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Abstract

Retinal detachment often occurs when the vitreous gel, a thick gel that fills the
center of the eye, shrinks and separates from the retina. This process is called
a posterior vitreous detachment (PVD); it normally appears with aging and
can be harmless. Sometimes, though, PVD can tear the retina. This happens
where the vitreous gel is strongly attached to the retina. As the vitreous gel
shrinks, it might pull so hard that the retina tears. The tear allows fluid to
flow under the retina and this may cause the retina to detach. Vitrectomy is a
surgical procedure employed to treat retinal breaks and retinal detachment. It
consists in the replacement of the whole vitreous humor, which is substituted
with tamponade fluids. Often, silicone oils are used as tamponade fluids. Since
the oil is hydrophobic a thin layer of aqueous always forms between the oil and
the retina. In some cases the oil-water interface turns out to be unstable and
the oil forms an emulsion. In this case the oil has to be removed from the
vitreous chamber. The conditions under which this happens are still unclear.
In the thesis we presented a preliminary model of the stability of the oil-aqueous
interface. We modeled two layers of different immiscible fluids set in motion by
harmonic oscillation of the wall.
We found an analytical solution of the basic flow and a numerical solution of the
eigenvalue problem given by the Orr-Sommerfeld equations in terms of stream
functions together with boundary conditions. The analysis was made for values
of parameters that are relevant for the retinal detachment problem. That led
us to use so-called quasi-steady approach.

The results showed us that instability is possible for the certain values of pa-
rameters. Also, we concluded the the surface tension has a strong stabilizing
effect on short perturbations. The viscosity also slightly influences the stability
of the system.

In addition to that the possibilities for further research are discussed.



Chapter 1

Introduction

1.1 Eye anatomy

Figure 1.1: Eye anatomy

The human eye is the organ which gives us the sense of sight, allowing us to
observe and learn more about the surrounding world than we do with any of
the other four senses. We use our eyes in almost every activity we perform,
whether reading, working, watching television, writing a letter, driving a car,
and in countless other ways. Most people probably would agree that sight is
the sense they value more than all the rest.

The eye allows us to see and interpret the shapes, colors, and dimensions of
objects in the world by processing the light they reflect or emit. The eye is
able to detect bright light or dim light, but it cannot sense objects when light
is absent.

The eye is often compared to a camera. Both gather light and then transforms
it into a picture. Both also have lenses to focus the incoming light. A camera
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uses the film to create a picture, whereas the eye uses a specialized layer of cells,
called the retina, to produce an image.

Below we provide a short description of the main parts of the human eye.
Conjuctiva The conjunctiva is a thin, clear layer of skin covering the front
of the eye, including the sclera and the inside of the eyelids. The conjunctiva
avoids that bacteria and foreign material from getting behind the eye.
Sclera The white part of your eye that you see when you look at yourself in
the mirror is the front part of the sclera. The sclera is, a tough, leather-like
tissue, and constitutes the eye wall everywhere except the front part. Just like
an eggshell surrounds an egg and gives an egg its shape, the sclera surrounds
the eye and gives the eye its shape.
The sclera is also attached to the extraocular muscles, which allow the eye to
perform rotations.
Cornea The cornea is a clear layer at the front and center of the eye. In fact,
the cornea is so clear that you may not even realize it is there. It is located just
in front of the iris, which is the colored part of the eye. The main purpose of
the cornea is to help focus light as it enters the eye. If you wear contact lenses,
the contact lens rests on your cornea.
Anterior Chamber The space in the eye that is behind the cornea and in
front of the iris. The anterior chamber is filled with a watery fluid known as the
aqueous humor, or aqueous. Produced by a structure alongside the lens called
the ciliary body, the aqueous passes first into the posterior chamber (between
the lens and iris) and then flows forward through the pupil into the anterior
chamber of the eye.
Aqueous humor. In medicine, humor refers to a fluid (or semifluid) substance.
Thus, the aqueous humor is the fluid normally present in the front and rear
chambers of the eye. It is a clear, watery fluid that flows between and nourishes
the lens and the cornea.
Anterior Chamber Angle/Trabecular Meshwork The anterior chamber
angle and the trabecular meshwork are located where the cornea meets the iris.
The trabecular meshwork is important because it is the site where the aqueous
humor drains out of the eye. If the aqueous humor cannot properly drain out
of the eye, the optic nerve damage can occur which leads to the vision loss, a
condition known as glaucoma.
Posterior Chamber The posterior chamber is the fluid-filled space immedi-
ately behind the iris but in front of the lens.
Lens The lens is a clear, flexible structure that is located just behind the iris
and the pupil. A ring of muscular tissue, called the ciliary body, surrounds the
lens. The lens helps to control fine focusing of light.
Vitreous cavity The vitreous cavity is located behind the lens and in front
of the retina. It is filled with a gel-like fluid, called the vitreous humor. The
vitreous humor helps maintain the shape of the eye.
Retina/Macula/Choroid The retina acts like the film in a camera to create
an image. To do this, the retina, a specialized layer of cells, converts light
signals into nerve signals. After light signals are converted into nerve signals,
the retina sends these signals to the optic nerve, which carries the signals to the
brain. There, the brain processes the image.
The retina is primarily made up of 2 distinct types of cells: rods and cones.
Rods are more sensitive to light; therefore, they allow you to see in low light
situations but do not allow colour vision. Cones, on the other hand, allow you
to see color but require more light.
The macula is located in the central part of the retina. It is the area of the
retina that is responsible for giving you sharp central vision.
The choroid is a layer of tissue that separates the retina and the sclera. It is
mostly made up of blood vessels. The choroid helps nourish the retina.
Optic nerve The optic nerve, a bundle of over 1 million nerve fibers, is re-
sponsible for transmitting nerve signals from the eye to the brain. These nerve
signals contain information on an image to be processed by the brain. The front
surface of the optic nerve, which is visible on the retina, is called the optic disk.
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Extraocular muscles Six extraocular muscles are attached to each eye to help
move the eye left and right, up and down, and diagonally. [8]
Process of vision

Figure 1.2: Healthy vision

Light waves from an object (such as the tree in the fig. (1.1)) enter the eye first
through the cornea, which is the clear dome at the front of the eye. It is like
a window that allows light to enter the eye. The light then progresses through
the pupil, the circular opening in the center of the colored iris.
Fluctuations in the intensity of incoming light change the size of the pupil. As
the light entering the eye becomes brighter, the pupil will constrict (getting
smaller), due to the pupillary light response. As the entering light becomes
dimmer, the pupil will dilate (getting larger).
Initially, light waves are bent or converged first by the cornea, and then further
by the crystalline lens (located immediately behind the iris and the pupil), to
a nodal point (N) located immediately behind the back surface of the lens.
At that point, the image becomes reversed (turned backwards) and inverted
(turned upside-down).
The light continues through the vitreous humor, the clear gel that makes up
about 80% of the eyes volume, and then, ideally, back to a clear focus on the
retina, behind the vitreous. The small central area of the retina is the macula,
which provides the best vision of any location in the retina. If the eye is con-
sidered to be a type of camera (albeit, an extremely complex one), the retina is
equivalent to the film inside of the camera, registering the tiny photons of light
interacting with it.
Within the layers of the retina, light impulses are changed into electrical signals.
Then they are sent through the optic nerve, along the visual pathway, to the
occipital cortex at the posterior (back) of the brain. Here, the electrical signals
are interpreted or seen by the brain as a visual image.
Actually, then, we do not see with our eyes but, rather, with our brains. Our
eyes merely are the beginning of the visual process. [11]

1.2 Movements of the eye

We move our eyes using the extra ocular muscles (see Fig. 1.3) There are six
muscles attached to the sclera that control the movements of the eye:

• medial rectus - moves eye towards nose

• lateral rectus - moves eye away from nose

• superior rectus - raises eye

• inferior rectus - lowers eye

• superior oblique- rotates eye

• inferior oblique - rotates eye
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Figure 1.3: Extra ocular muscles

Conjugate eye movements are those that preserve the angular relationship
between the right and left eyes. For example, when you move both eyes left and
then right, a conjugate movement is made. Up and down movements and com-
binations of vertical and lateral movements also fall into the conjugate category.

Vergence eye movements are ones where the angle between they eyes changes.

Saccades or saccadic eye movements are very fast rotations from one eye
position to another. To make a saccade or a series of saccades pick two objects
as some distance from each other and look first at one then at the other. Be-
cause saccades are so very fast it may be difficult to see the eye movements as
discrete jumps.

Smooth pursuit movements. They are called pursuit because this type of
eye movement is made when the eyes follow an object.

1.3 Fluid mechanics of the eye

Figure 1.4: Aqueous humor flow

There are a number of pro-
cesses within the eye in
which fluid flow is impor-
tant. The most evident of
these are production, cir-
culation, and drainage of
aqueous humor. It is se-
creted with the flow rate
of 2 to 2.5 µ · L · min−1.
And due to such a small
flow rates, the flow of aque-
ous humor is creeping and
inertia can be neglected.
The aqueous humor can be
treated as an Newtonian
with viscosity nearly iden-
tical to that of saline. [14]
It flows into and fills the
posterior chamber (see fig.
(1.3)), then passes ante-
riorly through the pupil
and enters the anterior
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chamber, where it circu-
lates while bathing the iris
and the inner surface of
the cornea Eventually the

aqueous humor drains from the eye via specialized tissues located in the angle of
the anterior chamber, where the iris, cornea, and sclera meet. These specialized
tissues have a significant hydrodynamic flow resistance, and the drainage of the
aqueous humor out of the eye therefore requires that there be a positive pressure
within the eye itself, the so-called intraocular pressure. [14]
The flow of the aqueous humor performs two important physiological functions:

• The positive pressure that it generates stabilizes the otherwise flaccid eye,
ensuring accurate positioning of the optical elements of the eye and hence
clarity of vision.

• Aqueous humor supplies nutrients and removes waste products from the
avascular lens and the central cornea, without which the cells in these
tissues would die.

The majority of the ocular globe is filled by a clear, colorless, gel-like material
known as vitreous humor, which occupies the vitreous chamber of the eye. Vit-
reous humor has complex viscoelastic properties , and although there have been
several attempts to characterize its properties experimentally, its rheology is not
fully understood. It is known that the vitreous humor becomes progressively
liquefied with age. In approximately 25% 30% of subjects, liquefaction can lead
to a process in which the retina detaches, risking loss of sight.[14]

With the notable exception of the lens, central cornea, and the vitreous humor,
the eye is richly supplied by a complex network of blood vessels, leading to many
interesting physiological problems associated with the regulation of blood flow
in the network. [14]

Fluid mechanics of the vitreous humor

The vitreous cavity has an approximately spherical shape and contains the vit-
reous humor, which is subject to mechanical forces as a result of the motion of
the eyeball (due primarily to the motion of the head and rotation of the eyeball
within the socket). Deformation of the vitreous chamber, due for example to a
head impact, lens movement during focusing or pulsation of retinal blood ves-
sels, also gives rise to forces. However, in the absence of any deformation, purely
translational motion does not result in any relative motion of the humor within
the vitreous chamber because the accelerations involved can be balanced by a
pressure gradient, whereas rotational motion does induce the relative motion
of the humor. The fastest motions occur when the vitreous humor is liquefied,
which can be the case either following the process of liquefaction or following
vitrectomy, a surgical procedure in which some vitreous humor is removed and
replaced with another fluid, often silicone oil or a gas bubble. In this case, the
fluid filling the vitreous chamber is approximately Newtonian.

