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This project is developed with the Environmental Fluid Mechanics Group of Prof.
Markus Holzner1 at ETHZ2 supervised by Prof. Andrea Mazzino3, that had the main
theoretical original ideas behind it. The main goals is to experimentally investigate
the behaviour of small polymeric fibers flapping in a turbulent flow. To do so it is
necessary to develop a method to hand-craft the fibers and to make them traceable
by means of photogrammetry techniques.

The focus will be on the behaviour of rigid fibers flapping and spinning in tur-
bulence and on how it is possible to measure some two-points suitable statistical
properties of turbulence by means of these fibers. A phenomenological theory had
already been developed for flexible fibers and some proofs had been founded by
means of direct numerical simulation; no theory or evidences have been found about
rigid fibers.

It will be shown that, by tracking rigid fibers in a turbulent flow, it is possible to
measure transverse velocity differences and eddies tumbling time at the scale of the
length of the fiber; this leads to develop a new experimental technique in turbulence
measuring that we called Fiber Tracking Velocimetry (FTV): instead of spreading
particles in a turbulent flow and measuring velocity differences considering particle
couples, it is possible to spread some fibers of different length and measure velocity
differences at the capes of the fibers.
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2Swiss Federal Institute of Technology in Zurich
3associate professor at DICCA, University of Genoa
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Chapter 1

Introduction

The main reasons that leaded to develop this thesis are reported also by showing
some examples related to measured flow fields. Moreover the goals of this work are
setted.

1.1 Motivations

Why the study of turbulence is still important? Undoubtedly, turbulence related
phenomena are present in many aspects of our life. The smoke coming out of a chim-
ney is a turbulent flow [2], as well as the dynamic of sea wave breaking on a sea wall
[3]; but also weather forecast implies the need of turbulence modelling [4], as well
as the flow in a turbine [5]; the motion of a cigarette smoke is turbulent. Moreover
and more surprisingly van Gogh paintings[6] show typical turbulent patterns that
follows turbulence physical laws.

From an environmental engineering point of view, the study of turbulence is cen-
tral in most of the subject topics; indeed, turbulence concerns fluid dynamic across
the scales: turbulence theory can describe the fluid flow in an aorta [7] as well as
Rossby waves [8] that are at a planetary scale.

Nevertheless, studying turbulence symmetries and scaling properties is even
more beautiful than important. Turbulence induces the scientists to think that a
universal law that rules the fluid motion exists [9] [10] [11], and this is extremely
intriguing for a scientific mind.

We propose a new technique for measuring turbulence In this work, we propose
an innovative approach to measure two points statistical properties of turbulence.
In fact, the foundamental idea is to measure flow fields by means of fibers (slender
bodies) instead of tracers (particles, puntual objects). Indeed, we believe that, under
certain conditions, a fiber can caputure the behaviour of turbulent eddies character-
ized by its length scale, and therefore that the fiber motion is slved to the turbulence
forcing.

More in detail, at the state of the art, one of the most used methodology to mea-
sure turbulent flow field is Particle Tracking Velocimetry (PTV) [12]; it consists in
spreading 0-D objects (particles) in the flow and tracking their position in time; the
word "particles", in general, refers to an object characterized by a size that is much
smaller than the scale of the considered problem: this means that, if a micro-fluid
device is considered, "particles" means spheres with a diameter of less than 10 µm;
if we consider oceanographic large scale measurements, an instrumented oceano-
graphic float can be considered as a punctual object [13]. Under certain conditions,
the particles remain attached to the fluid elements and behave just like them. This
condition is essentially related to the time with which a particle responds to the fluid
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force acting on it: if the particle reacts instantaneously, i.e. without delays respect to
the fluid element, it will follow the flow.

Our idea comes from the following conjecture: the edges of an 1-D element (the
fiber) will move, from a statistical point of view, such as the surrounding fluid; this
helps the scientists in "keeping couples of particles" (the fibers edges) at a circum-
scribed distance letting their dynamical behaviour to be still "slaved to turbulence".
Therefore, it would be possible to measure continuously in time the dynamics of two
particles at a fixed distances (the fiber edges) without them to be spread because of
the turbulence diffusivity.

What is the importance of our new approach? The idea of "connected particles
couples" comes from the following knowledge: in most of the cases, turbulence
presents a diffusive behaviour, i.e. two particles released in a turbulent flow will
increase their distance since their velocity are not correlated anymore [14] [15]. This
means that the main problem when using tracers to access Eulerian statistics of tur-
bulence is that particles tend to separate from each other by virtue of the so called
Richardson law that states that the diffusivity increases as the 2/3 power of the par-
ticles cluster width. This phenomena prevents obtaining converged statistics for a
given fixed separation between the particle, since they quickly lose their correlation.

