Sensitivity Analysis of the Finite-Amplitude Vortex Shedding behind a Cylinder

J. Pralits, F. Giannetti, P. Luchini

DIMEC, Università di Salerno 84084 Fisciano (SA), Italy jpralits@unisa.it

8th ERCOFTAC SIG 33 Workshop -Global Instabilities of Open Flows Nice 30 June - 2 July, 2010

Outline

Introduction

Unstable stationary base flow

- Eigenvalue sensitivity due to localized structural perturbations
- Effects of localized base-flow modifications

Finite-amplitude vortex shedding

- Sensitivity of the limit-cycle frequency
- Sensitivity of the limit-cycle amplitude
- Comparisons and implications

Conclusions

Outline	
ouuno	

Limit cycle

The cylinder wake

Global Stability

Jackson (1987), Zebib (1987)

"Wavemaker"

Giannetti & Luchini (2007)

Effects of base-flow variations

Marquet et al. (2008), Luchini et al. (2008), Pralits et al.

(2010)

Localised structural sensitivity

- In the context of a two-dimensional modal analysis the core of the instability (wavemaker) can be found by investigating where in space a modification in the structure of the problem produces the largest drift of the eigenvalue.
- We consider structural perturbations consisting of a localized external force proportional to and aligned with the local velocity (*i.e.*, a small solid object¹).

$$F(x,y) \approx \delta(x-x_0, y-y_0) \delta A I \cdot u(x,y)$$
 $\delta A = \frac{4\pi}{Re \ln(7.4/Re_c)}$

 With this choice it is possible to evaluate, separately, the effects induced on the frequency and growth rate of the instability.

¹Pozrikidis (1996), Dyke (1975)

Sensitivity to perturbation modification

• Perturb the eigen problem with a localised feedback

$$\sigma' \mathbf{u}' + \mathbf{L} \{ \mathbf{U}_b, Re \} \mathbf{u}' + \nabla p' = \delta(\mathbf{x} - \mathbf{x}_0, \mathbf{y} - \mathbf{y}_0) \delta \mathbf{C}_0 \cdot \mathbf{u}'$$
$$\nabla \cdot \mathbf{u}' = \mathbf{0}$$

Expand u' = u + δu, p' = p + δp' and σ' = σ + δσ, insert into the equations and apply the Lagrange identity. The eigenvalue drift δσ is then written

$$\delta \sigma = \mathbf{S}_{p}(\mathbf{x}_{0}, \mathbf{y}_{0}) : \delta \mathbf{C}_{0} \qquad \mathbf{S}_{p}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{u}(\mathbf{x}, \mathbf{y}) \mathbf{f}^{+}(\mathbf{x}, \mathbf{y})}{\int_{\mathcal{D}} \mathbf{f}^{+} \cdot \mathbf{u} \, \mathrm{d}^{2} \mathbf{x}}$$

where $S_p(x, y)$ is the sensitivity, and f^+ is the adjoint velocity eigenvector.

Sensitivity to base-flow modification

Perturb the base flow equations with a feedback from velocity to force (δC_b · U_b), linearise and use the Lagrange identity to get the eigenvalue drift δσ and the sensitivity S_b

$$\delta \sigma = \mathbf{S}_{b}(\mathbf{x}_{0}, \mathbf{y}_{0}) : \delta \mathbf{C}_{b} \qquad \mathbf{S}_{b}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{U}_{b}(\mathbf{x}, \mathbf{y}) \mathbf{f}_{b}^{+}(\mathbf{x}, \mathbf{y})}{\int_{\mathcal{D}} \mathbf{f}^{+} \cdot \mathbf{u} \, \mathrm{d}^{2} \mathbf{x}}$$

 Here U_b is the steady base flow velocity field, f⁺ and u are the direct and adjoint velocity eigenvectors while f⁺_b satisfies the forced adjoint base flow equations

$$\mathbf{L}^{+} \{ \mathbf{U}_{b}, Re \} \mathbf{f}^{+} + \nabla m^{+} = \delta \mathbf{C}^{+} (\mathbf{f}^{+}, \mathbf{u})$$
$$\nabla \cdot \mathbf{f}^{+} = \mathbf{0}$$

where

$$\delta \mathbf{C}^{+}(\mathbf{f}^{+},\mathbf{u}) = \mathbf{u} \cdot \nabla \mathbf{f}^{+} - \nabla \mathbf{u} \cdot \mathbf{f}^{+},$$

●●● 単則 《山》《山》《日》 《日》

В

Ρ

Results: stationary base flow Re = 50

Note comparison with Marquet et al. (2008) for B

growth rate

< 口 > < 同

В

Ρ

Results: stationary base flow Re = 60

frequency

growth rate

◆□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ④ >

В

Ρ

Conclusions

Results: stationary base flow Re = 80

frequency

growth rate

◆□ → ▲□ → ▲□ → ▲□ → ▲□ →

В

Ρ

Conclusions

Results: stationary base flow *Re* = 100

growth rate

<□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□>

В

Ρ

Results: stationary base flow *Re* = 120

frequency

growth rate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Application: Control

Flow around the rotating cylinder, control of 2nd shedding mode.