1.4 Retinal detachment

The vitreous humor is filled with a clear gel called vitreous that is attached to
the retina.Tiny clumps of gel or cells inside the vitreous might cast shadows
on the retina, and one may sometimes see small dots, specks, strings or clouds
moving in your field of vision. These are called floaters. Floaters can be seen
when looking at a plain, light background, like a blank wall or blue sky.
During the aging process the vitreous may shrink and pull on the retina. When
this happens, the patient notices flashing lights, lightning streaks or the sensa-
tion of seeing stars. These are called flashes.
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Figure 1.5: Retinal detachment

Usually, the vitreous moves
away from the retina with-
out causing problems. But
sometimes the vitreous pulls
hard enough to tear the
retina in one or more
places. Fluid may pass
through a retinal tear, lift-
ing the retina off the back
of the eye much as wall-
paper can peel off a wall.
When the retina is pulled
away from the back of the
eye like this, it is called a
retinal detachment.
The retina does not work
when it is detached and vi-
sion becomes blurry. A
retinal detachment is a very
serious problem that al-
most always causes blind-
ness unless it is treated sur-

gically.
Retinal detachment often begins when the vitreous gel, a thick gel that fills
the center of the eye, shrinks and separates from the retina. Called a posterior
vitreous detachment (PVD), this is a normal part of aging and can be harmless.
Sometimes, though, PVD can tear the retina. This happens where the vitreous
gel is strongly attached to the retina. As the vitreous gel shrinks, it pulls so
hard that the retina tears. The tear allows fluid to collect under the retina and
may cause the retina to detach.
Other things that can lead to retinal detachment are an eye or head injury,
nearsightedness (myopia), eye disease, and conditions such as diabetes.
Unfortunately, most cases of retinal detachment cannot be prevented. But see-
ing your eye doctor regularly, wearing protective helmets and eyeglasses, and
treating diabetes may help protecting your vision.
Many people have symptoms of a posterior vitreous detachment, or PVD, before
they have symptoms of retinal detachment. When the vitreous gel shrinks and
separates from the retina, it causes floaters and flashes. Floaters are spots,
specks, and lines that float through your field of vision. Flashes are brief sparkles
or lightning streaks that are most easily seen when your eyes are closed. They
often appear at the edges of your visual field. Floaters and flashes do not always
mean that you will have a retinal detachment. But they may be a warning sign,
so it is best to be checked by a doctor.
Sometimes a retinal detachment happens without warning. The first sign of
detachment may be a shadow across part of your vision that does not go away.
Or you may have new and sudden loss of side (peripheral) vision that gets worse
over time.
To diagnose retinal detachment, your doctor will examine your eyes and ask you
questions about any symptoms you have.
If you have symptoms of retinal detachment, your doctor will use a lighted
magnifying tool called an ophthalmoscope to examine your retina. With this
tool, your doctor can see holes, tears, or retinal detachment.
Warning signs of retinal detachment:

• Flashing lights.

• Sudden appearance of new floaters.

• Shadows on the side or periphery of your vision.

• Gray curtain moving across your field of vision.
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1.5 Surgical procedures for treating the retinal

detachment

Surgery is the only treatment for retinal detachment. The goals of surgery are:

• To reattach the retina. See an illustration of a detached retina.

• To prevent or reverse vision loss.

The most common methods of repairing a retinal detachment include:

• Scleral buckling surgery. This is the most common way to repair a de-
tached retina. Your eye doctor (ophthalmologist) places a piece of silicone
sponge, rubber, or semi-hard plastic on the outer layer of your eye and
sews it in place. This relieves traction on the retina, preventing tears from
getting worse, and it supports the layers of the retina.

• Pneumatic retinopexy. In this procedure, your eye doctor injects a gas
bubble into the middle of the eyeball. The gas bubble floats to the de-
tached area and presses lightly against the detached retina, flattening it
so that the fluid below it can be reabsorbed. The eye doctor then uses
a freezing probe (cryopexy) or laser beam (photocoagulation) to seal the
tear in the retina.

• Vitrectomy. This is the removal of the vitreous gel from the eye. Vitrec-
tomy gives your eye doctor better access to the retina and other tissues.
It allows him or her to peel scar tissue off the retina, repair holes, close
very large tears, and directly flatten a retinal detachment.

There are number of risks associated with vitrectomy surgery. A few of
them have been listed below:

– Infection.

– Increase in pressure inside the eye.

– Post vitrectomy surgery may give rise to corneal edema. In this
condition, fluid build up takes place within the clear covering of the
eye. As a result, the pressure on the eye is increased and the patient
may get blurred vision. In some cases, it may cause damage to the
surrounding tissues.

– Bleeding inside the eye. This happens particularly in those cases
where the vitreous gel is removed due to bleeding into it. In many
such cases, bleeding tend to recur within the vitreous cavity or frontal
part of the eye and causes severe damage to the eye.

– When vitrectomy is conducted on elderly above the age of 50 years
or so, then the chances of cataract formation increases manifolds.

• Laser photocoagulation, in which an intense beam of light travels through
the eye and makes tiny burns around the tear in the retina. The burns
form scars that prevent fluid from getting under the retina.

• Cryopexy (freezing), in which your eye doctor uses a probe to freeze and
seal the retina around the tear.

Factors that may make surgery more difficult include:

• Glaucoma.

• Pupils that will not get larger.

• Infection inside or outside the eye.

• Scarring from previous surgery.

• Bleeding (hemorrhage) in the vitreous gel.

• Scars on or cloudiness in the cornea.

• Clouding of the lens (cataract). [2]
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1.6 Vitreous substitutes

As it was said before the vitrectomy is a surgery that treats retinal breaks and
retinal detachment. It consists of replacement of the whole vitreous humor ,
which is substituted with tamponade fluids. This vitreous substitutes can be
classified into short-term tamponade and longer-term tamponade. The former
are intended to remain in the vitreous chamber for a limited time sufficient for
retina reattachment to occur, and to be subsequently removed. The later are
designed to be left in a vitreous chamber for much longer time. Materials that
form an interface with the aqueous environment of the eye can be effective in
closing retinal breaks and holding the neural retina in place against the retinal
pigment epithelium. [12]

1.6.1 Classification of the substitutes

The vitreous substitutes may be classified according to its composition or func-
tion.

• Classification according to the composition of vitreous replacements:

– Replacement with natural vitreous

– Artificial vitreous substitutes

∗ Gases

· Air

· Perfluorocarbon gases

∗ Liquids

· Aqueous solutions: water and balanced salt solutions

· Silicone oil and its derivatives: silicone oil, fluorosilicone oil
and silicone-fluorosilicone copolymer

· Perfluorocarbon liquids: Perfluoro-n-octane, perfluorohydrophenan-
threne, perfluorotributy-lamine, perfluorohexyloctane, per-
fluoropolyether and others

· Semifluorinated alkanes

∗ Gels. These are mainly polymeric materials

· Semisynthetic polymers: methylated collagen, sodium hyaluronidate,
hyaluronic acid-collagen mixture, and sodium carboxymethyl-
cellulose

· Synthetic polymers: poly(1-vinyl-2-pyrrolidinone), polyviny-
lalcohol, polyacrylamide, poly(glyceryl-methacrylate), poly(2-
hydroxyethyl acrylate), poly(methyl acrylamidoglycolate methyl
ether)

• Functional classification. This classification is based on the main roles
that vitreous substitutes play in the treatment of various pathologies as:

– Short intraoperative procedures: gases and perfluorocarbon liquids.

– Longer-term retinal tamponade: silicone oil.

– Permanent vitreous substitute: no material currently available.

– Sustained intravitreal drug delivery: polymeric hydrogels. [12]

1.6.2 The requirements to the vitreous replacements

The ideal substitute is required to fulfill the following criteria:

• It should be clear, transparent and colorless.
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• Its density and refractive index (a characteristic that describes how the
radiation propagates through the medium) should be close to the natural
vitreous.

• It should be storable and sterilizable, chemically and biologically inert, and
non-toxic, hence should not trigger any undesirable biological responses.

• It should be biocompatible with the vitreous humor itself and with the
adjacent tissues, and should not affect their physiological functions.

• It should not be adsorbable or biodegradable, in order to be maintained
in the vitreous cavity for a period as long as possible.

• It should preferably lasting viscoelastic properties to avoid its own drainage
through retinal breaks, to push back the retina to proper position until
secure adhesion is achieved, and to prevent retinal detachment.

• It should have a high surface tension in order to assure proper tamponade
of the retina against the choroids

• It must allow the transport of necessary metabolites and proteins inside
the vitreous.

• Preferably, it should be injectable through a small-gauge needle and all
the above properties should be retained after injection. Alternatively, it
should be implantable through a small incision.

• Preferably, it should be a hydrophilic material with high equilibrium water
content. [12]

1.6.3 Performance of silicone oil derivatives as vitreous

substitutes

Silicone oils are used in the vitreous surgeries since 1960. They have a suitable
properties of stability, transparency and causing a high interfacial surface en-
ergy with the aqueous humor and retina. Usually silicone oil is injected into the
vitreous cavity after the chamber has been filled with air. As the silicone oil is in-
jected, the air is drained through a second needle inserted through a sclerotomy.

Advantages of using silicone oils

• The high interfacial surface energy of silicone oil at the tamponade/aque-
ous/retina interface ensures the closure of the retinal breaks and reduces
subretinal leakage.

• The lower specific gravity of silicone oil as compared to aqueous solutions
causes it to float upon residual fluid and thus helps in retinal tamponade
in case of superior breaks.

The success rate of using the silicone oils is about 70%.

Disadvantages of using silicone oils

• The hydrophobic nature of silicone oil leads to a poor contact with the
retina and aqueous fluids, which inhibits the total filling of the vitreous
cavity which is required for the effective closure of retinal breaks.

• Since silicone oil has a lower density, it leads to reduced or absent tam-
ponade effect in inferior retinal tears.
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• The persistence of silicone oil over long periods (6 months) leads to life-
threatening complications of cataract, glaucoma and keratopathy and
these complications therefore necessitate its removal. [12]

• The emulsification of the silicone oil might occur.

Crisp et al. in 1986 [4] have compared the emulsification potential(emulsify
means combining two liquids togeter which normally don’t mix easily) of sili-
cone oil of different viscosities and molecular composition.

For the treatments of retinal detachment the liquid silicone dimethylpolysilox-
ane is used. It is a polymer composed of repetitive units with the certain
molecular weight. The oil’s viscosity increases when the total number of units
(chain length) increase as well. The intermediate viscosity can be created by
using polymers with the different molecular weights.The silicon oils with the
high viscosity are more homogeneous with the uniform chain length.

Crisp et al. showed the importance of both viscosity and low-molecular weight
components in the prevention of silicone oil emulsification. 4 mL of silicone oil
and 7 mL aqueous phase containing the surface-active agents were used. The
aqueous phase was prepared using 0.013% benzalkonium chloride (cationic sur-
face active agent) and varying quantities of bovine serum. These were combined
in varying proportions in order to derive four different aqueous mixtures:

• a solution containing only 0.013% benzalkonium chloride,

• a 10% solution of bovine serum together with 0.013% benzalkonium chlo-
ride,

• a 40% solution of bovine serum together with 0.013% benzalkonium chlo-
ride,

• 100% of bovine serum.

Results show the following: as oil viscosity decreased, the number of oil-in-water
droplets increased. In addition to that the four factors in emulsion formation
were pointed out:

• surface tension;

• presence of surface-active agents (emulsifiers);

• viscosity;

• molecular entanglements.

Surface tension refers to the forces of attraction operating within liquids in
contact with gas. When two immiscible liquids are in contact with one another
the interfacial tension occurs. Surface tension and the consequent surface free
energy cause liquids to assume the smallest surface area-volume ratio. Creation
of new interfaces involves increasing the surface area - volume ratio which to
leads to emulsion formation (fig. 1.6 )
This phenomenon requires the input of energy into the system. The dispersion
of oil within the water increases the surface area. And this greatly increases
the surface free-energy of the system. At such a hight energy level the sys-
tem in thermodynamically unstable. By separation into the bulk phases the
surface free-energy decreases to its minimum value leading to the smallest pos-
sible surface-volume ratio. Which means that within the eye there are must be
present agents that reduce the interfacial surface tension so that the emulsified
oil is stable thermodynamically.

The results in [4] show that even in the presence of surface-active agents, highly
viscous oils and those with the shorter chain lengths removed resist emulsifica-
tion better then low-molecular weight oils or polymers containing low molecular
weight.
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Figure 1.6: Left: silicone oil in bulk phase. Right: greatly expanded area of

oil/water interface with silicone oil emulsified ([4])

11



Chapter 2

Hydrodynamic Instability

2.1 Introduction

Hydrodynamics stability theory considers the response of laminar flow due to
perturbations of small amplitude. A flow is defines stable if it turns to its
laminar state and unstable if it changes into a different state. Hydrodynamic
stability can be studied in different ways:

• Natural phenomena and laboratory experiments. Observations of nature
and experiments are the primary means of study. All theoretical investi-
gations need to be related, directly or indirectly, to understanding these
observations.