To persuade the reader of this argumentation, a couple of real life example is
presented. In Figure 1.1 a radar measurement of the unsteady surface flow field in
front of the Gulf of Trieste is shown. The data are kindly provided by Prof. Marcello
Magaldi1 during the lectures of Dispersion Processes at the university of Genoa2. A
cluster of neutral floats is released on the flow field in the center of the domain with a
small initial separation distance and then their Lagrangian trajectories are evaluated
solving the following differential equations with a RK4 explicit method:

dxi

dt
= u(xi, yi),

dyi

dt
= v(xi, yi) (1.1)

where (xi, yi) are the coordinates of the ith float; the separation distance between two
floats is evaluated as:

r =
√
(x2 − x1)2 + (y2 − y1)2 (1.2)

In Figure 1.1(a) the initial (black bullets) and final (red bullets) position of the floats
is shown. It is clear that the cluster disperses completely all over the gulf. The floats
cluster size increases quasi monotonically in time, as shown in Figure 1.1(b): after
a short period of less then one day in which r remains almost the same, therefore
it increases indefinitely. This example highlights the fact that turbulence spread the
particles leading them to be decorrelated and, as mentioned above, the decorrelation
leads to difficulties in having convergent statistics: this fact is not a problem since it
is possible to spread a large number of particles at a fixed distance just like happens
in a small scale laboratory experiment. Indeed, in a laboratory experiment, to spread
four or five thousand of particles in a 10 · 10 · 10 cm volume is matter of pushing a
syringe for half a second; to spread some dozens of floats in the ocean at a fixed
distance is matter of days and thousand Euros. Here it is the main advantages of
this technique. More examples can be carried out, such as meso-scale atmospheric
turbulence, or open channel surface turbulence.

1CNR-ISMAR researcher
2UNIGE University of Genoa

http://magaldi.sp.ismar.cnr.it
https://unige.it/
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FIGURE 1.1: Radar data of the surface flow field in the gulf of Trieste.

Even if the advantages of using fibers instead of tracers to measure the statistical
properties of the flow field is more evident at synoptic scales, it is possible to use
them in a laboratory set-up; the advantages are not directly related to the diffusive
behaviour of turbulence, but, as will be shown through this work, to have a direct
measure of some observable that are particularly hard to measure with tracers, such
as the eddies tumbling time.

In Figure 1.2 a similar example done on a 3-D flow field is shown; a cluster of 200
passive particles is released in a turbulent flow that I measured in laboratory with
3-D particle tracking (3-D PTV) techniques. The particles are released on the flow
field and their position had been evaluated solving the 3-D version of equation (1.1);
in Figure 1.2(a) the position of the cluster is shown at the initial time (black) and after
0.25 s (red), where 0.25 s is a large eddy turnover time. In Figure 1.2(b), the average
distance between the particles in the cluster is shown; the average separation in-
creases almost monotonically in time. The diffusive behaviour of turbulence is more
evident in the second case, since the smaller scales of the field are better resolved;
in fact, the smaller scales are responsible of the diffuse behaviour of turbulence; the
flow field at large scales tend to move the passive scalar fields without spreading it.

(a) trajectories
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FIGURE 1.2: Particles dispersion in 3-D turbulence.



4 Chapter 1. Introduction

1.2 Goals

The main goal of the project is to measure some turbulence statistical properties in
the laboratory controlled environment, with our new approach and another reliable
technique, so that a comparison between the two methodology can be done. The key
steps of the project are the following:

1. develop a method to cast small sized polymeric fibers that can be tracked by
means of photogrammetry techniques in a turbulent flow;

2. recreate a controlled turbulent flow that can be characterized by means of 3-D
particle tracking velocimetry;

3. develop a method to track the fibers while moving in turbulence;

4. investigate if it is possible to measure some suitable observables with the fibers.

This project involves different fields of knowledge: concerning the polymeric
fibers hand-crafting, chemical processes and polymer mechanical properties has to
be studied (polymerisation, relationship between the concentration of a part in a
polymer solution and the mechanical features of the material, etcetera); regarding
the problem of 3-D bodies freely moving in turbulence the fundamental physics of
fluid-structure interaction problems has to be known (normal mode, viscous dump-
ing, tumbling, etcetera); regarding the experimental measure of a fluid flow, pho-
togrammetry has to be well understood (epipolar geometry, focal length, distortions,
etcetera). Moreover a strong knowledge of computer coding is necessary to analyse
the collected data.

