≤ t ≤ T

We can set up a gradient based optimization problem:

min
∀u

J, using un+1 = un − ρ
(
∂J

∂u

)n

Several techniques exist: Direct (FD), Lagrange multipliers, adjoint-based methods...

Jan Pralits (University of Genoa) Adjoints: theory and applications January 14, 2014 4 / 30



Introduction

Summary & Aim

From the example shown so far it is clear that the gradient of J with respect to a chosen
variable ξ (∇Jξ) plays a crucial role for the solution.

The gradient of an output with respect to an input gives the sensitivity which in itself is a
useful result.

δJ =
∂J

∂ξ
· δξ

As we have seen the sensitivity can also be used to solve optimization and control problems.

The aim of the lecture is to demonstrate how to compute this quantity in an efficient and
accurate way for a number of different problems, both on a theoretical and practical level.

The same approach is applicable for problems such as: optimal control, optimal
perturbations (nonmodal growth)
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Sensitivity analysis and gradient computation

Definitions

Sensitivity analysis (SA) is the study of how the variation in the output of a mathematical model
can be apportioned, to different sources of variation in the input of the model.

Definition:
The (scalar) directional derivative

d(u, p) ,
∂J(u)

∂u
· p = lim

ε→0+

1

ε
[J(u + εp)− J(u)], (1)

The (vector) directional gradient

gi (u) = d(u, ei ) =
∂J(u)

∂u
· ei = lim

ε→0+

1

ε
[J(u + εei )− J(u)] ⇒ g(u) ,

∂J(u)

∂u
, ∇J(u) (2)

In the following we assume that the dimensions of u and J(u) are n and m respectively.
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Sensitivity analysis and gradient computation

Finite-difference approximation (FD)

First-order finite-difference (FD) formula:

d(u, ei ) =
J(u + εei )− J(u)

ε
+ O(ε). (3)

A second-order finite-difference formula:

d(u, ei ) =
J(u + εei )− J(u− εei )

2ε
+ O(ε2 ). (4)

Note:

This approach is straightforward to implement.

Using a computer with finite-precision arithmetic is the difficulty to find a suitable value for
the step size ε. If it is large then the Taylor-series truncation is not valid and when it is small
then the subtractive cancellation errors might dominate.

In order to evaluate ∂J(u)/∂u as given by equations (3) and (4) requires n + 1 and 2 n
function evaluations, respectively, for each m. This can certainly be computationally
expensive if each evaluation of J requires the solution of an ODE or PDE
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Sensitivity analysis and gradient computation

Complex-step derivative (CSD)

If the complex extension J(z) of a real-valued function J(u) is analytic, it can be expanded with a
complex Taylor series. The expansion of J(u + iεp) can be written

J(u + iεp) = J(u) + iε
∂J(u)

∂u
· p + O(ε2 ), (5)

and the directional derivative can be found by rearranging the expansion as

d(u, p) =
∂J(u)

∂u
· p =

1

ε
I[J(u + iεp)] + H.O.T . (6)

Note:

More ”tricky” to implement (in matlab it is simple).

The error scales with ε2.

There are no cancellation errors.

This approach requires n computations.

It is more robust with respect to the choice of the value of ε, compared to the FD approach.
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Sensitivity analysis and gradient computation

Adjoint-based approach I

Case 1: J depends linearly on the solution x of a linear system, find ∂J/∂b

J(b) = cT x, (7)

A x = b, (8)

where A is a known matrix A ∈ Rn,n, c and b are the known vectors c ∈ Rn, b ∈ Rn, respectively.
Introduce an additional linear system

AT y = c. (9)

... after some linear algebra:

J = cT x = (AT y)T x = yTAx = yT b (10)

With the new linear system (9), J depends explicitly on the vector b, and

∂J(b)

∂b
= y. (11)

Note: The computational cost is 1 and independent of n since only one solution of equation (9)
is needed to evaluate (11).
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Sensitivity analysis and gradient computation

Adjoint-based approach II

Case 2: J depends quadratically on the solution x of a linear system.