• Numerical experiments. Computational fluid dynamics has become in-
creasingly important in hydrodynamic stability since 1980s, as numerical
analysis has improved and computers have become faster and gained more
memory, so that the Navier - Stokes equations may be integrated accu-
rately for more complex flows. Indeed, computational fluid dynamics has
now reached a stage where it can rival laboratory investigation of hydro-
dynamic stability by simulating controlled experiments.

• Linear and weakly nonlinear theory. Linearization for small perturbations
of a given basic flow is the primary method to be used in the theory of
hydro- dynamic stability, and it was the method used much more than any
other until the 1960s. It remains the foundation of the theory. However,
weakly nonlinear theory, which builds on the linear theory by treating the
leading nonlinear effects of small perturbations, began in the nineteenth
century, and has been intensively developed since the 1960s.

• Qualitative theory of bifurcation and chaos. The qualitative theory of
dynamical systems, as well as weakly nonlinear analysis, provides a useful
conceptual framework to interpret laboratory and numerical experiments.

• Strongly nonlinear theory.There are various mathematically rigorous meth-
ods, notably Serrins theorem and Liapounovs direct method, which give
detailed results for arbitrarily large perturbations of specific flows. These
results are usually bounds giving sufficient conditions for stability of a flow
or bounds for flow quantities.[7]

2.2 Turbulence and stability

Turbulent flow is inherently more energetic compared to its laminar coun-
terpart and it is of engineering interest to reduce its effects. For example,
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in aircraft design where this may cause structural damage to the body of
the aircraft, or in the prototype fusion power plants where turbulent flow
in the plasma causes difficulty in plasma containment. Trying to under-
stand turbulence has been an important engineering problem as well as a
mathematical one. [10]
The essential problems of hydrodynamic stability were recognized and for-
mulated in nineteenth century, notably by Helmotz, Kelvin, Rayleigh and
Reynolds [7]. In his experiment Reynolds brought out the main classifica-
tion of the flows (laminar, transitional and turbulent). Into a flow through
a glass tube he injected a dye to observe the nature of the flow. If the ve-
locities were sufficiently small the flow followed a straight line path apart
a slight blurring due to the diffusion. When the velocities were increased
the dye was blurred and seemed to fill the entire pipe. In this way the
laminar, transitional and turbulent flows were observed. And Reynolds
has concluded that the smooth flow breaks down when the ration V ·a

ν
exceeds a certain critical value, where

– V is the maximum velocity of the water in pipe;

– a is the radius of the pipe;

– ν is the kinematic viscosity of water.

This dimensionless number V ·a
ν is called Reynolds number.

2.3 Stability of parallel flows

It is known that the motion of incompressible Newtonian fluid is governed
by Navier-Stokes equations (3.1) and continuity equation (3.2):

∂u

∂t
+ (u · ∇)u− f +

1

ρ
∇p− ν∇2u = 0, (3.1)

∇ · u = 0, (3.2)

where u is the flow velocity, f is the force acting on the flow, ρ is the
density, ν is the viscosity.

For the two-dimensional flow of inviscid fluid between two flat plates the
basic equations are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
(3.3a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
(3.3b)

∂u

∂x
+
∂v

∂y
= 0 (3.3c)

The parallel shear steady flow in Cartesian coordinates is given by:

u0 = [U(y), 0, 0]. (3.4)

The pressure is constant p0.

Considering two-dimensional disturbances, the flow is decomposed as:
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u = [U(y) + u1, v1, 0], (3.5a)

u1 = u1(x, y, t), (3.5b)

v1 = v1(x, y, t), (3.5c)

p = p0 + p1. (3.5d)

The perturbation terms u1, v1 and p1 are assumed to be small. After
substituting 3.5 into 3.3 and linearizing the system is defined by:

∂u1
∂t

+ U
∂u1
∂x

+ v1U
′ = −1

ρ

∂p1
∂x

, (3.6a)

∂v1
∂t

+ U
∂v1
∂t

= −1

ρ

∂p1
∂y

, (3.6b)

∂u1
∂x

+
∂v1
∂y

= 0, (3.6c)

with prime denoting the derivative with respect to y.

The above equations have coefficients that depend on y alone. The modes
can be explored of the form:

u1 = û(y) exp[i(kx− ωt)], (3.7a)

v1 = v̂(y) exp[i(kx− ωt)], (3.7b)

p1 = p̂(y) exp[i(kx− ωt)] (3.7c)

(3.7d)

In this way the equations are given by:

−i(ω − Uk)û+ U ′v̂ = − ik
ρ
p̂, (3.8a)

−i(ω − Uk)v̂ = −1

ρ
p̂′, (3.8b)

ikû+ v̂′ = 0. (3.8c)

Finally, eliminating p̂ and û, we have:

v̂′′ +
( kU ′′

ω − Uk
− k2

)
v̂ = 0, (3.9)

with v̂ = 0 on the boundaries y = −L and y = L.

Multiplying last equation on complex conjugate to v̂ - ṽ and integrating
over the whole domain, one gets:

∫ L

−L
ṽv̂′′ dy +

∫ L

−L

( kU ′′

ω − Uk
− k2

)
|v̂|2 dy = 0, (3.10)

The first term equals to 0 due to the boundary conditions. Substituting
ω = ωr + iωi we have:

ωik

∫ L

−L

U ′′|v̂|2

|ω − Uk|2
dy = 0 (3.11)
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If there is at least one which had ωi > 0 corresponding to the exponential
growth of the amplitude with time. It implies that U ′′ changes sign some-
where in the domain so that the integral is 0. This leads to the following:
Rayleigh’s inflection point theorem .A necessary condition for the lin-
ear instability of an inviscid shear flow U(y) is that U ′′(y) should change
the sign somewhere in the flow.

Note that the presence of an inflection point in the velocity profile is a
necessary condition for stability for infinitesimal disturbances; there is no
claim here that any velocity profile with an inflection point is unstable.
To pronounce confidently that a system is stable one need to know the
fate of finite-amplitude, as well as infinitesimal disturbances.[3]

2.4 Review of related previous works

A lot of existing work on stability of unsteady flows is based on the assump-
tion of quasi-steadiness which means that the stability of the unsteady flow
is determined by whether or not it is stable for all the velocity distribu-
tions if each of these distribution is assumed to persist. If the frequency
of the primary flow is much less then the reference velocity divided by the
reference length, it can be shown that the approach of quasi-steadiness can
predict stability or instability over time intervals small compared with the
period. If the instability was predicted, the slow variation of the primary
flow with time may not affect the conclusion. But many flows predicted to
be stable by the approach of quasi-steadiness may turn out to be unstable
in the long run [15].

Chia-Shun Yih has investigated in his paper [15] the stability of the layer
of viscous fluid with the free surface which is set in motion by the lower
boundary moving harmonically. He has considered the stability of the
primary flow which was completely unsteady. Yih has studied in [15] the
stability of the long waves by a perturbation method. This was the firs
time when this approach had been applied to the problem of stability of the
unsteady flows. Since the primary flow is the time-periodic the extension
of the Floquet theorem was applied together with the expansion in terms
of the wave number due to the long-wave approach.

In 1970 Li has studied the stability of the two layers of liquid set in a mo-
tion by the lower boundary in his paper [9]. The investigation was made
for the two superposed fluids with different viscosities and densities and
with the free surface on top. The purpose was to see how an interface,
which is a second surface of discontinuity in density and viscosity, will
affect the stability of a single layer of fluid studied by Yih in [15] [9].

In his paper Li also has adopted the extended Floquet theorem in order to
solve the Orr-Sommerfeld equation with the time-periodic coefficients. He
has concluded that it is the interfacial mode which governs the instability
of the flow when the Froude number is less then 3. This means that
the energy required to distort the interface is less then that required to
distort the free surface. The interfacial mode reduces to a neutral mode
with equal densities and viscosities. For the Froude number greater then
3 there would be a competition between the interfacial and free-surface
modes in governing the stability or instability of the system.
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Chapter 3

Formulation of the

problem

The first step in studying problems caused by using the silicone oils in the
vitreous chamber, in particular, the instability of the oil-water interface
and the onset of oil bubble formation, is investigating the stability of a
two-layered stratified fluid over a flat wall set in a motion by harmonic
oscillations.

3.1 Primary flow

Figure 3.1: Definition sketch

Consider two inviscid fluids occupying the region of space 0 ≤ y < d and
y > d, and with densities ρ1, ρ2 and the viscosities µ1 and µ2 for the
lower and the upper fluid respectively. The flow is induced by periodic
horizontal motion of the rigid wall located at y = 0 (see figure 3.1). The
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oscillation is described by the equation:

u∗w = V0 cos(ω∗t∗) =
V0
2

(eiω
∗t∗ + c.c.), (1.1)

where V0 is the amplitude of the oscillations, t is time and ω∗ is the
frequency of oscillations. The motion of the two fluids is governed by the
Navires-Stokes and continuity equations. Assuming a 2D problem and
that the velocity in two fluids only has x-component, which is function of
y and t we obtain:

∂U∗1
∂t∗

= − 1

ρ1

∂P ∗1
∂x∗

+ ν1
∂2U∗1
∂y∗2

, (1.2a)

0 =
1

ρ1

∂P ∗1
∂y∗

− g, (1.2b)

∂U∗2
∂t∗

= − 1

ρ2

∂P ∗2
∂x∗

+ ν2
∂2U∗2
∂y∗2

, (1.2c)

0 =
1

ρ2

∂P ∗2
∂y∗

− g, (1.2d)

(1.2e)

where g denotes gravity in the direction by the coordinate y. In order to
make the problem dimensionless the following rescaling is used:

(U∗1 , U
∗
2 ) = V0 · (U1, U2), (1.3a)

(x∗, y∗) = d · (x, y), (1.3b)

(P ∗1 , P
∗
2 ) = ρ1 · V 2

0 · (P1, P2), (1.3c)

t∗ =
d

V0
t, (1.3d)

ω∗ =
V0
d
ω, (1.3e)

m =
µ2

µ1
, (1.3f)

γ =
ρ2
ρ1
. (1.3g)

In dimensionless form the system becomes:

∂U1

∂t
=

1

R

∂2U1

∂y2
, (1.4a)

∂P1

∂y
= Fr−2, (1.4b)

∂U2

∂t
=
m

γ

1

R

∂2U2

∂y2
, (1.4c)

∂P2

∂y
= γFr−2, (1.4d)

where R = V0d/ν1 is the Reynolds number and Fr = V0√
gd

is the Froude

number.
The pressure has hydrostatic distribution and it is given by:

P1 = Fr−2y + const (1.5a)

P2 = γFr−2y + const (1.5b)

The velocities U1 and U2 have to satisfy the boundary conditions:

U1(0, t) = cos(ωt), (1.6a)

U1(1, t) = U2(1, t), (1.6b)

U2(+∞, t) = 0 (1.6c)

∂

∂y
U1(1, t) = m

∂

∂y
U2(1, t). (1.6d)

(1.6e)
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The solution of the system is given by:

U1 = [c1e
−ay + c2e

ay]eiωt + c.c., (1.7a)

U2 = c3e
−byeiωt + c.c., (1.7b)

where

a =
i+ 1√

2
ωR

, (1.8a)

b =
i+ 1√

2m
ωRγ

, (1.8b)

c1 =
−ea−b

2 [mb+ a]

e−a−b[mb− a]− ea−b[mb+ a]
, (1.8c)

c2 =
e−a−b

2 [mb− a]

e−a−b[mb− a]− ea−b[mb+ a]
. (1.8d)

c3 =
−a

e−a−b[mb− a]− ea−b[mb+ a]
(1.8e)

(1.8f)

Thus, we have an the analytical solution for our basic flow. In Figures
(3.2), (3.3) and (3.2) the basic flow is plotted together with its first deriva-
tive for different values of the input parameters. On the first two plots
(3.2 and 3.3) a single fluid is assumed (m = γ = 1.0, S = 0), while on the
last one (3.4) the upper fluid has a viscosity 10 times larger then the lower
one (γ = 10).

Figure 3.2: Re = 80,m = 1, γ = 1, ω = 0.01, F r = 2, t = 0
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Figure 3.3: Re = 30,m = 1, γ = 1, ω = 0.9, F r = 2.t = 0

Figure 3.4: Re = 100,m = 10, γ = 1, ω = 0.01, F r = 2, t = 0
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3.2 Analysis of the value of the parameters

We now determine realistic ranges of the dimensionless parameters intro-
duced in the previous section. This is need to be done in order to choose
the best strategy.