Analysis of finite-amplitude vortex shedding

- Linear analysis is only valid in proximity of the neutral curve (*Re_c* ≈ 47). When the vortex shedding sets in, one may wonder where the wavemaker of the nonlinear periodic oscillation resides.
- We²investigate the finite-amplitude vortex shedding in order to assess how unsteadiness and saturation modify the linear sensitivity results.
- The quantity that enable us to do so is the spatial distribution of the sensitivity of the limit-cycle frequency and amplitude to a structural perturbation of the problem.

²Luchini, Giannetti & Pralits, AIAA-2008-4227 (2008)- ເອັກ ເອັກ ເອັກ ອາສະ 🕬 🖉 🕫 🕫 ແ

Limit cycle

Conclusions

Problem formulation

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \frac{1}{Re} \Delta \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

$$A = \frac{1}{T} \int (\mathbf{u} - \bar{\mathbf{u}}) \cdot (\mathbf{u} - \bar{\mathbf{u}}) \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t$$

$$\mathbf{u}(t+T)=\mathbf{u}(t)\,,\ \boldsymbol{p}(t+T)=\boldsymbol{p}(t)$$

VorticityRe50.avi

Limit cycle

Structural perturbation

Now give a structural perturbation h to the problem

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p - \frac{1}{Re} \Delta \mathbf{u} = \mathbf{h}$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

in the form of a bulk force depending on the local velocity

If the perturbation is small, the new solution will remain periodic but with a different period (and a real frequency, in contrast with the corresponding linear problem whose frequency will in general become complex).

Summary of how to obtain the Sensitivity³

- Make the period appear in the equations by rescaling the time as $0 < \tau = t/T < 1$ (Step 1)
- 2 Linearise the equations around the periodic undisturbed nonlinear solution $\mathbf{u_0}$ with period T_0 . Perform a Floquet analysis of the resulting linear forced equations • Step 2
- Use the adjoint Floquet mode and the Lagrange identity to derive the compatibility condition which guarantees the existence of the solution of the original inhomogeneous linear problem • Step 3

³ for details see Luchini, Giannetti & Pralits, AIAA conference paper, ID AIAA-2008-4227 (2008) 🕢 🗄 🕨 📃 🖘 🔍 🔿 🔍 🕐

Adjoint equations

$$-\frac{1}{T_0}\frac{\partial \mathbf{f}^+}{\partial \tau} - \nabla \cdot (\mathbf{u_0}\mathbf{f}^+) + \nabla \mathbf{u_0} \cdot \mathbf{f}^+ - \nabla m^+ - \frac{1}{Re}\Delta \mathbf{f}^+ = \frac{2}{T_0}(\mathbf{u} - \bar{\mathbf{u}})$$
$$\nabla \cdot \mathbf{f}^+ = 0$$

The solution of these forced equations is given by

Note that δA does not depend on the value of ϵ since the forced direct equation has only a periodic solution if

$$\int \mathbf{f}_0^+ \cdot \left(\frac{\delta T}{T_0^2} \frac{\partial \mathbf{u}_0}{\partial \tau} + \delta \mathbf{C} \mathbf{u}\right) \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = 0.$$

Sensitivity with respect to limit-cycle frequency

Since
$$\delta \omega / \omega_0 = -\delta T / T_0$$

$$\mathbf{S}_F(x, y) = \frac{\delta \omega}{\delta \mathbf{C}} = \frac{\omega_0}{N} \int_0^{T_0} \mathbf{u}_0(x, y) \mathbf{f}_0^+(x, y) \, \mathrm{d}t$$

$$\mathbf{S}_A(x, y) = \frac{\delta A}{\delta \mathbf{C}} = \int_0^{T_0} \mathbf{u}_0(x, y) \mathbf{f}^+(x, y) \, \mathrm{d}t$$
where $\mathbf{f}^+ = \mathbf{f}_\rho^+ + \epsilon \mathbf{f}_0^+$,

$$N = \int_0^{T_0} \mathbf{f}_0^+ \cdot \frac{1}{T_0} \frac{\partial \mathbf{u}_0}{\partial t} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t, \qquad \epsilon = -\frac{1}{N} \int \mathbf{f}^+ \cdot \frac{\partial \mathbf{u}_0}{\partial \tau} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t$$