J(b) =
1

2
xT x, (12)

A x = b, (13)

Linearize: x← x + δx and b← b + δb into equations (12)-(26) and dropping higher-order δ-terms:

δJ = xT δx, (14)

A δx = δb. (15)

We now introduce an additional linear system as

AT y = x, (16)

and the function δJ can be evaluated as

δJ = xT δx = (AT y)T δx = yTAδx = yT δb. (17)

The gradient is then evaluated easily as

∂J(b)

∂b
= y. (18)

Note: The computational cost is 2, independently of n. The two systems to solve are (26) & (16).
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Sensitivity analysis and gradient computation

Comparison of computational effort

Computational effort: the number of function evaluations

Approach J(b) = c · u J(b) = u · u
FD1 m · (n + 1) m · (n + 1)
FD2 2m · n 2m · n
CSD m · n m · n
ADJ m 2m

Table: Number of function evaluations to compute the gradient using Finite-Difference approximation (FD),
Complex step derivative (CSD) and adjoint equations (ADJ). First and second order FD approach are denoted
FD1 and FD2. Here, n is the dimension of b and m the dimension of J.

Note:

In general m� n which makes the adjoint approach much more favorable.

For cases in which n is small and comparable to m then all approaches have comparable
computational effort.

The CSD has always comparable computational effort compared to FD but is more robust.

The adjoint approach requires the derivation and implementation of an additional system.
(difficult when using commercial software, but an option when using open source codes or
in-house codes.
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Definition of adjoint

Definition of adjoint

The adjoint operator was introduced by Lagrange in the 18th century.∫
u∗Au dx =

∫
uA∗u∗ dx , (19)

which is valid for u, u∗ vanishing at the ends of the integration interval. Relations like equation
(19) are usually called duality relations or Lagrange equalities.

In general, with non-vanishing boundary conditions, and the inner product given as 〈·, ·〉:

〈u∗,Au〉 = 〈u,A∗u∗〉+ B.T. (20)

Note:

A∗ is a linear operator.

It is not straight forward to define the adjoint of a nonlinear operator. It can however be
introduced based on the theory of linear operators. This means that one must first linearise
the nonlinear operator and then define its adjoint.
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Definition of adjoint

Matrices

Consider an m-by-n matrix A with complex entries:

(A∗)ij = Aji (21)

or more compact as

A∗ = (A)T = AT = AH (22)

A square matrix A with entries aij is called

Hermitian or self-adjoint if A = A∗, i.e., aij = aji .

skew Hermitian or antihermitian if A = −A∗, i.e., aij = −aji .
normal if A∗A = AA∗.

unitary if A∗ = A−1.

Even if A is not square, the two matrices A∗A and AA∗ are both Hermitian and in fact positive
semi-definite matrices. Some further considerations for which holds also for non-square matrices.

(A∗)∗ = A for any matrix A.

The eigenvalues of A∗ are the complex conjugates of the eigenvalues of A.

〈Ax, y〉 = 〈x,A∗y〉 for any m-by-n matrix A, any vector x in Cn and any vector y in Cm. Here
〈·, ·〉 denotes an inner product on Cm and Cn.
(cf. the adjoint approach to compute a gradient.)
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Examples and derivations

Some examples I

Case: Previous example, A x = b (An×n, xn, bn), and 〈a, b〉 = aT b

〈y,A x〉 = yTA x = (AT y)T x = 〈AT y, x〉 = 〈A∗y, x〉. (23)

Let’s assume that A∗y = c
〈y, b〉 = yT b = cT x = 〈c, x〉. (24)

y is the sensitivity with respect to b. But c has no physical meaning.

The adjoint itself does not have any physical meaning, and is only useful when used as a
mathematical tool to solve a specific physical problem.

If we instead relate c to J = cT x, as in the previous example, then the physical interpretation of
the results is clear.
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Examples and derivations

Some examples II

Case: A time dependent linear system.