Since the motion of a flexible fiber has been already investigated by means of
direct numerical simulations [16] [17], this project is focused on the dynamics of
rigid fibers. The main goal of the project consists in trying to show experimentally
if a rigid fiber tumbles at the same frequency of the eddies of its length scale, and, if
this is the fact, under which conditions this happens.
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Chapter 2

Velocity differences and structure
functions

Some useful results derived by Kolmogorov in 1941 are presented. Firstly, the en-
ergy spectrum equation, that describe the scale by scale energy balance is described;
secondly, an overview of phenomenological laws resulting from the so called K41
theory are presented and discussed. Eventually, theory and experimental evidences
about the longitudinal and transverse structure functions of turbulence are discussed
deeper.

2.1 An overview of the energy spectrum equation

Let us assume that the fluid flow is governed by the incompressible Navier-Stokes
equations. They represent the momentum and mass conservation of a viscous in-
compressible fluid element. In vectorial notation they are:

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∆u + f (2.1)

∇ · u = 0 (2.2)

where u = (u, v, w) is the Eulerian velocity field, ρ is the fluid density, p is the
pressure field and ν is the molecular viscosity. f is a force volume density. Moreover,
the NS equations must be supplemented by initial and boundary condition, such as
periodic boundary conditions or no-slip condition at rigid walls [18, Ch. 1].

To better formalize the familiar and useful concept of "scale" frequently em-
ployed in the phenomenological turbulence theory, a scalar function f (x, t) of both
space and time can be considered. If f is L− periodic in space, it can be decomposed
in its harmonic components using the Fourier series:

f (r) = ∑
k

f̂keik·r, k ∈ 2π

L
Z3 (2.3)

where i2 = −1. Two functions can be defined depending on K > 0; the low pass and
high pass filtered functions respectively:

f<K (r) = ∑
k≤K

f̂keik·r (2.4)

f>K (r) = ∑
k>K

f̂keik·r (2.5)
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and therefore, trivially:
f (r) = f<K (r) + f>K (r) (2.6)

By applying this filter operator to the kth velocity component, two functions
u<

K (r) and u>
K (r) are obtained. Usually, they are named eddies larger/smaller than l

where l = 1/K is the filtering scale.
By applying the low pass filter (2.4) on the NS equations and then taking the

scalar product with the low pass filtered velocity u<
K (r), therefore averaging over the

space coordinates (〈·〉), the scale by scale energy budget equation can be obtained:

∂EK

∂t
+ ΠK = −2νΩK +FK (2.7)

where:
EK =

1
2
〈|u<

K |2〉 (2.8)

is the cumulative energy between the wave numbers 0 and K,

ΩK =
1
2
〈|ω<

K |2〉 (2.9)

is the cumulative enstrophy,:
FK = 〈fK · u<

K 〉 (2.10)

is the cumulative energy injection by the force f , and:

ΠK = 〈u<
K · (u<

K · ∇u>
K )〉+ 〈u<

K · (u>
K · ∇u>

K )〉 (2.11)

Equation (2.7) represent how the energy rate of change at scales down to l = 1/K
(2.8) is equal to the energy injected at such scales by the forcing term (2.10), minus the
energy dissipated at such scales (2.9), minus the flux of energy to smaller scales due
to the non-linear interactions (2.11). Usually, at large Reynolds number, the energy
injection is limited at large scales and the energy dissipation at small scales. It has to
be noticed that the (2.7) holds under no assumption on the turbulence scenario. This
equation is not representing the energy spectrum as it is written; further steps have
to be done.

If we work with random homogeneous functions instead of periodic, the Fourier
series can be replaced by Fourier transforms:

u (r) =
∫

R3
ûkeik·rd3k (2.12)

ûk =
1

(2π)3

∫
R3

u (r) e−ik·rd3r (2.13)

u<
K (r) =

∫
|k|<K

ûkeik·rd3k (2.14)

In other world, to obtain the low pass filtered velocity field, the physical space func-
tions have to be mapped in the frequency space (equation 2.13), then to be remapped
in the physical space by considering only the scales greater than a threshold l = 1/K
(equation (2.14)).