3.2.1 Saccadic movement of the eye

A quick rotation of the eye to redirect the sight from one target to another
is called the saccadic movement. The basic features of saccadic eye
movements are:

1. A very high initial angular acceleration (up to 30000◦ s−2 );

2. A somewhat less intense deceleration that is nevertheless capable of
inducing a very efficient stop of the movement;

3. A peak angular velocity that rises in proportion to the saccade am-
plitude up to a saturation value ranging between 400 and 600◦ s−1

.

Saccade amplitude ranges from 0.05◦ (microsaccades) to 8090◦ , which
is the physical limit for the orbit. Obviously, very large saccades are
normally accompanied by head rotations.

In order to describe the saccade movement the following parameters are
used:

– the saccade amplitude A;

– the saccade duration D;

– the peak angular velocity Ωp;

– the acceleration time tp. It is the time required to reach the peak
velocity starting from the rest.

Becker (1989) reports that the relationship between saccade duration and
amplitude is very well described by the following linear law:

D = D0 + dA, (2.9)

in the range:

– 5◦ < A < 50◦, with

– d ≈ 0.0025 s · deg−1 and

– 0.02 s < D0 < 0.03 s

The average angular velocity is defined as Ω̄ = A/D. And the ratio Ωp/Ω̄
is found to be approximately constant and equal to 1.6 A. The small
amplitude sacads (less then 10◦) follow an almost symmetrical time law,
the acceleration time is equal to 0.45D. The dimensionless acceleration
time tp/D varies linearly with increasing saccade amplitudes, to the value
tp/D ≈ 0.25 for saccades of 50 .
In our model we describe a sequence of saccades as a periodic motion
with the period of 2 · D. With this we can estimate the velocity of the
movement:

V0 =
A · π · ω ·R

180
, (2.10)

Where ω is the frequency which is equal to:

ω =
2π

T
, (2.11)

and R is an average radius of the eye equals to 12·10−3m. From those data
the relation between dimensional values of the velocity and the frequency
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Figure 3.5: The relation between velocity of the movement and the frequency

(dimensional values)
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can be determined, and is reported in figure 3.5: The viscosity of the
aqueous (fluid 1) is given by:

ν1 = 10−6m2 · s (2.12)

We assumed the thickness of the layer of the aqueous humor to be equal
to:

d = 5 · 10−5 (2.13)

which gives us the estimate of the Reynolds number. Taking into account
scaling for the frequency, the relation between two dimensionless parame-
ters - Reynolds number and frequency - can be determined and is reported
in figure 3.6: This relation will be taken into account for further analysis.

Figure 3.6: The relation between the frequency (dimensionless) and the

Reynolds number.

3.3 The differential system governing the sta-

bility

In order to derive the stability conditions of the system we will use a lin-
ear stability analysis and study the time evolution of infinitesimally small
perturbations. If their amplitude grows instability occurs. The S quires
theorem states that for a steady parallel shear flow, the flow first becomes
unstable to 2D perturbations:

Squire’s theorem: Given ReL as the critical Reynolds number for the
onset of linear instability for some given α, β the Reynolds number ReC
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below which no exponential instabilities exist for any wave numbers satis-
fies:

ReC ≡ min
α,β

ReL(α, β) = min
α
ReL(α, 0) (3.14)

The Squire’s theorem can be also valid for the quasi-steady approach([6]).
Let ui and vi denote, respectively, the velocity components in the x and
y directions and pi denote the pressure. The index i is taken to be 1 for
the lower fluid and 2 for the upper fluid.

ui = Ui + u′i, vi = v′i, pi = Pi + p′i (3.15)

where the small letters with a prime refer to the perturbation quantities.
Substituting (3.15) into the equation of continuity and assuming that term
involving the disturbance of quadratic order and higher are small and thus
negligible, the system is becoming:

∂u′i
∂x

+
∂v′i
∂y

= 0 (3.16)

which allows us to define a stream function ψ̂i, such as

u′i = (ψ̂i)y, v′i = −(ψ̂i)x (3.17)

where the subscripts x and y denote the partial differentiation. The system
of the equations governing a given problem in perturbed terms is given
by:

∂u′1
∂t

+ U1
∂u′1
∂x

+ v′1
∂U1

∂y
= −∂p

′
1

∂x
+

1

R

[
∂2u′1
∂x2

+
∂2u′1
∂y2

]
(3.18a)

∂v′1
∂t

+ U1
∂v′1
∂x

= −∂p
′
1

∂y
+

1

R

[
∂2v′1
∂x2

+
∂2v′1
∂y2

]
(3.18b)

∂u′2
∂t

+ U2
∂u′2
∂x

+ v′2
∂U2

∂y
= − 1

γ

∂p′2
∂x

+
m

R

[
∂2u′2
∂x2

+
∂2u′2
∂y2

]
(3.18c)

∂v′2
∂t

+ U2
∂v′2
∂x

= − 1

γ

∂p′2
∂y

+
m

R

[
∂2v′2
∂x2

+
∂2v′2
∂y2

]
(3.18d)

(3.18e)

Where quadratic terms in the perturbations have been neglected. The
above equations together with the boundary conditions admit a solution
of the form

ψ̂i = ψi(y, t)e
iαx + c.c. (3.19a)

p′i = fi(y, t)e
iαx + c.c. (3.19b)

where α is the dimensionless wavenumber. Substituting the stream func-
tion into the system it we are going to end up with the well-known Orr-
Sommerfeld equations:

ψ′′′′1 − 2α2ψ′′1 + α4ψ1 = R

[(
∂

∂t
+ iαU1

)
(ψ′′1 − α2ψ1)− iαψ1

∂2U1

∂y2

]
,

(3.20a)

ψ′′′′2 − 2α2ψ′′2 + α4ψ2 =
R

m

[(
∂

∂t
+ iαU2

)
(ψ′′2 − α2ψ2)− iαψ2

∂2U1

∂y2

]
,

(3.20b)

in which primes on ψ1 and ψ2 indicate the differentiation with rescect to
y.
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The boundary conditions are:

ψ1(0, t) = 0 (3.21a)

ψ′1(0, t) = 0 (3.21b)

ψ2(+∞, t) = 0 (3.21c)

ψ′2(+∞, t) = 0 (3.21d)

which express the conditions of adherence of the fluid to the lower rigid
boundary, and the condition of vanishing velocity at infinity. Let η̂ denote
the dimensionless perturbation of the interface position, measured in units
of d. We impose

η̂(x, t) = η(t)eiαx (3.22)

The equation of the boundary is given by DF
Dt = 0, which can be written

as
F = y − η̂(x, t) = y − η(t)eiαx = 0 (3.23)

The kinematic boundary condition imposes:(
∂

∂t
+ U1(1, t)

∂

∂x

)
η̂ = v′1 = −(ψ̂1)x, (3.24)

which becomes: (
∂

∂t
+ iαU1(1, t)

)
η = −iαψ1(1, t). (3.25)

The continuity of normal and tangential components of the velocity at the
interface demand:

ψ1(1, t) = ψ2(1, t), (3.26)

ψ′1(1, t) + η(t)
∂

∂y
U1(1, t) = ψ′2(1, t) + η(t)

∂

∂y
U2(1, t). (3.27)

The continuity of shear stress at the interface is expressed by

ψ′′1 (1, t)+α2ψ1(1, t)+η(t)
∂2

∂y2
U1(1, t) = mγ

(
ψ′′2 (1, t)+α2ψ2(1, t)+η(t)

∂2

∂y2
U2(1, t)

)
(3.28)

And the continuity of the normal stress at the interface is given by:

−iαR

(
− U1ψ

′
1 +

i

α

∂

∂t
ψ′1 + ψ1

∂U1

∂y

)
− (ψ′′′1 − α2ψ′1)

+iαγR

(
− U2ψ

′
2 +

i

α

∂

∂t
ψ′2 + ψ2

∂U2

∂y

)
+mγ(ψ′′′2 − α2ψ′2) + 2α2ψ′1 − 2α2mγψ′2 = iαR((1− γ)Fr−2 + α2S)η

(3.29)

In the above equations all variables are evaluated at y = 1, and

S =
T

ρ1dV 2
0

(3.30)

where T is the surface tension.

3.4 Quasi-steadiness

Consider the Orr-Sommerfeld equation has to be solved with linear homo-
geneous boundary conditions. U1 and U2 are assumed to be a function of
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y with at least some of their coefficients containing cos(ωt) or sin(ωt). In
the following we assume ω << 1, which justifies the quasi-steady approach
as shown in the following. Denoting ωt by t′ the following expansions are
assumed for ψ1 and ψ2:

ψ1 = e−iσt{φ0(y, t′) + ωφ1(y, t′) + ω2φ2(y, t′) + . . .} (4.31a)

ψ2 = e−iσt{χ0(y, t′) + ωχ1(y, t′) + ω2χ2(y, t′) + . . .} (4.31b)

η(t) = e−iσt{η0(t′) + ωη1(t′) + ω2η2(t′) + . . .} (4.31c)

σ = σ0 + ωσ1 + ω2σ2 + . . . (4.31d)

Expansions are then substituted into the governing equations and the
boundary conditions, and the terms of equal power in ω are sorted out.
The system of equations for the 0th order is given by:

φ′′′′0 − 2α2φ′′0 + α4φ0 = R

[
(−iσ0 + iαU1)(φ′′0 − α2φ0)− iαφ0

∂2

∂y2
U1

]
,

(4.32a)

χ′′′′0 − 2α2χ′′0 + α4χ0 =
R

m

[
(−iσ0 + iαU2)(χ′′0 − α2χ0)− iαχ0

∂2

∂y2
U2

]
,

(4.32b)

where all the accents mean the differentiation with respect to y and the
boundary conditions at the interface (y = 1) are:

(−σ0 + αU1)η0 = −αφ0, (4.33)

φ0 = χ0, (4.34)

φ′0 + η0
∂

∂y
U1 = χ′0 + η0

∂

∂y
U2, (4.35)

φ′′0 + α2φ0 + η0
∂2

∂y2
U1 = mγ

(
χ′′0 + α2χ0 + η0

∂2

∂y2
U2

)
, (4.36)

−iαR

(
− U1φ

′
0 +

1

α
σ0φ

′
0 + φ0

∂U1

∂y

)
− (φ′′′0 − α2φ′0),

+iαγR

(
− U2χ

′
0 +

1

α
σ0χ

′
0 + χ0

∂U2

∂y

)
+

mγ(χ′′′0 − α2χ′0) + 2α2φ′0 − 2α2mγχ′0 = iαR((γ − 1)Fr−2 + α2S)η,

(4.37)

and on the boundaries (y = 0, y = +∞):

φ0(0, t′) = 0, (4.38)

φ′0(0, t′) = 0, (4.39)

χ0(+∞, t′) = 0, (4.40)

χ′0(+∞, t′) = 0, (4.41)

In the same way the equations (3.20) can be expressed for φ1, χ1 etc. Note
that σ0, φ0 and χ0 are determined with t′ in U . Hence σ0 is a function of
t′ and φ0 and χ0 contain t′. The expansion (4.31) is convergent for any
finite ω. If ω is very small (which is our case according to the previous
analysis), the quasi-steadiness approach gives good results. Otherwise one
may use more terms in the expansion.

The Orr-Sommerfeld equations (4.32) together with the boundary condi-
tions can be considered as the eigenvalue problem
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Av̂ = σ0Bv̂, (4.42)

where

v̂ =

φ0χ0

η0

 (4.43)

end A and B are defined by equations 4.32, 4.33, 4.34, 4.35, 4.36, 4.37,
4.38, 4.39, 4.40, 4.41.
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Chapter 4

Numerical approach

4.1 Finite difference scheme

In order to solve the Orr-Sommerfeld equations (4.32) together with the
boundary conditions (4.33)-(4.41), a second-order finite-difference scheme
was used.

The domain y ∈ [0; +∞] is discretized uniformly with a constant step h.