J = cT x(T ), (25)

dx

dt
+ A x = 0, x(0) = x0, 0 ≤ t ≤ T (26)

where A is a known matrix A ∈ Rn,n and c is a known vector c ∈ Rn. Introduce∫ T

0
〈a(t), b(t)〉dt =

∫ T

0
a(t)T b(t) dt (27)

and an adjoint variable v(t). The adjoint identity is then written∫ T

0
vT
(
dx

dt
+ A x

)
dt =

∫ T

0

(
−
dv

dt
+ AT v

)T

x dt + v(T )T x(T )− v(0)T x(0) (28)

The LHS = 0 and so is the RHS. If we define the adjoint equation as

−
dv

dt
+ AT v = 0, v(T ) = c, 0 ≤ t ≤ T (29)

Then by inspection we can write the remaining terms as

J = cT x(T ) = v(0)T x(0), (30)

and the gradient
∇J = v(0) (31)
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Examples and derivations

Some examples III

Case: Gradient of a cost function for an advection-diffusion problem.

Consider a linear advection-diffusion PDE for the evolution of u(x , t):

∂u

∂t
+
∂(a u)

∂x
−

1

Re

∂2u

∂x2
= 0, (32)

with a(x), and initial and boundary conditions given by u(x , 0) = u0 and u(0, t) = u(1, t) = 0.
Introduce

J =

∫ 1

0
k(x)u(x ,T ) dx , (33)

Objective: find ∂J/∂u0.

Introduce ∫ T

0
〈a(x , t), b(x , t)〉dt =

∫ T

0

∫ 1

0
a(x , t)b(x , t) dx dt, (34)

and an adjoint variable v(x , t).

We now need to evaluate the adjoint identity...
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Examples and derivations

Some examples IV

The adjoint identity can now be written:

∫ T

0

∫ 1

0

v

∂u

∂t
+

∂(a u)

∂x
−

1

Re

∂2u

∂x2︸ ︷︷ ︸
=0

 dxdt =

∫ T

0

∫ 1

0

u

−
∂v

∂t
− a

∂v

∂x
−

1

Re

∂2v

∂x2︸ ︷︷ ︸
=0

 dxdt +

+

∫ 1

0

[u(x,T )v(x,T ) − u(x, 0)v(x, 0)] dx +

∫ T

0

a(1)u(1, t)v(1, t)︸ ︷︷ ︸
u(1,t)=0

− a(0)u(0, t)v(0, t)︸ ︷︷ ︸
u(0,t)=0

 dt

−
1

Re

∫ T

0

v(1, t)
∂u(1, t)

∂x︸ ︷︷ ︸
v(1,t)=0

− v(0, t)
∂u(0, t)

∂x︸ ︷︷ ︸
v(0,t)=0

 dt +
1

Re

∫ T

0

u(1, t)
∂v(1, t)

∂x︸ ︷︷ ︸
u(1,t)=0

− u(0, t)
∂v(0, t)

∂x︸ ︷︷ ︸
u(0,t)=0

 dt. (35)

The right hand side of (35) is obtained by integration by parts in x and t.

The left hand side is zero by definition of equation (32) → RHS = 0.

Impose boundary conditions: direct and adjoint
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Examples and derivations

Some examples V

The remaining terms from the adjoint identity can now be written∫ 1

0
[v(x ,T )u(x ,T )− v(x , 0)u(x , 0)] dx = 0. (36)

Identify equation (33) in the remaining terms (36). Choice: v(x ,T ) = k(x)∫ 1

0
k(x)u(x ,T ) dx︸ ︷︷ ︸

=J

−
∫ 1

0
v(x , 0)u(x , 0) dx = 0. (37)

Rewrite

J =

∫ 1

0
k(x)u(x ,T ) dx =

∫ 1

0
v(x , 0)u(x , 0) dx , 〈

∂J

∂u(x , 0)
, u(x , 0)〉, (38)

the gradient of J with respect to u(x , 0) can be identified as

∂J

∂u(x , 0)
= v(x , 0). (39)
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Examples and derivations

Some examples VI

This is called adjoint identity approach and the computational cost is 1.

The system of equations needed to compute the gradient can now be summarized as follows
state equation:

∂u

∂t
+
∂(a u)

∂x
−

1

Re

∂2u

∂x2
= 0,

with initial and boundary conditions given by u(x , 0) = u0 and u(0, t) = u(1, t) = 0.
cost function:

J =

∫ 1

0
k(x)u(x ,T ) dx .

adjoint equations:

−
∂v

∂t
− a

∂v

∂x
−

1

Re

∂2v

∂x2
= 0,

with initial and boundary conditions given by v(x ,T ) = k(x) and v(0, t) = v(1, t) = 0.
gradient:

∂J

∂u(x , 0)
= v(x , 0).