シック・ 単同・ 本田・ 本田・ 本日・

LC

SF

Results: Limit Cycle Re = 50 (Total)

frequency

amplitude

growth rate

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results: Limit Cycle Re = 50 ("perturbation")

frequency

amplitude

growth rate

SF

LC

Results: Limit Cycle Frequency (Total)

SF

= 990 C

Results: Limit Cycle Frequency ("perturbation")

SF

三日 のへで

Results: Limit Cycle Amplitude (Total)

SF

1 = 990

Results: Limit Cycle Amplitude ("perturbation")

SF

1= 990

Conclusions

- The idea of Localised structural sensitivity has been extended to supercritical flows.
- The theory has been devloped for periodic flows using floquet analysis.
- Expressions for the sensitivity have been derived both for the frequency and amplitude.
- A comparisons with the case of stationary base flow show similarities close to the first bifurcation.
- To be done: derive coefficients for the Stuart-Landau amplitude equation accounting for structural forcing.

Appendix

Appendix Appendix

Appendix

Step 1: making the period appear in the equations

Define an amplitude

$$A = \frac{1}{T} \int_0^T (\mathbf{u} - \bar{\mathbf{u}}) \cdot (\mathbf{u} - \bar{\mathbf{u}}) \, \mathrm{d}t.$$

and a scaled time, $\tau = \frac{t}{T}$, then the equations can be rewritten as

$$\frac{1}{T}\frac{\partial \mathbf{u}}{\partial \tau} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \frac{1}{Re}\Delta \mathbf{u} + \mathbf{h}$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

where T is an additional unknown and the period in the variable τ is constant and equal to 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary of the Procedure

Step 2: linearization

$$\mathbf{u}(\tau) = \mathbf{u}_{\mathbf{0}}(\tau) + \delta \mathbf{u}(\tau), \quad \mathbf{p} = \mathbf{p}_{\mathbf{0}}(\tau) + \delta \mathbf{p}(\tau)$$
$$T = T_{\mathbf{0}} + \delta T, \quad \mathbf{A} = \mathbf{A}_{\mathbf{0}} + \delta \mathbf{A}$$

Upon linearization with respect to $\delta \mathbf{u}$, δp and δT :

$$\frac{1}{T_0} \frac{\partial \delta \mathbf{u}}{\partial \tau} + \mathbf{u_0} \cdot \nabla \delta \mathbf{u} + \delta \mathbf{u} \cdot \nabla \mathbf{u_0} + \nabla \delta p - \frac{1}{Re} \Delta \delta \mathbf{u} = \frac{\delta T}{T_0^2} \frac{\partial \mathbf{u_0}}{\partial \tau} + \mathbf{h}$$
$$\nabla \cdot \delta \mathbf{u} = \mathbf{0}$$
$$\delta A = \int_0^1 2(\mathbf{u} - \bar{\mathbf{u}}) \cdot \delta \mathbf{u} \, \mathrm{d}\tau.$$

• The resulting perturbation will in general *not* be periodic, but modified by the Floquet exponent.

< ロ > < 圖 > < 亘 > < <u>> Step 3</u> のへで

 The condition that a constant period equals to 1 be maintained in τ implicitly determines the variation δT

Step 2: linearization

$$\mathbf{u}(\tau) = \mathbf{u}_{\mathbf{0}}(\tau) + \delta \mathbf{u}(\tau), \quad \mathbf{p} = \mathbf{p}_{\mathbf{0}}(\tau) + \delta \mathbf{p}(\tau)$$
$$T = T_{\mathbf{0}} + \delta T, \quad \mathbf{A} = \mathbf{A}_{\mathbf{0}} + \delta \mathbf{A}$$

