

Open-source Shape Optimization

An application to Bulbous Bow

Purpose

Build an Open Source Shape Optimization Framework for Fluid Dynamics

> Why? Numerical **Open source**

shape

physics

optimization

MiMMO library

Radial Basis Functions

Control Points/Selection Box

No need to generate geometries

Shape morphing

Shape morphing

Shape morphing

OpenFOAM

Simulates the physics

Benchmark with experiment

Accuracy/Costs trade-off

"an act, process, or methodology of making something (design, system, or decision) as fully perfect, functional, or effective as possible".

"an act, process, or methodology of making something (design, system, or decision) as fully perfect, functional, or effective as possible".

"an act, process, or methodology of making something (design, system, or decision) as fully perfect, functional, or effective as possible".

- Ex.
- 2 design variables
- 1 outcome
- Multimodal behavior
- t = 10 h

Gradient based

Gradient based

22 points + 14 gradient = 36 evaluations 15 days

• Population 0

• Population 3

Population 20

Population 40

3 months 200 evaluations

•

Ex.

- Full Factorial Sampling
- 25 design points

Ex.

• 4-order polynomial regression

Ex.

• Kriging interpolation

Attention!

• Deterministic "noise"

Case study

Bulb design variables:

$$C_{LPR} = \frac{L_{PR}}{L_{PP}}$$

$$C_{ZB} = \frac{Z_B}{T_{FT}}$$

Case study

Assumptions:

- Model scale
- Calm water
- Bare hull
- Fixed trim condition
- Symmetry

$$Fn_{model} = Fn_{ship}$$

$$\frac{V_{model}}{\sqrt{gL_{model}}} = \frac{V_{ship}}{\sqrt{gL_{ship}}} \Longrightarrow V_{model} = \frac{V_{ship}}{\sqrt{\lambda}}$$

Case study

Numerical model:

- Mesh 700k cells
- Local Time Stepping (LTS)
- interFoam solver (VOF)
- k-ω SST

Benchmark

Velocity-Resistance Trend

Benchmark

Numerical dependencies

One-design-variable

One-design-variable

Results

One-design-variable

Results

One-design-variable

Length Parameter

One-design-variable

Two-design-variables

Two-design-variables

* Numerical values are confidential

Two-design-variables: infilling

Two-design-variables: infilling

Two-design-variables: infilling

An approach to "robust" solution

Results

An approach to "robust" solution

Conclusions

• A completely free

optimization framework has

been built

• The application to a naval

case has given interesting and

satisfactory results

Future Developments

- Dictionaries improvement
- More than two variables
 - Better parametrization
 - Latin Hypercubes Sampling
- Mesh morphing
- Dynamic simulations
- Multi-objective optimization

That's all

Thanks for attention