We define the longitudinal velocity differences as:

δu‖ = (u(x + r)− u(x)) · r
|r| (2.15)
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Under the assumption of isotropy and homogeneity, the statistical properties of the
longitudinal velocity differences can be expressed as a function only of the length of
the separation vector r = |r|. The third order moment is defined as:

S3
‖ (r) = 〈δu3

‖〉 (2.16)

It can be shown that, under the hypothesis of homogeneous and isotropic turbu-
lence, the cumulative energy flux can be expressed as a function of the third order
moment of the longitudinal velocity differences as:

ΠK = − 1
6π

∫ ∞

0

Kr
r

(
1 + r

∂

∂r

)(
3 + r

∂

∂r

)(
5 + r

∂

∂r

) S3
‖ (r)

r
dr (2.17)

Eventually, by substituting k with K and taking the derivative of the (2.7) with
respect to k, we can write the energy transfer relation for homogeneous and isotropic
turbulence:

∂E(k)
∂t

= T(k) + F(k)− 2νk2E(k) (2.18)

where the energy spectrum is defined as:

E (k) = − ∂

∂k

(
1
2
〈|u<

k |
2〉
)

(2.19)

The production term F(k) is an an energy spectrum acting only near to a fixed (small)
wave number, that is at the large integral scale:

F (k) =
∂

∂k
(
f<k · u<

k
)

(2.20)

The dissipation term −2νk2E(k) is always negative; it is more relevant for large k,
i.e. at small scales; T(k) is called the transport term, and defined as:

T (k) = −∂Πk

∂k
(2.21)

and therefore:

T (k) =
1

6π

∫ ∞

0
cos (Kr)

(
1 + r

∂

∂r

)(
3 + r

∂

∂r

)(
5 + r

∂

∂r

) S3
‖ (r)

r
dr (2.22)

The denomination "transport term" is due to the fact that this term does not produce
or dissipate energy. Indeed it can be proved that:∫ ∞

0
T(k)dk = 0 (2.23)

The energy spectrum equation had been presented. The mathematical derivation
is fully reported in [18, Ch. 2 and 6]. It is interesting to discuss its physical meaning
and implication. The (2.18) can be seen as the energy balance in the range of scales
from k to k + dk and it is valid under the hypothesis of statistical homogeneity and
isotropy of the turbulent field. The energy spectrum E (k) is reduced from the dissi-
pation term that is always negative since it is a negative quadratic form; the forcing
term is always injecting energy; the transport term does not change the integral of
the energy spectrum that means that it does not change the total amount of energy
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of the whole turbulent field. Nevertheless, it can, in principle, reduce or increase the
rate of energy at the scale l = 1/k, sending energy to the larger or smaller scales.
From the (2.22), it can be seen that the direction of the energy transfer depends on
the sign of the third order moment.

2.2 The 4/5 law

Briefly spiking, the main theoretical result of the Kolmogorov turbulence theory con-
sists of providing a non-trivial theoretical derivation of an expression for the third
order structure function. This is an exact relationship between the third order mo-
ment of the longitudinal velocity increments, the length of the increments and the
average turbulence dissipation rate.

In the following, the three Kolmogorov assumption under which the derivation
of the 4/5 law has been carried out are listed and discussed; the 4/5 law is therefore
enounced. The complete derivation of this relation is reported in [18, Ch. 6, sec. 2].

H1 : in the limit of infinite Reynolds number, all the possible symmetries of the
Navier-Stokes equations, usually broken by the mechanisms producing the turbu-
lent flow, are restored in a statistical sense at small scales and away from the bound-
aries. Small scales means r � L where L is the integral scale, i.e. the scale at which
the turbulence production takes place.

H2 : under the same assumption given in H1, the turbulent flow is self-similar at
small scales, i.e. it possesses a unique scaling exponent h ∈ R such that:

δu (x, λr) = λhδu (x, r) , ∀h ∈ R+ (2.24)

for all r and λr small compared to the integral scale.

H3 : under the same assumption given in H1, the turbulent flow has a finite non-
vanishing mean rate of dissipation ε per unit mass.