As mentioned in the section 3.4, our problem is given by:

Av̂ = σ0Bv̂ (1.1)

where

v̂ =

φ0η0
χ0

 (1.2)

For equation (4.32) defined inside a domain the central schemes as applied
in order to get the approximation of the 2nd and 4th derivatives:

f
′′

i =
fi−1 − 2fi + fi+1

h2
, (1.3)

f
(IV )
i =

fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+1

h4
, (1.4)

where fi = f(yi). Four equations for the discretization the boundary
conditions (4.38), (4.39), (4.40), (4.41) are required:

f0 = 0, (1.5)

f ′0 =
−3f0 + 4f1 − f2

2h
, (1.6)

f ′N+1 =
3fN+1 − 4fN + fN−1

2h
, (1.7)

fN+1 = 0. (1.8)

Obviously for the boundary conditions at the interface the central differ-
ences cannot be applied. In this case the second-order backward- and the
forward-difference formulas are used for the approximation of the deriva-
tives of φ0 and χ0 respectively. Denoting by I the index for the interface,
the schemes are given by:

– First derivative:
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∗ Backward-difference scheme:

f ′I =
fI−2 − 4fI−1 + 3fI

2h
+O(h2) (1.9)

∗ Forward-difference scheme:

f ′I =
−3fI + 4fI+1 − fI+2

2h
+O(h2) (1.10)

– Second derivative:

∗ Backward-difference scheme:

f ′′I =
−fI−3 + 4fI−2 − 5fI−1 + 2fI

h2
+O(h2) (1.11)

∗ Forward-difference scheme:

f ′′I =
2fI − 5fI+1 + 4fI+2 − fI+3

h2
+O(h2) (1.12)

– Third derivative:

∗ Backward-difference scheme:

f ′′′I =
3fI−4 − 14fI−3 + 24fI−2 − 18fI−1 + 5fI

2h3
+O(h2) (1.13)

∗ Forward-difference scheme:

f ′′′I =
−5fI + 18fI+1 − 24fI+2 + 14fI+3 − 3fI+4

2h3
+O(h2)

(1.14)

4.2 Discretization

The domain is discretized with a constant step h on N intervals:

y = [0, . . . , I, . . . , N ] (2.15)

, where I denotes the interface (y = 1). Since the vector v̂ in (1.1) is
defined as :

v̂ =

φ0η0
χ0

 ,

one more point that corresponds to the displacement (η0) should be added:

y′ = [0, . . . , I − 1, I, I + 1, . . . , N,N + 1]. (2.16)

This can be summarized as :

– Lower fluid:

∗ Stream function: φ0
∗ Domain: [0, . . . , I]

– Upper fluid:

∗ Stream function: χ0

∗ Domain: [I, I + 2, . . . , N + 1]

– Displacement η0 defined at I + 1

The Orr-Sommerfeld equations (4.32) are defined on the nodes:

[2, . . . , I − 2] ∪ [I + 3] ∪ [I + 4, . . . , N − 1]

and the boundary conditions are defined on :

[0, 1] ∪ [I − 1, I, I + 1, I + 2] ∪ [N,N + 1]

In this way we end up with a system of (N + 1) equations with (N + 1)
unknowns.
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4.3 Parameters of the system

The input parameters for our system are the next :

– Initial time (tin);

– Number of points in wall normal direction (N);

– Maximum value of y (ymax);

– Wave number (α);

– Reynolds number(Re);

– Frequency of the wall oscillations (ω);

– The ration between viscosities (m);

– The ration between densities (γ);

– Surface tension (S);

– Froude number(Fr).

Having this there are other parameters needed to be defined:

– The index I that corresponds to y = 1;

– The dimensionless wall normal coordinates:

y = [0, . . . , N + 1]

with y(I+1) = y(I) since I+1 corresponds to the displacement eta0
as it was mentioned before.

– Distribution in time. First the final time should be defined in a way:

tfin =
2π

ω

And together with the number of discrete points the distribution is
defined.

– Band width (bwidth) of the matrices A and B. This parameter serves
to simplify the process of building matrices. First, we build them as
a rectangular with the width [−bwidth . . . bwidth]. And then putting
zeros the matrices are going to have the size (N + 1)× (N + 1). The
parameter bwidth is defined by the largest number of nodes required
for the approximation of the derivative. From the section 4.1 one
can see that the bwidth is defined by the approximation of the third
derivatives on the interface (equations 1.13 and 1.14) and it equals
to 5.

– The base flow velocity together with its firs and second derivatives
calculated in the nodes.

4.4 Eigenvalues

In order to solve the given eigenvalue problem Lapack routine ZGGEV
([1]) was used. It is solving the generalized eigenvalue problem

[A + σ0B]v̂ = 0 (4.17)

for a pair of N-by-N matrices (A, B), and optionally, calculates the left
or/and the right generalized eigenvectors.

A generalized eigenvalue for a pair (A, (B) is a scalar σ0 or a ration
α/β = σ0, such that [A − σ0B] is singular. It is usually represented
as the pair (α, β), as there is a reasonable interpretation for β = 0, and
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even for both being zero.

The right generalized eigenvector v(j) corresponding to the generalized
eigenvalue σ0(j) of (A,B) satisfies

A · v(j) = σ0(j) ·B · v(j) (4.18)

The left generalized eigenvector u(j) corresponding to the generalized
eigenvalue σ0(j) of (A,B) satisfies

u(j)∗∗H ·A = σ0(j) · u(j)∗∗H ·B (4.19)

where u(j)∗∗H is the conjugate-transpose of u(j).

In addition to that in order to find the eigenvalues for a certain range of
parameters we used inverse iteration algorithm. It is implemented in the
following way: given an initial estimate λ0 for the eigenvalue and x0 for
its respective eigenvector we set:

1. λ← λ0, x← x0

2. x′ ← (A− λI)−1x0

3. λ′ ← λ+ xp
x′p where p can be, for example, conjugate to x

4. x′ ← x′

||x′||

5. if ||λ′ − λ|| < tol then stop
else λ← λ0, x← x0, goto 1.

The inversion in 2 is performed using LU decomposition.
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Chapter 5

Results

5.1 Single fluid analysis

Assuming the dimensionless parameters both m and γ denoting the ratio
between viscosities and densities equal to 1 and setting S = 0 (no surface
tension), we obtain the stability problem for a single fluid, i.e. the stability
of a Stokes layer. This has been studied by several authors, see for instance
[13] for an early contribution, and [5] for a recent review. Note, however,
that our findings are not directly comparable with the existing literature
as they are based on a quasi steady approach. The basic flow in this case
given by:

U1 = [c1e
−ay + c2e

ay]eiωt + c.c., (1.1a)

U2 = c3e
−byeiωt + c.c., (1.1b)

U1(0, t) = cos(ωt), (1.2a)

U1(1, t) = U2(1, t), (1.2b)

U2(+∞, t) = 0, (1.2c)

∂

∂y
U1(1, t) =

∂

∂y
U2(1, t), (1.2d)

(1.2e)

The system of equation governing the stability is given by:

φ′′′′0 − 2α2φ′′0 + α4φ0 = R

[
(−iσ0 + iαU1)(φ′′0 − α2φ0)− iαφ0

∂2

∂y2
U1

]
,

(1.3a)

ψ′′′′0 − 2α2ψ′′0 + α4ψ0 = R

[
(−iσ0 + iαU2)(ψ′′0 − α2ψ−)− iαψ0

∂2U1

∂y2

]
,

(1.3b)

with the boundary conditions:

φ0(0, t′) = 0, (1.4)

φ′0(0, t′) = 0, (1.5)

χ0(+∞, t′) = 0 (1.6)

χ′0(+∞, t′) = 0. (1.7)
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And the boundary conditions at the y = 1 are given by:

(−σ0 + αU1)η0 = −αφ0, (1.8)

φ0 = χ0, (1.9)

φ′0 = χ′0, (1.10)

φ′′0 = χ′′0 , (1.11)

φ′′′0 = χ′′′0 . (1.12)
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Figure 5.1: Spectrum of the eigenvalues for the single-fluid layer

As we can see, the boundary conditions at the interface for the single fluid
layer impose the continuity of stream function together with its first, sec-
ond and third derivatives.

On figures 5.2 and 5.3 we reported different eigenfunctions of the single
fluid system.

The analysis of the single fluid layer (with m = 1, γ = 1, S = 0) showed
that this system would be always stable under the conditions that we have
imposed up to values of Reynolds number equal to 5000.
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5.2 Results for realistic values of the param-

eters

We fixed all the parameters according to the analysis described in section
3.2. α can be fixed arbitrary. However, there is an upper bound for the
length of the imposed perturbations, as they need to be shorter than the
circumference of the big circle of the eye globe. As an example α = 8·10−3.
In figures 5.4-5.7 the solution of the problem is reported in a plane t− α
for different values of the surface tension parameter S. In those figures
contour lines of the imaginary part of the eigenvalues are shown. The
contour lines corresponding to Im(σ0) = 0 separates stable and unstable
manifolds.

Re=100, ω=0.5, S=5.0, m=10, γ=1.0, Fr=2.0

σ
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α

Figure 5.4: Contour lines of the growth rate; S = 5.0

As we can see in figures 5.4 - 5.7 increasing the surface tension system
tends to be more stable. We report on the dependence of the growth rate
on the wave number at fix time corresponding to the most unstable time
(figure 5.8).

The same analysis was made for the viscosity. It is reported on figures 5.9
- 5.12

From figures 5.4-5.13 we conclude the following. As the ratio between
viscosities m increases the system goes to unstable regime. In the limit
m→∞ the solution is that of a Couette flow. This results differ from [4].
Because in [4] authors claim that with the increasing viscosity of silicone
oil the system is stabilizing. However, in addition to that in [4] together
with changing viscosity the surface tension changes as well.
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Re=100, ω=0.5, S=2.0, m=10, γ=1.0, Fr=2.0
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Figure 5.5: Contour lines of the growth rate; S = 2.0

Re=100, ω=0.5, S=8.0, m=10, γ=1.0, Fr=2.0
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Figure 5.6: Contour lines of the imaginary part of eigenvalues; S = 8.0
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Re=100, ω=0.5, S=10.0, m=10, γ=1.0, Fr=2.0
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Figure 5.7: Contour lines of the growth rate of eigenvalues; S = 10.0
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Figure 5.8: Cross section
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Re=100, ω=0.5, S=5.0, m=100, γ=1.0, Fr=2.0
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Figure 5.9: Contour lines of the growth rate; m = 100.0

Re=100, ω=0.5, S=5.0, m=1000, γ=1.0, Fr=2.0
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Figure 5.10: Contour lines of the growth rate; m = 1000

37



Re=100, ω=0.5, S=5.0, m=500, γ=1.0, Fr=2.0
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Figure 5.11: Contour lines of the growth rate; m = 500

Re=100, ω=0.5, S=2.0, m=1000, γ=1.0, Fr=2.0
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Figure 5.12: Contour lines of the growth rate; S = 2.0,m = 500.0
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Chapter 6

Conclusions

In this work the stability of two immiscible fluids set in motion by a flat
wall oscillation has been studied. This model can be considered as a first
step in studying problems related to the employment of silicone oils in
order to treat retinal detachments, since the instability of the oil-aqueous
interface might lead to the generation of oil bubbles and, eventually, to
emulsion.

The problem is governed by the Navier-Stokes and continuity equations,
subjected to the following boundary conditions: no-slip boundary con-
dition at the rigid wall, condition of vanishing velocity at the infinity,
kinematic and dynamic conditions at the interface. The problem for the
basic flow was solved analytically.

The quasi-steady approach was used due to the fact the scaled frequency
of oscillation is sufficiently small. Together with this approach the linear
stability theory was applied. With this technique we studied the evolution
in time of small perturbations of the interface.

The stability of the system is governed by the Orr-Sommerfeld equations
and boundary conditions. The second-order finite-difference scheme was
used for solving the generalized resulting eigenvalue problem. The results
are given in terms of eigenvalues and eigenfunctions withing certain values
of input parameters.

For values of the controlling parameters that are realistic for the physical
problem under consideration we found that the system is linearly unsta-
ble, at least for long wave length disturbances. Whether instability will
actually manifest itself in the real case of the human eye depends on a
number of factors that need to be considered in future work. However,
this work demonstrates that formation of oil droplets in the eye potentially
can be caused by an instability process induced by eye rotations and can
be explained on purely mechanical grounds.
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Chapter 7

Future developments

There are several possibilities to the extend this work to make it closer to
the real case:

– More realistic geometry, which can be studied gradually:

∗ including effect of wall curvature;

∗ considering a 2D circular model;

∗ considering a 3D domain including the effect of gravity.