Upon linearization with respect to $\delta \mathbf{u}$, δp and δT :

$$\frac{1}{T_0} \frac{\partial \delta \mathbf{u}}{\partial \tau} + \mathbf{u_0} \cdot \nabla \delta \mathbf{u} + \delta \mathbf{u} \cdot \nabla \mathbf{u_0} + \nabla \delta p - \frac{1}{Re} \Delta \delta \mathbf{u} = \frac{\delta T}{T_0^2} \frac{\partial \mathbf{u_0}}{\partial \tau} + \mathbf{h}$$
$$\nabla \cdot \delta \mathbf{u} = \mathbf{0}$$
$$\delta A = \int_0^1 2(\mathbf{u} - \bar{\mathbf{u}}) \cdot \delta \mathbf{u} \, \mathrm{d}\tau.$$

- The resulting perturbation will in general *not* be periodic, but modified by the Floquet exponent.
- The condition that a constant period equals to 1 be maintained in τ implicitly determines the variation δT

Step 3: adjoint equations

- If we just wanted to determine the variation of period for a specific form of structural perturbation we could solve the problem as stated above; but we can obtain a much more powerful result, *i.e.* the sensitivity of the period to an *arbitrary* structural perturbation with the aid of adjoint equations.
- Key to this approach is the observation that the limit cycle is non-unique, insofar as if u₀(τ) is a periodic solution, u₀(τ + δτ) is as well.
- By Fredholm's alternative, the original inhomogeneous linear problem only has a solution if a compatibility condition is satisfied. This compatibility condition can be derived through a generalized Lagrange identity.

Generalized Lagrange identity

Appendix

Generalized Lagrange identity

$$\int \mathbf{f}^{+} \cdot \left(\frac{\delta T}{T_{0}^{2}} \frac{\partial \mathbf{u}_{0}}{\partial \tau} + \mathbf{h}\right) d^{3}\mathbf{x} dt =$$

$$= \int \left[\mathbf{f}^{+} \cdot \left(\frac{1}{T_{0}} \frac{\partial \delta \mathbf{u}}{\partial \tau} + \mathbf{u}_{0} \cdot \nabla \delta \mathbf{u} + \delta \mathbf{u} \cdot \nabla \mathbf{u}_{0} + \nabla \delta p - \frac{1}{Re} \Delta \delta \mathbf{u} \right) + m^{+} \nabla \cdot \delta \mathbf{u} \right] d^{3}\mathbf{x} dt =$$

$$= \int \left[\delta \mathbf{u} \cdot \left(-\frac{1}{T_0} \frac{\partial \mathbf{f}^+}{\partial \tau} - \nabla \cdot (\mathbf{u_0} \mathbf{f}^+) + \nabla \mathbf{u_0} \cdot \mathbf{f}^+ - \nabla m^+ - \frac{1}{Re} \Delta \mathbf{f}^+ \right) + -\delta p \nabla \cdot \mathbf{f}^+ \right] \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t =$$

$$=\int \delta \mathbf{u} \cdot 2(\mathbf{u} - \bar{\mathbf{u}}) \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = \delta A$$

+

Generalized Lagrange identity

$$\int \mathbf{f}^{+} \cdot \left(\frac{\delta T}{T_{0}^{2}} \frac{\partial \mathbf{u}_{0}}{\partial \tau} + \mathbf{h}\right) d^{3}\mathbf{x} dt =$$

$$= \int \left[\mathbf{f}^{+} \cdot \left(\frac{1}{T_{0}} \frac{\partial \delta \mathbf{u}}{\partial \tau} + \mathbf{u}_{0} \cdot \nabla \delta \mathbf{u} + \delta \mathbf{u} \cdot \nabla \mathbf{u}_{0} + \nabla \delta p - \frac{1}{Re} \Delta \delta \mathbf{u} \right) + m^{+} \nabla \cdot \delta \mathbf{u} \right] d^{3}\mathbf{x} dt =$$

$$= \int \left[\delta \mathbf{u} \cdot \left(-\frac{1}{T_0} \frac{\partial \mathbf{f}^+}{\partial \tau} - \nabla \cdot (\mathbf{u_0} \mathbf{f}^+) + \nabla \mathbf{u_0} \cdot \mathbf{f}^+ - \nabla m^+ - \frac{1}{Re} \Delta \mathbf{f}^+ \right) + -\delta p \nabla \cdot \mathbf{f}^+ \right] d^3 \mathbf{x} dt =$$

$$=\int \delta \mathbf{u} \cdot 2(\mathbf{u} - \bar{\mathbf{u}}) \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = \delta A$$