Note: The adjoint equations are integrated backwards in time with an initial condition at t = T .
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Numerical issues and accuracy

Accuracy of the adjoint

The accuracy of the adjoint it is often referred to how accurate the adjoint identity

〈u∗,Au〉 = 〈u,A∗u∗〉+ B.T.

is satisfied once the equations have been discretised.

We only need to consider the terms left once the adjoint equations have been defined.
Ex: ∫ 1

0
[u(x ,T )v(x ,T )− u(x , 0)v(x , 0)] dx = 0.

A discrete version of this equation can be written

error = |〈u(x ,T ), v(x ,T )〉∆h − 〈u(x , 0), v(x , 0)〉∆h|, (40)

using the values of u and v at t = 0 and t = T , and

〈, 〉∆h which is a discretised version of the inner product 〈, 〉.
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Numerical issues and accuracy

Continuous vs. Discrete Adjoint Equations

The adjoint equations can be derived using two different approaches.
Both with advantages and disadvantages.
By definition we have

〈u∗,Au〉 = 〈u,A∗u∗〉+ B.T.

Continuous approach →: The adjoint equations are
derived by definition using the continuous direct
equations.

+ Straightforward derivation, reuse old code when
programming

– Accuracy depends on discretization, difficulties with
boundary conditions

Discrete approach →: The adjoint equations are
derived from the discretized direct equations.

+ Accuracy can be achieved close to machine precision,
and can be independent of discretization !!

– Tricky derivation, usually requires making a new code,
or larger changes of an existing code.

Continuous
Direct Equation

Discrete
Direct Equation

Continuous
Adjoint Equation

Discrete
Adjoint Equation

Discrete
Adjoint Eq.

def

def

Here ”def” means definition of the
adjoint operator.
In the top row it is on continuous form
while in the bottom row it is on
discrete form.
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Numerical issues and accuracy

Derivation of the adjoint equation I

Consider the following optimization problem (ODE) where φ is the state and g the control.

dφ(t)

dt
= −Aφ(t) + Bg(t), for 0 ≤ t ≤ T ,

with initial condition
φ(0) = φ0

We can now define an optimization problem in which the goal is to find an optimal g(t) by
minimizing the following objective function

J =
γ1

2
[φ(T )−Ψ]2 +

γ2

2

∫ T

0
g(t)2dt,
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Numerical issues and accuracy

Derivation of the adjoint equation II

Continuous approach
We can solve this problem using an adjoint identity approach or by introducing Lagrange
multipliers.∫ T

0
a[
dφ

dt
+ Aφ− Bg ] dt =

∫ T

0
[−

da

dt
+ A∗a]φ dt −

∫ T

0
aBg dt + a(T )φ(T )− a(0)φ(0).

If we now define the adjoint equation as −da/dt = −A∗a with an arbitrary initial condition a(T )
then the identity reduces to

LHS = −
∫ T

0
aBg dt + a(T )φ(T )− a(0)φ(0)

By definition the Left Hand Side is identically zero but this is exactly what must be checked
numerically, i.e. error= |LHS|.

Jan Pralits (University of Genoa) Adjoints: theory and applications January 14, 2014 23 / 30



Numerical issues and accuracy

Derivation of the adjoint equation III

The gradient of J w.r.t. g can be derived considering the J is nonlinear in φ and g . We linearise
by φ→ φ+ δφ, g → g + δg and then write the linearised objective function as

γ1[φ(T )−Ψ]δφ(T ) = δJ − γ2

∫ T

0
gδg dt,

If we choose a(T ) = γ1[φ(T )−Ψ] then the equation for δJ can be substituted into the
expression for the adjoint identity. If you further define the adjoint equations, remember that
δφ(0) = 0, then the final identity is written

δJ =

∫ T

0
[γ2g + B∗a]δg dt

The adjoint equations and gradient of J w.r.t. g are written

−
da

dt
+ A∗a, a(T ) = γ1[φ(T )−Ψ], and ∇Jg = γ2g + B∗a.