Let us underline a non-trivial aspect: to reconcile the infinite Reynolds number
hypothesis with the non vanishing turbulent dissipation rate leads to consider a
vanishing viscosity. Indeed, by integrating the (2.18) and considering the (2.23), it
can be shown that the turbulent dissipation rate must balance the production, that
is:

ε = ν
〈∂ui

∂xj

∂ui

∂xj

〉
∼ U3

L
(2.25)

where U3

L is obtained by dimensional argument combining the integral length scale
with the integral velocity and it can be seen as an estimate of the production term,
that, formally, is the integral over k of the 2.20. Usually, but not systematically, an
estimate of the integral velocity can be given by:

U = urms (2.26)

where:
urms =

√
〈u′2〉+ 〈v′2〉+ 〈w′2〉 (2.27)
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where 〈·〉 is a suitable average and:

u′ = u−U (2.28)

are the velocity fluctuations. The Reynolds number is defined from the integral scale
quantities as:

Re =
U · L

ν
(2.29)

To keep a non vanish dissipation rate the only way to increase the Reynolds number
is decrease the fluid viscosity.

Under this three hypothesis, the Kolmogorov four-fifth law can be derived and
provide an expression for the third order moment of the velocity differences at the
separation r:

S3(r) = −
4
5

εr (2.30)

2.3 Implications and phenomenology

Three implications coming from the four-fifth law are stated and discussed. Firstly,
the behaviour of turbulence within the inertial range is discussed; the energy spec-
trum is linked between the inertial range and the so called viscous range. Then, the
concept of Richardson cascade is described. Eventually, an estimation of the amount
of degrees of freedom necessary to describe a turbulent flow is derived.

The energy flows from large to small scales By substituting (2.30) in (2.17) and
considering (2.18), it can be seen that, at least in 3-D turbulence, the transport term
always decrease the amount of energy at the scale k, transferring energy from the
wave number k to k′ > k. In other words, the Kolmogorov 4/5 law provide the en-
ergy flux direction. In analogy with thermodynamic, the energy balance can be seen
as the first principle: without providing the second principle, it is not known if the
heat transmits from higher temperature to low or vice versa. The 4/5 law provide
this criterion. Nevertheless, it is notable that by considering the 2-D NV equation
and carrying out the same reasoning, the third order moment of the longitudinal
velocity differences is positive: this is called inverse energy cascade, and can be seen
experimentally [19].

Phenomenological implications From now on, the symbol∼will mean equal within
an order unity constant; no distinction between vectors and their norm will be made.
The 4/5 law can be used to give an estimate of the velocity associated to the scale r
within the inertial range:

ur ∼
√(
〈δu2
‖〉
)

(2.31)

An estimation of the energy flux 2.22 can be provided combining the velocity at the
scale r with r itself. Furthermore, the energy flux at every scales within the inertial
range balances the dissipations:

Πr ∼
u3

r
r
∼ ε (2.32)
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As it has been already shown in 2.25, it must happen also at the integral scale. This
means that the production has to balance the dissipations. If we considered as inte-
gral scale velocity U = urms, if L is the integral length scale, we can write:

u3
rms
L
∼ ε (2.33)

that also can be seen as an estimate of the dissipations. Moreover, without bother-
ing the 4/5 law, the 2.32 provide a method to estimate the velocity increments or,
roughly speaking, the velocity at the scale r:

ur ∼ ε1/3r1/3 (2.34)

The eddies turnover time at the scale r inside the inertial range can be evaluated
from the (2.34) as:

τr ∼ ru−1
r ∼ ε−1/3r2/3 (2.35)

The bottom of the inertial range, where viscosity become relevant, can be obtained
phenomenologically by considering the viscous time-scale, i.e. where r is the length
scale at which the diffusion is significant:

τdi f f ∼
r2

ν
(2.36)

and comparing it with the eddies turnover time calculated as (2.35). It gives:

η =

(
ν3

ε

)1/4

(2.37)

Equally, the time and velocity micro-scale can be obtained substituting (2.37) in (2.36)
and (2.34):

τη =
(ν

ε

)1/2
(2.38)

uη = (νε)1/4 (2.39)

The Taylor length micro-scale is the intermediate length scale at which viscous dissi-
pations significantly begin to affects the dynamics of the eddies. It can be evaluated
by its definition or by the following expression [20, Ch. 6, Sec. 3]:

λ =
(

15
ν

ε

)1/2
urms (2.40)

By a short manipulation, 2.40 can be also be used to estimate the turbulence dis-
sipation rate. The corresponding Reynolds number is often used to characterized
turbulent flows:

Reλ =
urmsλ

ν
(2.41)

Turbulence diffusive behaviour: the Richardson law As told before, the four-
fifth law states that the third order moment of the longitudinal velocity differences
is negative and provides a value for it. This fact means that the pdf of the longi-
tudinal velocity differences is negatively skewed, i.e. is more probable to observe
elongation of a fluid filament than shortening. Statistically speaking, it means that
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it is more likely to see two fluid elements increasing their distance in time than de-
creasing it. This can be practically seen spreading some tracer in a turbulent flow:
the average distance between the particles increases in time. The diffusive behaviour
of turbulence can be also be seen throw the Richardson law, that states that the rel-
ative diffusivity was scale-dependent. He found that the diffusivity increases as the
point cloud width to the 4/3 power [15] [14].

