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CFD in a clinical setting

▶ CFD allows detailed analysis of nasal flow characteristics, enhancing
surgeries success rates for nasal airway issues

▶ OpenNOSE project aims to develop a reliable diagnostic procedure for nasal
airway issues using CFD

▶ Heat transfer is a crucial aspect of the nasal flow, but often overlooked
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Mucosal temperature boundary condition

▶ Airways walls at a constant temperature
(Tconst), 37 °C or piecewise constant based
on empirically determined values, widely
used in literature

▶ Conjugate heat transfer (CHT), between the
thin mucous layer lining the airways walls
and the airflow, allows overcoming the
difficulty of prescribing the temperature
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CHT: advantages and drawbacks

! More realistic results1 : allows to identify the coldest areas of nose surface

% Higher computational cost and time: additional equations and mesh cells

% Higher complexity of the geometrical model due to mucous layer addition

GOAL: Develop an analytical model to obtain results analogously to CHT,
without its drawbacks

1Mangani F. “Effetto della temperatura nella fluidodinamica nasale”. Master’s thesis Politecnico di Milano. (2020)
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Proposed solution

Homogenization theory is used to derive an analytical equivalent boundary
condition, imposed at the interface to mimic the mucous layer presence.

Equivalent boundary condition:

▶ derived for forced airflow in straight channel delimited by a smooth solid
boundary (methodology inspired by Ahmed et al.2 for rib-roughened
surfaces)

▶ valid for well separated length scales

2Ahmed E.N., Bottaro A., Tanda G. “Conjugate natural convection along regularly ribbed vertical surfaces: A homogenization-based study”. Numerical
Heat Transfer, Part A: Applications. (2023)
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Governing equations

Fluid region (β) :
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Solid region (σ) :

∂2T̂
∂x̂2j

= 0 (2)

Temperature boundary conditions:
T̂ = T̂C at IC

T̂ = T̂ ,
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(3)
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Homogenization-based upscaling

▶ Equivalent boundary condition sought at fluid-solid interface, where û = 0
⇒ boundary condition only for temperature

▶ Well-separated length scales (ϵ = e/H≪ 1), problem decomposed in
microscopic and macroscopic subdomains

▶ Microscopic problem (θ and ϕ non-dimensional fluid and solid temperatures):

∂2θ

∂xj2
= 0, in β

∂2ϕ

∂xj2
= 0 in σ

+B.C.

(4)
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Homogenized boundary condition

▶ The variables θ and ϕ are asymptotically expanded in terms of ϵ
⇒θ = θ(0) + ϵθ(1) +O(ϵ2) and ϕ = ϕ(0) + ϵϕ(1) +O(ϵ2)

▶ Substituting the expansions in system (4), the solution in non-dimensional
form is found reconstructing the problem at different orders

⇒ In dimensional form, the homogenized boundary condition at the fluid-solid
interface is:

T̂ = T̂C + e
kf
ks

dT̂
dx̂

∣∣∣∣
x̂0

(5)
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Implementation in OpenFOAM

To implement the derived boundary condition in OpenFOAM, two files are created:

▶ homTempFvPatchScalarField.H: for defining the variables

▶ homTempFvPatchScalarField.C : for compiling the boundary condition

The boundary condition is then applied at the interface in homogenization-based
simulations (HOM):
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Validation: Simple channels

▶ Simple channel geometries,
resembling shapes found in nasal
anatomy: Elbow Convergent (EC),
SMooth straight channel (SM) and
Convergent Divergent (CD)

▶ Tested four solid layer thicknesses
for each geometry (d/D = 0.1, 0.5, 1
and 1.5)
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Validation: Results

Temperature distribution along solid-fluid interface (x̂norm = xinterface/l) for the
extreme cases SM and EC:
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Nasal flow: Model

▶ Reconstructed from CT scan and simplified to
add the mucous layer

▶ Mucous layer: constant thickness of 0.5 mm,
water properties and base temperature of 37 °C

▶ Inspiration with flow rate of 16 l/min (resting
condition) and different external temperatures

▶ Steady-state RANS with RNG k− ϵ model

Analytical model of CHT M.V. Pennisi



Mucosal temperature difference

Temperature difference (THOM − TCHT ) and temperature distribution along the
interface for Tinlet = 7 °C :
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Internal temperature difference (7 °C)

Temperature difference for Tinlet = 7 °C :

THOM − TCHT TTconst − TCHT
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Internal temperature difference (−13 °C, 27 °C)

Temperature difference (THOM − TCHT) for :

Tinlet = −13 °C Tinlet = 27 °C
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Final Remarks

HOM allows:

▶ more realistic results with respect to a constant interface temperature
▶ decrease in RAM use of 40% and in computational time of 30% with respect
to CHT

▶ simpler model creation and mesh generation with respect to CHT

HOM limitations:

▶ in presence of highly curved surfaces and in narrower sections
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THANK FOR YOUR ATTENTION



Validation: CD results



Mucosal temperature

Temperature distribution along the interface obtained with the homogenized
boundary condition (HOM) for Tinlet = 7 °C :



Internal temperature difference (27 °C, 47 °C)

Temperature difference (THOM − TCHT) for :

Tinlet = 27 °C Tinlet = 47 °C



Nose heating/cooling

310K− T300K T320K − 310K (T320K − 310K)− (310K− T300K)
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