– Non-modal stability analysis. The motivation for using tools of non-
modal analysis is given by the fact that not always the linear stabil-
ity analysis is in agreement with experimental results. That might
occur when the superposition of the decaying modes gives rise to
a short-term transient growth due to the non-orthogonality of the
eigenfunctions of the systeAuthentication Required

m.

– Inclusion of the effect of wall roughness. If the layer of the fluid is
very thin then the presence of ripples on the wall might affect greatly
stability conditions;

– Use of the Floquet theory. This analysis might be applied to study
the stability of periodic solutions when the quasi-steady approach is
not valid;

– Numerical simulations of the fully non-linear equations.
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.1 Global Solution

COMPLEX FUNCTION Glob

!

WRITE ’Compute spectrum using ZGGEV’

BuildMats (A,B)

! zggev s o l v e s [A−LAMBDA∗B]∗ q=0

CHAR JOBVL=’N’

CHAR JOBVR=’V’

INTEGER N=neq∗(ny+2)

INTEGER INFO,OPTLWORK=3∗N

ARRAY( 1 . .N, 1 . .N) OF COMPLEX AZ=0,BZ=0,VL=0,VR=0

ARRAY( 1 . .N, 1 . .N) OF REAL VecR=0,VecI=0

ARRAY( 1 . .N) OF COMPLEX LAMBDA=0,ALPHA=0,BETA=0

ARRAY( 1 . .N) OF REAL lamr=0, lami=0

ARRAY( 0 . . ny ) OF REAL x=0, z=0,d1=0, d2=0, d3=0

!

! Band matrix to square matrix

LOOP FOR nj=1 TO N AND j=−bwidth TO bwidth

IF nj+j>0 AND nj+j<N+1 THEN

AZ( nj , nj+j )=A( nj−1, j )

BZ( nj , nj+j )=B( nj−1, j )

END IF

REPEAT LOOP

FILE MATRIX A=CREATE(” matr ix a . dat ”)

LOOP FOR i=1 TO N

DO WRITE TO MATRIX A i , AZ( i , j ) FOR j=1 TO N; WRITE TO MATRIX A;

WRITE TO MATRIX A

REPEAT LOOP

FILE MATRIX B=CREATE(” matrix b . dat ”)

LOOP FOR i=1 TO N

DO WRITE TO MATRIX B i , BZ( i , j ) FOR j=1 TO N; WRITE TO MATRIX B;

WRITE TO MATRIX B

REPEAT LOOP

CLOSE MATRIX B

! my equat ion i s [A+LAMBDA∗B]∗ q=0, so I need to change s ign o f B

BZ=−BZ

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Solve the g ene r a l i z ed e igenva lue problem

ZGGEV(JOBVL,JOBVR,AZ,BZ,ALPHA,BETA,VL,VR, INFO,OPTLWORK)

LOOP FOR k=1 TO N

IF ABS(BETA(k))>1.E−15 THEN LAMBDA(k)=ALPHA(k)/BETA(k)

REPEAT LOOP

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Save the r e s u l t s

FILE AVAL=CREATE( ’ autoval . dat ’ )

FILE AVEC=CREATE( ’ autovec . dat ’ )

FILE TEMP=CREATE( ’ temp . dat ’ )

LOOP FOR j=1 TO ny1+1

WRITE TO AVAL j ,LAMBDA( j ) .REAL,LAMBDA( j ) .IMAG

DO WRITE TO AVEC j , f ( k ) : 1 5 . 8 ,ABS(VR( j , neq∗k+1))/MAXABS(VR( j ,∗ ) ) ,

REAL(VR( j , neq∗k+1)) ,IMAG(VR( j , neq∗k+1)) FOR k=0 TO ny1

DO WRITE TO AVEC j , f ( k ) : 1 5 . 8 ,ABS(VR( j , neq∗k+1))/MAXABS(VR( j ,∗ ) ) ,

REAL(VR( j , neq∗k+1)) ,IMAG(VR( j , neq∗k+1)) FOR k=ny1+2 TO ny+1

REPEAT LOOP

LOOP FOR j=ny1+3 TO N

WRITE TO AVAL j ,LAMBDA( j ) .REAL,LAMBDA( j ) .IMAG

DO WRITE TO AVEC j , f ( k ) : 1 5 . 8 ,ABS(VR( j , neq∗k+1))/MAXABS(VR( j ,∗ ) ) ,

REAL(VR( j , neq∗k+1)) ,IMAG(VR( j , neq∗k+1)) FOR k=0 TO ny1

DO WRITE TO AVEC j , f ( k ) : 1 5 . 8 ,

ABS(VR( j , neq∗k+1))/MAXABS(VR( j ,∗ ) ) ,

REAL(VR( j , neq∗k+1)) ,IMAG(VR( j , neq∗k+1)) FOR k=ny1+2 TO ny+1

WRITE TO AVEC; WRITE TO AVEC

REPEAT LOOP

LOOP FOR k=0 TO ny1

x(k)= f (k )

z (k)=ABS(VR(4 , neq∗k+1))/MAXABS(VR(4 ,∗ ) )

REPEAT LOOP

h=x(2)−x (1)

LOOP FOR k=ny1+2 TO ny+1

x(k−1) = f (k )

z (k−1) = ABS(VR(4 , neq∗k+1))/MAXABS(VR(4 ,∗ ) )

REPEAT LOOP

LOOP FOR k=2 TO ny−2

d1 (k ) = ( z (k+1) − z (k−1))/2/h

d2 (k ) = ( z (k−1)−2∗z (k)+z (k+1))/h/h

d3 (k ) = ( z (k+2)−2∗z (k+1)+2∗z (k−1)−z (k−2))/2/h/h/h

REPEAT LOOP

DO WRITE TO TEMP x(k ) , z (k ) , d1 (k ) , d2 (k ) , d3 (k ) FOR k=0 TO ny
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WRITE TO TEMP

CLOSE TEMP

COMPLEX maxim=1−1.E+05∗ I

INTEGER imax=0

LOOP FOR j=1 TO N

IF ABS(LAMBDA( j ))>1.E−13 THEN

IF IMAG(LAMBDA( j ))>IMAG(maxim) THEN

maxim=LAMBDA( j )

imax=j

END IF

END IF

REPEAT LOOP

RETURN maxim

FILE MAXVAL=CREATE( ’ maxval . dat ’ )

WRITE TO MAXVAL maxim

WRITE TO MAXVAL

CLOSE MAXVAL

END Glob

.2 Main

! Main program

!

! Jan P r a l i t s

! V1 .0 2012−05−28

!

USE rbmat

USE cbmat

!USE rtchecks

!USE gnuplot

USE Lapack

!−−−−−−−−−−−−−−−−−−read from f i l e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! t i n : i n i t i a l time

! nt : number o f d i s c r e t e po int s in time

! nt0 : parameter f o r pa rabo l i c d i s t r i b u t i o n in time

! np : base f low i s computed np per i ods

! ny : number o f po int s in wal l normal d i r e c t i o n

! ny0 : parameter f o r pa rabo l i c d i s t r i b u t i o n in space

! ymax : maximum value o f y

! a l f a : streamwise wave number

! beta : spanwise wave number

! Re : Reynolds number

! omega : f requency o f wal l o s c i l l a t i o n

! mval : v i s c o s i t y r a t i o v2/v1

! sigma0 : i n i t i a l guess o f e i genva lue f o r i nv e r s e

i t e r a t i o n computation

!

COMPLEX sigma0

REAL Re , t in , ymax , mval , t f i n , Re1 , Re2 , a l fa1 , a l f a 2

REAL a l fa , beta , omega , S , Fr , gamma

INTEGER nt , nt0 , ny , ny0 , ny1 , na l f , np , glob on , nRe , na l fa , cy c l e

FILE INPUT=OPEN(” occh io . in ”)

DO WHILE READ BY NAME FROM INPUT Re OR t in OR nt OR nt0 OR np OR ny OR ny1 OR ny0

OR ymax OR mval OR a l f a OR beta OR sigma0 OR omega OR Fr OR

gamma OR glob on OR S OR Re1 OR Re2 OR a l f a 1 OR a l f a 2 OR nRe OR na l f a OR cyc l e

CLOSE(INPUT)

WRITE BY NAME Re , t in , nt , nt0 , np , ny , ny0 , ymax , mval , a l f a , beta , sigma0 , omega ,

Fr , gamma, S , g lob on

!−−−−−−−−−−−−− de f i n e funct i on to f i nd ny1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! ny1 i s the index o f the i n t e r f a c e at which y=1

INTEGER FUNCTION findny1 (REAL yy (∗ ) )

INTEGER j=0

DO j=j+1 WHILE yy ( j )<1

IF ABS(yy ( j )−1)>1.E−10 THEN

WRITE ”∗∗∗ Change ny because the i n t e r f a c e i s not y=1”; STOP

ELSE

RETURN j

END IF

END findny1

!−−−−−−−−−−−−− de f i n e d imens ion l e s s wal l normal coord inate −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

REAL y ( 0 . . ny+1)=0

REAL f ( 0 . . ny+1)=0

DO y( i )=ymax∗ i /ny FOR ALL i

ny1=findny1 (y )

DO y( i )=ymax∗( i −1)/ny FOR i=ny1+1 TO ny+1

y( ny1+1)=y( ny1 )

f=y

!
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WRITE BY NAME ny1 , f , y

!−−−−−−−−−−−−− de f i n e d i s t r i b u t i o n in time −−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

REAL t , dt

t f i n=2∗PI∗np/omega

! pa rabo l i c d i s t r i b u t i o n

REAL FUNCTION tt (INTEGER i t )= t in+( t f i n−t i n )∗( i t −1)/(nt−1)

!

!−−−−−−−−−−−−−−−− de f i n e some s t u f f −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!

! t f i n : f i n a l time 2∗ pi in mu l t ip l e s o f i n t e g e r np ( t f i n = 2∗ pi∗np)

! y : d imens ion l e s s wal l normal coordinate , y=ydim/ d0star

! neq : number o f equat ions

! ns ta te : number o f s t a t e v a r i a b l e s

! bwidth : band width o f matrix

! U,U1 ,U2 : streamwise meanflow v e l o c i t i e s , f i r s t de r i va t i v e , second de r i v a t i v e

! A,B,T : matr ices T = B∗sigma + A, sigma i s the e i g eva lue

! p s i : e i g envec to r o f s t a t e s

!

neq = 1

nstate = 1

INTEGER bwidth=5

ARRAY( 0 . . ny+1) OF REAL U,U1 ,U2

ARRAY( 0 . . neq∗ny+1,−bwidth . . bwidth ) OF COMPLEX A, B, T

ARRAY( 0 . . ny+1) OF COMPLEX psi , d0zeta , d0zstar , p s i s t a r , uve l

COMPLEX sigma

REAL U11 ,U12 ,U21 , U22

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! c o e f f i c i e n t s f o r second order f i n i t e d i f f e r e n c e s

USE Deriv4th

! subrout ines to s e t up matr ices o f the OS equat ions

USE BuildMats

!−−−−−−−−−−−−−−−− de f i n e some s t u f f −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! subrout ine that s o l v e s U f o r the two f l u i d f low over an o s c i l l a t i n g p la t e

USE BaseFlow

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! phase i s f i x ed to zero f o r v−v e l o c i t y at the nphase point above the wal l

nphase=5

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! compute c o e f f i c i e n t s o f d e r i v a t i v e s

Se tDer iva t i v e s

! e i genva lue s o l v e r us ing i nve r s e i t e r a t i o n s

USE e igen

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! MAIN program −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! ny1 i s the index at y=1 and should be evaluated with an INLINE FUNCTION

! c r ea t e f i l e s

FILE growth=CREATE(” growth . dat ”)

FILE bf=CREATE(” base f low . dat ”)

FILE ev=CREATE(” e i g envec to r . dat ”)

ARRAY( 1 . . nt ) OF COMPLEX v

INTEGER imax

COMPLEX maxval

! i n i t i a l guess o f e i g envec to r

DO ps i ( i )=y( i )∗EXP(−y( i ) ) FOR ALL i ;

p s i s t a r=ps i

!