Appendix

Generalized Lagrange identity

$$\int \mathbf{f}^{+} \cdot \left(\frac{\delta T}{T_{0}^{2}} \frac{\partial \mathbf{u}_{0}}{\partial \tau} + \mathbf{h}\right) d^{3}\mathbf{x} dt =$$

$$= \int \left[\mathbf{f}^{+} \cdot \left(\frac{1}{T_{0}} \frac{\partial \delta \mathbf{u}}{\partial \tau} + \mathbf{u}_{0} \cdot \nabla \delta \mathbf{u} + \delta \mathbf{u} \cdot \nabla \mathbf{u}_{0} + \nabla \delta p - \frac{1}{Re} \Delta \delta \mathbf{u} \right) + m^{+} \nabla \cdot \delta \mathbf{u} \right] d^{3}\mathbf{x} dt =$$

$$= \int \left[\delta \mathbf{u} \cdot \left(-\frac{1}{T_0} \frac{\partial \mathbf{f}^+}{\partial \tau} - \nabla \cdot (\mathbf{u_0} \mathbf{f}^+) + \nabla \mathbf{u_0} \cdot \mathbf{f}^+ - \nabla m^+ - \frac{1}{Re} \Delta \mathbf{f}^+ \right) + -\delta p \nabla \cdot \mathbf{f}^+ \right] \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t =$$

$$=\int \delta \mathbf{u} \cdot 2(\mathbf{u} - \bar{\mathbf{u}}) \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = \delta A$$

Appendix

Generalized Lagrange identity

$$\int \mathbf{f}^{+} \cdot \left(\frac{\delta T}{T_{0}^{2}} \frac{\partial \mathbf{u}_{0}}{\partial \tau} + \mathbf{h}\right) d^{3}\mathbf{x} dt =$$

$$= \int \left[\mathbf{f}^{+} \cdot \left(\frac{1}{T_{0}} \frac{\partial \delta \mathbf{u}}{\partial \tau} + \mathbf{u}_{0} \cdot \nabla \delta \mathbf{u} + \delta \mathbf{u} \cdot \nabla \mathbf{u}_{0} + \nabla \delta p - \frac{1}{Re} \Delta \delta \mathbf{u} \right) + m^{+} \nabla \cdot \delta \mathbf{u} \right] d^{3}\mathbf{x} dt =$$

$$= \int \left[\delta \mathbf{u} \cdot \left(-\frac{1}{T_0} \frac{\partial \mathbf{f}^+}{\partial \tau} - \nabla \cdot (\mathbf{u_0} \mathbf{f}^+) + \nabla \mathbf{u_0} \cdot \mathbf{f}^+ - \nabla m^+ - \frac{1}{Re} \Delta \mathbf{f}^+ \right) + -\delta p \nabla \cdot \mathbf{f}^+ \right] d^3 \mathbf{x} dt =$$

$$=\int \delta \mathbf{u} \cdot 2(\mathbf{u} - \bar{\mathbf{u}}) \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = \delta A$$

Summary of the Procedure X < Sterring</p>

Compatibility Conditions

$$-\frac{1}{T_0}\frac{\partial \mathbf{f}^+}{\partial \tau} - \nabla \cdot (\mathbf{u_0}\mathbf{f}^+) + \nabla \mathbf{u_0} \cdot \mathbf{f}^+ - \nabla m^+ - \frac{1}{Re}\Delta \mathbf{f}^+ = \frac{2}{T}(\mathbf{u} - \bar{\mathbf{u}})$$
$$\nabla \cdot \mathbf{f}^+ = \mathbf{0}$$

The solution of these forced equations is given by

Note that δA does not depend on the value of ϵ since the forced direct equation has only a periodic solution if

$$\int \mathbf{f}_0^+ \cdot \left(\frac{\delta T}{T_0^2} \frac{\partial \mathbf{u_0}}{\partial \tau} + \mathbf{h} \right) \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = 0.$$

Sensitivity

From the last compatibility condition we easily obtain

$$\frac{\delta T}{T} = -\frac{\int_0^T \mathbf{f}_0^+ \cdot \mathbf{h} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t = 0}{\int_0^T \mathbf{f}_0^+ \cdot \frac{\partial \mathbf{u}_0}{\partial \tau} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t}$$

$$\delta \boldsymbol{A} = \int_0^T \mathbf{f}^+ \cdot \mathbf{h} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t$$

where $\mathbf{f}^+ = \mathbf{f}^+_p + \epsilon \mathbf{f}^+_0$ and

$$\epsilon = -\frac{\int_0^T \mathbf{f}^+ \cdot \frac{\partial \mathbf{u_0}}{\partial \tau} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t}{\int_0^T \mathbf{f}_0^+ \cdot \frac{\partial \mathbf{u_0}}{\partial \tau} \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t}$$