The so called optimality condition is given by ∇Jg = 0.
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Numerical issues and accuracy

Derivation of the adjoint equation IV

The accuracy of the adjoint solution is important since it quantfies a ”gradient” in the
optimization problem.

The ”error” must be evaluated to quantify the accuracy the adjoint solution.

Note that the adjoint solution depends on the resolution (∆t), and likewise the accuracy.

Can we do better ?
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Numerical issues and accuracy

Derivation of the adjoint equation V

Discrete approach
A discrete version of the direct equation is written

φi+1 − φi

∆t
= −Aφi + Bg i , for i = 1, ...,N − 1,

where N denotes the number of discrete points on the interval [0,T ], ∆t is the constant time
step, and

φ1 = φ0,

is the initial condition. This can be written as a discrete evolution equation

φi+1 = Lφi + ∆tBg i , for i = 1, ...,N − 1.

with L = I −∆tA, and I the identity matrix. A discrete version of the objective function can be
written

J =
γ1

2
(φN − Φ)2 +

γ2

2

N−1∑
i=1

∆t(g i )2.
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Numerical issues and accuracy

Derivation of the adjoint equation VI

An adjoint variable ai is introduced defined on i = 1, ...,N and we write the adjoint identity as

ai+1 · Lφi = (L?ai+1) · φi , for i = 1, ...,N − 1.

We then introduce the definition of the state equation on the left hand side of and impose that

ai = L?ai+1 for i = N − 1, ..., 1.

This is the discrete adjoint equation. Using the discrete direct and adjoint yields

ai+1 · (φi+1 −∆tBg i ) = ai · φi , for i = 1, ...,N − 1.

which must be valid for any φ and a. An error can therefore be written as

error = |aN · φN − a1 · φ1 −
N−1∑
i=1

∆t ai+1 · Bg i |.

This can be compared with the error for the continuous formulation from the previous derivation

error = |a(T )φ(T )− a(0)φ(0)−
∫ T

0
aBg dt|
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Numerical issues and accuracy

Derivation of the adjoint equation VII

Comparison
Error from the discrete approach

error = |aN · φN − a1 · φ1 −
N−1∑
i=1

∆t ai+1 · Bg i |

Error from the continuous approach

error = |a(T )φ(T )− a(0)φ(0)−
∫ T

0
aBg dt|

The convergence of the physical problem and the accuracy of the gradient can be considered two
different issues.

In the continuous approach the adjoint solution depends on the discretization scheme used
and the error will decrease as the spatial and temporal resolution increase. In this case it
is difficult to distinguish between different errors in the case an optimization problem fail to
converge.

The advantage of the discrete approach is that the adjoint solution will be numerically
”exact”, independently of the spatial and temporal resolution.
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Numerical issues and accuracy

Derivation of the adjoint equation VIII

The discrete optimality condition is then derived. Since J is nonlinear with respect to φ and g we
must first linearize. This can be written

δJ = γ1(φN − Φ) · δφN + γ2

N−1∑
i=1

∆tg i · δg i .

We now choose the terminal condition of the adjoint as aN = γ1(φN − Φ) and substitute this
expression into the discrete adjoint identity. This is written

γ1(φN − Φ) · δφN = a1 · δφ1 +

N−1∑
i=1

∆t ai+1 · Bδg i

By inspection one can see that the left hand side is identical to the first term in the expression for
δJ, and δφ1 = 0. Rearranging the terms, we get

δJ =

N−1∑
i=1

∆t (γ2g
i + B?ai+1) · δg i ,

from which we get the discrete optimality condition

g i = −
1

γ2
B?ai+1 for i = 1, ..,N − 1.

Note that if B is a matrix then B? = BT .
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Numerical issues and accuracy

Checkpointing algorithm

When the adjoint equation is forced in time by the direct solution (ex. quadratic objective
function), then this poses storage requirements (hard ware).

Checkpointing: This consists of sampling the direct solution at given rate and then
recompute the direct solution for short time intervals when needed. This means in theory
that one more solution of the direct system has been added to the computational effort.

However, since it is common to use parallel computing, and processors is becoming a smaller
problem on can do something to obtain the minimal required computational time.

This is done by recomputing the direct solution, in parallel, while computing the adjoint.

∆ T ∆ T ∆ T ∆ T ∆ T
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