USE Globa lSo lut ion

COMPLEX maxeigenval=0

! Global s o l v e r

IF glob on=1 THEN

t=t in

BaseFlow ( t ,Re , mval , omega ,gamma)

!U=0;U1=0;U2=0;U11=0;U22=0;U12=0;U21=0

maxeigenval=Glob ( ) ;

WRITE BY NAME maxeigenval , Re , a l f a

FILE MAXVAL=CREATE( ’ maxval . dat ’ )

WRITE TO MAXVAL maxeigenval

CLOSE(MAXVAL)

END IF

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!

! main loop

COMPLEX s igmastar t=sigma0

IF cyc l e=1 THEN

!LOOP FOR i i =1 TO nRe

!Re=Re2+(Re1−Re2 )∗( i i −1)/(nRe−1)

sigma=s igmastar t

LOOP FOR j j=1 TO na l f a
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a l f a = a l f a 1+(a l fa2−a l f a 1 )∗( j j −1)/( nal fa −1)

LOOP FOR i t=1 TO nt

IF nt=1 THEN t=t in ; ELSE t=tt ( i t )

BaseFlow ( t ,Re , mval , omega ,gamma)

e i g enva l

IF j j=1 THEN s igmastar t=sigma

WRITE TO growth i t , t ,REAL( sigma ) ,IMAG( sigma ) , a l f a , beta , Re

DO WRITE TO bf y ( j ) ,U( j ) ,U1( j ) ,U2( j ) FOR j=0 TO ny1

DO WRITE TO bf y ( j ) ,U( j ) ,U1( j ) ,U2( j ) FOR j=ny1+2 TO ny ;

WRITE TO bf ; WRITE TO bf

DO WRITE TO ev y( j ) ,ABS( ps i ( j ) ) ,REAL( ps i ( j ) ) ,IMAG( ps i ( j ) ) FOR j=0 TO ny ;

WRITE TO ev ; WRITE TO ev

REPEAT LOOP

!REPEAT LOOP

WRITE TO growth

REPEAT LOOP

END IF

!

! c l o s e f i l e s

CLOSE( growth )

CLOSE( bf )

CLOSE( ev )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! end MAIN program −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

.3 Base Flow

SUBROUTINE BaseFlow (REAL tme , Rey ,mm,Omega ,Gamma)

!

!

U=0; U1=0; U2=0

ARRAY( 0 . . ny+1) OF COMPLEX Utmp1=0, Utmp2=0,

dUtmp1=0, dUtmp2=0, ddUtmp1=0, ddUtmp2=0

! a , b c o e f f i c i e n t s

a=( I+1)/SQRT(2/(Rey∗Omega) )

b=( I+1)/SQRT(2∗mm/(Rey∗Omega) )

! c c o e f f i c i e n t s −−−−−−−−−−−−−−−−−−

mbpa=a+b∗mm∗Gamma

mbma=a−b∗mm∗Gamma

epab=EXP(a−b)

emab=EXP(−a−b)

denom=epab∗mbpa+emab∗mbma

c1=0.5∗ epab∗mbpa/denom

c2=0.5∗emab∗mbma/denom

c3=a/denom

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! U v e l o c i t y

! y=[0 ,1 ]

DO Utmp1( j )=( c1∗EXP(−a∗y( j ))+c2∗EXP(a∗y( j ) ) )∗EXP( I∗Omega∗tme) FOR j=0 TO ny1

DO U( j )=2∗REAL[Utmp1( j ) ] FOR j=0 TO ny1

! y=[1 ,ymax ]

DO Utmp2( j )=c3∗EXP(−b∗y( j ))∗EXP( I∗Omega∗tme) FOR j=ny1 TO ny+1

DO U( j )=2∗REAL[Utmp2( j ) ] FOR j=ny1 TO ny+1

! dU/dy

! y=[0 ,1 ]

DO dUtmp1( j )=(−a∗c1∗EXP(−a∗y( j ))+a∗c2∗EXP(a∗y( j ) ) )∗EXP( I∗Omega∗tme)

FOR j=0 TO ny1

DO U1( j )=2∗REAL[ dUtmp1( j ) ] FOR j=0 TO ny1

! y=[1 ,ymax ]

DO dUtmp2( j)=−b∗c3∗EXP(−b∗y( j ))∗EXP( I∗Omega∗tme) FOR j=ny1 TO ny+1

DO U1( j )=2∗REAL[ dUtmp2( j ) ] FOR j=ny1 TO ny+1

U1( ny1+1)=U1( ny1 )

! d2U/dy2

! y=[0 ,1 ]

DO ddUtmp1( j )=(aˆ2∗ c1∗EXP(−a∗y( j ))+aˆ2∗ c2∗EXP(a∗y( j ) ) )∗EXP( I∗Omega∗tme)

FOR j=0 TO ny1

DO U2( j )=2∗REAL[ ddUtmp1( j ) ] FOR j=0 TO ny1

! y=[1 ,ymax ]

DO ddUtmp2( j )=bˆ2∗ c3∗EXP(−b∗y( j ))∗EXP( I∗Omega∗tme) FOR j=ny1 TO ny+1

DO U2( j )=2∗REAL[ ddUtmp2( j ) ] FOR j=ny1 TO ny+1

U11=2∗REAL[ dUtmp1( ny1 ) ]

U21=2∗REAL[ dUtmp2( ny1 ) ]

U12=2∗REAL[ ddUtmp1( ny1 ) ]

U22=2∗REAL[ ddUtmp2( ny1 ) ]

FILE MATRIX=CREATE(” base . dat ”)

LOOP FOR i=0 TO ny+1

WRITE TO MATRIX i , y ( i ) , U( i ) , U1( i ) , U2( i ) ; WRITE TO MATRIX
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REPEAT LOOP

WRITE TO MATRIX U11 , U21 , U12 , U22

CLOSE MATRIX

END BaseFlow

.4 Eigenvalue approximation

REAL FUNCTION Energy (COMPLEX Psi (∗ ) )

RESULT=MAXABS( Psi )ˆ2

END Energy

SUBROUTINE e ig enva l

BuildMats (A,B)

WRITE ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

WRITE ” t =”,t , ”Re =”,Re ,” alpha =”, a l f a , ” beta =”, beta

WRITE ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

DO

T=A+sigma∗B; LUdecomp T

d0zeta=B∗ ps i ; p s i=T\d0zeta

d0zstar=p s i s t a r /T; p s i s t a r=d0zstar∗B

dsigma=−(d0zstar∗d0zeta )/( p s i s t a r ∗ ps i )

sigma=sigma+dsigma

!WRITE BY NAME sigma

ps i=ps i /( Energy ( p s i ) )∗∗0 .5

p s i=ps i ∗EXP(− I∗ARG( ps i ( nphase ) ) )

s=p s i s t a r ∗ ps i

d0zstar=d0zstar / s

p s i s t a r=p s i s t a r / s

WRITE REAL( sigma ) : 1 5 . 8 ,IMAG( sigma ) : 1 5 . 8 ,ABS( dsigma ) : 1 5 . 8

WHILE ABS( dsigma )>1.E−5

END e igenva lx

.5 Derivatives

STRUCTURE[ARRAY(−5. .5) OF REAL d0 , di0 , d1l , d1r , di1r , d2l , d2r , d3l , d3r , d4 , di4 ,

d1 , d2 ,d0m,d1m, d0p , d1p , dw1 , d i1 l , di02 , di03 , d i1r2 ] d e r i v a t i v e s ( 0 . . ny+1)

! forward d i f f e r e n c e used at the wal l

ARRAY( 0 . . 2 ) OF REAL d0f , d1f , d0fp , d1fp

SUBROUTINE SetDer iva t i v e s

!

! s e t up c o e f f i c i e n t s f o r 2nd order c en t r a l d i f f e r e n c e

! forward d i f f e r e n c e used at the wal l

!

h=ymax/ny

h4=hˆ4

h3 = hˆ3

h2 = hˆ2

hym=h

hyp=h

LOOP FOR i=0 TO ny+1 WITH de r i v a t i v e s ( i )

! h=[y ( i+1)−y( i −1)]/2

d0(−5)=0;d0(−4)=0; d0(−3)=0; d0(−2)=0; d0(−1)=0; d0 (0)=1; d0 (1)=0;

d0 (2)=0; d0 (3)=0; d0 (4)=0; d0(5)=0

di0 (−5)=0; di0 (−4)=0; di0 (−3)=0; di0 (−2)=0; di0 (−1)=0; di0 (0)=0;

di0 (1)=1; di0 (2)=0; di0 (3)=0; di0 (4)=0; di0 (5)=0

di02 (−5)=0; di02 (−4)=0; di02 (−3)=0; di02 (−2)=1; di02 (−1)=0; di02 (0)=0;

di02 (1)=0; di02 (2)=0; di02 (3)=0; di02 (4)=0; di02 (5)=0

di03 (−5)=0; di03 (−4)=0; di03 (−3)=0; di03 (−2)=0; di03 (−1)=1; di03 (0)=0;

di03 (1)=0; di03 (2)=0; di03 (3)=0; di03 (4)=0; di03 (5)=0

d1l (−5)=0; d1l (−4)=0; d1l (−3)=0; d1l (−2)=1/2/h ; d1l (−1)=−2/h ;

d1l (0)=3/2/h ; d1l (1)=0; d1l (2)=0; d1l (3)=0; d1l (4)=0; d1l (5)=0

d1r (−5)=0; d1r (−4)=0; d1r (−3)=0; d1r (−2)=0; d1r (−1)=1/2/h ;

d1r (0)=−2/h ; d1r (1)=3/2/h ; d1r (2)=0; d1r (3)=0; d1r (4)=0; d1r (5)=0

d i1 r (−5)=0; d i1 r (−4)=0; d i1 r (−3)=0; d i1 r (−2)=0; d i1 r (−1)=−3/2/h ;

d i1 r (0)=0; d i1 r (1)=2/h ; d i1 r (2)=−1/2/h ; d i1 r (3)=0; d i1 r (4)=0; d i1 r (5)=0

di1r2 (−5)=0; d i1r2 (−4)=0; d i1r2 (−3)=0; d i1r2 (−2)=0; d i1r2 (−1)=0;

d i1r2 (0)=−3/2/h ; d i1r2 (1)=0; d i1r2 (2)=2/h ; d i1r2 (3)=−1/2/h ;

d i1 r (4)=0; d i1r2 (5)=0; d i 1 l (−5)=0; d i 1 l (−4)=0; d i 1 l (−3)=1/2/h ;

d i 1 l (−2)=−2/h ; d i 1 l (−1)=3/2/h ;

d i 1 l (0)=0; d i 1 l (1)=0; d i 1 l (2)=0; d i 1 l (3)=0; d i 1 l (4)=0; d i 1 l (5)=0

d2(−5)=0;d2(−4)=0; d2(−3)=0; d2(−2)=0; d2(−1)=1/h2 ; d2(0)=−2/h2 ;
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d2(1)=1/h2 ; d2 (2)=0; d2 (3)=0; d2 (4)=0; d2(5)=0

d2l (−5)=−1/h2 ; d2l (−4)=4/h2 ; d2l (−3)=−5/h2 ; d2l (−2)=2/h2 ; d2l (−1)=0;

d2l (0)=0; d2l (1)=0; d2l (2)=0; d2l (3)=0; d2l (4)=0; d2l (5)=0;

d2r (−5)=0; d2r (−4)=0; d2r (−3)=0; d2r (−2)=2/h2 ; d2r (−1)=0; d2r(0)=−5h2 ;

d2r (1)=4/h2 ; d2r (2)=−1/h2 ; d2r (3)=0; d2r (4)=0; d2r (5)=0

d3l (−5)=0; d3l (−4)=3/2/h3 ; d3l (−3)=−7/h3 ; d3l (−2)=12/h3 ; d3l (−1)=−9/h3 ;

d3l (0)=5/2/h3 ; d3l (1)=0; d3l (2)=0; d3l (3)=0; d3l (4)=0; d3l (5)=0

d3r (−5)=0; d3r (−4)=0; d3r (−3)=0; d3r (−2)=0; d3r (−1)=0; d3r (0)=−5/2/h3 ;

d3r (1)=0; d3r (2)=9/h3 ; d3r (3)=−12/h3 ; d3r (4)=7/h3 ; d3r (5)=−3/2/h3

d4(−5)=0;d4(−4)=0; d4(−3)=0; d4(−2)=1/h4 ; d4(−1)=−4/h4 ; d4(0)=6/h4 ;

d4(1)=−4/h4 ; d4(2)=1/h4 ; d4 (3)=0; d4 (4)=0; d4(5)=0

di4 (−5)=0; di4 (−4)=0; di4 (−3)=1/h4 ; di4 (−2)=0; di4 (−1)=−4/h4 ;

di4 (0)=6/h4 ; di4 (1)=−4/h4 ; di4 (2)=1/h4 ; di4 (3)=0; di4 (4)=0; di4 (5)=0

dw1(−5)=0;dw1(−4)=0; dw1(−3)=0; dw1(−2)=0; dw1(−1)=−1/h ; dw1(0)=1/h ;

dw1(1)=0; dw1(2)=0; dw1(3)=0; dw1(4)=0; dw1(5)=0

d1m(−2)=0 ; d1m(−1)=−1/hym ;

d1m(0)=1/hym ; d1m(1)=0 ;

d1m(2)=0;d1m(−5)=0;d1m(−4)=0;d1m(−3)=0;d1m(3)=0;d1m(4)=0;d1m(5)=0

d1p(−2)=0 ; d1p(−1)=0 ; d1p(0)=−1/hyp ;

d1p(1)=1/hyp ; d1p (2)=0; d1p(−5)=0;d1p(−4)=0;d1p(−3)=0;d1p (3)=0;

d1p (4)=0; d1p(5)=0

REPEAT LOOP

! (

WITH de r i v a t i v e s (0) :

hyp=y(1)−y (0)

d0p(−1)=0 ; d0p(0)=1/2 ; d0p(1)=1/2

d1p(−1)=0 ; d1p(0)=−1/hyp ; d1p(1)=1/hyp

d0(−1)=0 ; d0(0)=1 ; d0(1)=0

END WITH

WITH de r i v a t i v e s (ny ) :

hym=y(ny)−y(ny−1)

d0m(−1)=1/2 ; d0m(0)=1/2 ; d0m(1)=0

d1m(−1)=−1/hym ; d1m(0)=1/hym ; d1m(1)=0

d0(−1)=0 ; d0(0)=1 ; d0(1)=0

END WITH

! )

! d i f f x 1=y(1)−y (0)

! d i f f x 2=y(2)−y (1)

! bx=( d i f f x 1+d i f f x 2 )/( d i f f x 1 ∗ d i f f x 2 )

! cx=−(d i f f x 1 / d i f f x 2 )/( d i f f x 1+d i f f x 2 )

! ax=−(bx+cx )

! d0f (0)=1 ; d0f (1)=0 ; d0f (2)=0

! d1f (0)=ax ; d1f (1)=bx ; d1f (2)=cx

! d0fp (0)=1/2 ; d0fp (1)=1/2 ; d0fp (2)=0

! d1fp (0)=−1/[y(1)−y ( 0 ) ] ; d1fp (1)=1/[ y(1)−y ( 0 ) ] ; d1fp (2)=0

END SetDer iva t i v e s

.6 Building Matrices

SUBROUTINE BuildMats (COMPLEX AAˆ(∗ ,∗ ) , BBˆ(∗ ,∗ ) )

!

AA=0

BB=0

! ns tate=1

! neq=1

ARRAY( 1 . . n s ta te ) OF REAL vv

vv=0 ; vv(1)=1

INTEGER i , j , k , n

! neq=number o f equat ions (1 ) , i=index o f equat ion ( 1 . . neq ) , j=index o f

p r im i t i v e va r i ab l e ( 1 . . n s ta te )

! n=index in f ( 0 . . ny+1) , k=index o f block (−5. .5)

p==neq∗n+i−1 ! index in d i r e c t i o n o f rows

q==k∗neq−i+j ! index in d i r e c t i o n o f columns , wrt d iagona l where

d iagona l has value 0

! p==n

! q==k

!

LOOP FOR n=2 TO ny1−2 WITH de r i v a t i v e s (n)

LOOP FOR k=−2 TO 2

LOOP FOR j=1 TO nstate

v=d0 (k)∗vv ( j ) ; vyy=d2 (k)∗vv ( j ) ; vyyyy=d4 (k)∗vv ( j )

a2=a l f a ∗ a l f a ; b2=beta∗beta ; k2=a2+b2
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! i =1; WRITE BY NAME p , q , i , j , k ; READ

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Matrix A:

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! v−momentum equat ion

i =1; BB(p , q ) = I∗Re∗ a l f a ∗(vyy−k2∗v)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Matrix B:

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! v−momentum equat ion

i =1; AA(p , q ) = [ vyyyy −2∗vyy∗k2 +k2∗k2∗v ] − I∗ a l f a ∗Re∗ [ ( vyy−k2∗v)∗

U(n+k) − d0 (k)∗U2(n+k) ]

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

REPEAT LOOP

REPEAT LOOP

REPEAT LOOP

!

!

! Orr−Sommerfield equat ion next to the boundary :

n=ny1+3

WITH de r i v a t i v e s (n)

LOOP FOR k=−3 TO 2

j=1

v=d0 (k)∗vv ( j ) ; vyy=d2 (k ) ; vyyyy=di4 (k)∗vv ( j )

a2=a l f a ∗ a l f a ; b2=beta∗beta ; k2=a2+b2

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Matrix A:

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! v−momentum equat ion

i =1; BB(p , q ) = I∗Re∗ a l f a ∗(vyy−k2∗v)/mval

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Matrix B:

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! v−momentum equat ion

i =1; AA(p , q ) = [ vyyyy −2∗vyy∗k2 +k2∗k2∗v ] − I∗ a l f a ∗Re∗ [ ( vyy−k2∗v)

∗U(n+k) − d0 (k)∗U2(n+k) ] / mval

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

REPEAT LOOP

END WITH

LOOP FOR n=ny1+4 TO ny−1 WITH de r i v a t i v e s (n)

LOOP FOR k=−2 TO 2

LOOP FOR j=1 TO nstate

! Uyy=SUM d0 ( j j )∗U2(n+j j ) FOR j j=−1 TO 1

v=d0 (k)∗vv ( j ) ; vyy=d2 (k)∗vv ( j ) ; vyyyy=d4 (k)∗vv ( j )

a2=a l f a ∗ a l f a ; b2=beta∗beta ; k2=a2+b2

! i =1; WRITE BY NAME p , q , i , j , k ; READ

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Matrix A:

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! v−momentum equat ion

i =1; BB(p , q ) = I∗Re∗ a l f a ∗(vyy−k2∗v)/mval

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Matrix B:

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! v−momentum equat ion

i =1; AA(p , q ) = [ vyyyy −2∗vyy∗k2 +k2∗k2∗v ] − I∗ a l f a ∗Re

∗ [ ( vyy−k2∗v)∗U(n+k) − d0 (k)∗U2(n+k) ] / mval

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

REPEAT LOOP

REPEAT LOOP

REPEAT LOOP

!

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! boundary cond i t i on at the wal l

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! (

n=0

i =1; j =1; k=0; AA(p , q)=1 ! v=0 at y=0

n=1

i=1
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j=1

WITH de r i v a t i v e s (n ) :

! dv/dy=0 at y=0

LOOP FOR k=−5 TO 5

AA(p , q ) = dw1(k)∗vv ( j )

REPEAT LOOP

END WITH

! )

n=0

i =1; j =1; k=0;

AA(p , q)=1 ! v=0 at y=0

n=1

WITH de r i v a t i v e s (n ) :

i=1 ! dv/dy=0 at y=0

LOOP FOR j=1 TO neq AND k=−1 TO 1

AA(p , q ) = d1m(k)∗vv ( j )

REPEAT LOOP

END WITH

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! boundary cond i t i on at i n f i n i t y

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! (

n=ny+1

i =1; j =1;

LOOP FOR k=−5 TO 5

A(p , q)=0

REPEAT LOOP

k=0; A(p , q)=1

! )

n=ny+1

i =1; j =1;k=0; AA(p , q)=1

! dv/dy=0 at y=ymax

( wr i t ten in the point n=ny−1)

n=ny

WITH de r i v a t i v e s (n)

i=1

LOOP FOR j=1 TO neq AND k=−1 TO 1

AA(p , q ) = d1p (k)∗vv ( j )

REPEAT LOOP

END WITH

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! (

n=ny

i=1

j=1

WITH de r i v a t i v e s (n ) :

LOOP FOR k=−5 TO 5

AA(p , q ) = d1r (k)∗vv ( j )

REPEAT LOOP

END WITH

! )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! boundary cond i t i on at the i n t e r f a s e

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n=ny1−1

i =1; j =1;k=1; AA(p , q)=1

i =1; j =1;k=2; AA(p , q)=U(ny1 )

i =1; j =1;k=2; BB(p , q)=−1

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n=ny1+1

j=1

i=1

WITH de r i v a t i v e s (n ) :

LOOP FOR k=−5 TO 5

v1y=d i 1 l ( k)∗vv ( j ) ; v2y=di1 r (k)∗vv ( j )

eta=d0 (k)∗vv ( j )

AA(p , q)=v1y−v2y+eta∗U11−eta∗U21

BB(p , q)=0

REPEAT LOOP

END WITH

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n=ny1+2

j=1

i=1

a2=a l f a ∗ a l f a

WITH de r i v a t i v e s (n ) :

LOOP FOR k=−5 TO 5

v1yy=d2l (k)∗vv ( j ) ; v2yy=d2r (k)∗vv ( j )
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v1=di02 (k)∗vv ( j ) ; v2=di02 (k)∗vv ( j )

eta=di03 (k)∗vv ( j )

AA(p , q)=v1yy+a2∗v1+eta∗U12−mval∗gamma∗( v2yy+a2∗v2+eta∗U22)

BB(p , q)=0

REPEAT LOOP

END WITH

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n=ny1

i=1

j=1

WITH de r i v a t i v e s (n ) :

LOOP FOR k=−5 TO 5

v1=d0 (k)∗vv ( j ) ; v2=d0 (k)∗vv ( j ) ; eta=di0 (k )

v1y=d1l (k)∗vv ( j ) ; v2y=di1r2 (k)∗vv ( j )

v1yyy=d3l (k)∗vv ( j ) ; v2yyy=d3r (k)∗vv ( j )

AA(p , q)=−I∗ a l f a ∗Re∗(−U(ny1 )∗v1y+v1∗U11)−(v1yyy−a2∗v1y)+I∗ a l f a ∗Re

∗gamma∗(−U(ny1 )∗v2y+v2∗U21)+mval∗gamma∗( v2yyy−a2∗v2y)+2∗a2∗v1y−

2∗a2∗mval∗gamma∗v2y−I∗ a l f a ∗Re∗((gamma−1.0)∗Frˆ(−2)−a2∗S)∗ eta

BB(p , q)=I∗Re∗ a l f a ∗(gamma∗v2y−v1y )

REPEAT LOOP

! k=1; A(p , q)=0

END WITH

FILE MATRIX=CREATE(” matrix . dat ”)

LOOP FOR i=0 TO ny+1

DO WRITE TO MATRIX i , AA( i , j ) FOR j=−5 TO 5 ;

WRITE TO MATRIX; WRITE TO MATRIX

REPEAT LOOP

CLOSE MATRIX

END BuildMats

.7 Examples of code that produces plots

#set termina png

#se t output ” s i n g l e 1 . png”

s e t t i t l e ”Re=100 , omega=0.01 , alpha=0.5”

s e t t i t l e ” spectrum”

se t x l abe l ” c r ”

s e t y l abe l ” c i ”

s e t g r id

p lo t [ ] [ ] \

” autovec . dat” i 350 u 3 :2 w l t i t l e ” | v |” ,\

” autovec . dat” i 200 u 4 :2 w l t i t l e ” r e a l ( v )” ,\

” autovec . dat” i 200 u 5 :2 w l t i t l e ”imag (v )”

pause −1 ” h i t return ”

#se t termina l p o s t s c r i p t eps enhanced co l o r

#se t output ” t a lpha . eps ”

#se t t i t l e ”Re=100 ,

{/Symbol w}=0.5 , S=5.0 , m=1000 , {/Symbol g}=1.0 , Fr=2.0”

s e t cntrparam l e v e l s 40

s e t contour

s e t view map

unset su r f a c e

s e t g r id

s e t x l abe l ” t ”

s e t y l abe l ”{/Symbol a}”

s e t z l a b e l ”Imag ( sigma )”

sp l o t [ ] [ ] [ ] \

”growth . dat” u 2 : 5 : 4 w l t i t l e ””

pause −1 ” h i t return ”
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