Degrees of freedom of turbulence Combining (2.37) and (2.25) it is straightfor-
ward to derive the ratio between the integral scale and the Kolmogorov length micro-
scale.

L
η
= Re3/4 (2.42)

In other words, the inertial range spance a range of scales that increases with the 3/4
power of the Reynolds number. If we want to describe a 3-D flow accurately on a
uniform grid, the minimum number of grid points per integral scale that we need to
describe all the turbulence eddies grows with its third power:

# (do f ) ∼
(

L
η

)3

∼ Re9/4 (2.43)

Moreover, the time step with most of the numerical methods has to be proportional
to the grid size. It can be shown that the total computational time required for each
large eddy turnover time (T = L/U) increases as the third power of the Reynolds
number.

2.4 Structure functions

The scaling properties of the longitudinal and transverse structure functions is dis-
cussed. A brief review about transverse structure function is presented, since it is
not a direct implication of the Kolmogorov theory discussed above.

Longitudinal structure functions The scaling law for the longitudinal structure
function is only known theoretically for the third order moment. As discussed
above, in ideal conditions, the longitudinal velocity differences are characterized
by a probability density function that is negatively skewed, e.g. the third order mo-
ment is always negative. Moreover, its scale law is known precisely, without scaling
constants. From this result, it has been conjectured by dimensional arguments that:

Sp
‖ = Cpεp/3rp/3 (2.44)

This is usually called 2/3 law, and it is observable form most of the turbulent flow if
Re >> 1 [18, Ch. 5]. From an experimental point of view, it can be shown that:

S2
‖ = C2ε2/3r2/3 (2.45)

where C2 is called Kolmogorov constant and depends on the particular turbulence
scenario. This means that S2

‖ ∼ r2/3 is easy to observe, but the multiplication con-
stant change if the turbulence shows an anisotropic or non homogeneous behaviour.

It has to be noticed that to obtain the second order structure function is easier
then the third order. In Figure 2.1, the second and the third order moment of data
extracted randomly from a Gaussian distribution with 0 mean and 1 variance are
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shown: the convergence profile of the second order moment is clearly thinner then
the third order one.
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FIGURE 2.1: Second and third order moment of data sampled from
a normal distribution with 0 mean and 1 variance against the dataset

size.

Transverse structure functions The transverse velocity differences are the projec-
tion of the velocity difference onto a direction that is orthogonal to the separation.
While the longitudinal direction is unique if two different points in space are con-
sidered, there exists infinite directions that are orthogonal to their orientation vector.
Being t a unit vector such as t · r = 0, the transverse velocity differences are defined
as:

δu⊥ = δu · t (2.46)

The transverse structure function can be therefore defined as:

S⊥p = 〈δup
⊥〉 (2.47)

Different choices of t can be done: in [21], the transverse velocity differences are
defined as:

δu⊥ (r) = |P
(

r
|r|

)
δu (r) |cos (θ) (2.48)

where:
Pij = δij −

rirj

r2 (2.49)

is a projection in the plane perpendicular to r and θ ∈ [0, 2π[ is a random angle. This
definition provide a good way to consider random direction orthogonal to r; nev-
ertheles, if we consider two fluid elements in a time interval for which they remain
coherent, to extract this scalar quantity for each time-step produces a non continuous
time signal.

In [22], transverse velocity differences are experimentally measured in a turbu-
lent jet by means of RELIEF techniques. The x axis of the reference frame is oriented
in the main jet direction; being the reproduced jet axial-symmetric, the choice of y is
not relevant. The u (y) component has been measured and the transverse structure
functions are measured starting from the discrete data as:

Sp
⊥ (∆y) =

N

∑
n=0
|un+j − un|p (2.50)
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All these choices are equally possible. We decided to focus on the transverse unit
vector built from the longitudinal separation vector that always belongs to the (x, y)
plane. Being r = (rx, ry, rz) we define:

t =

(
−ry, rx, 0

)√
r2

x + r2
y

(2.51)

From our point of view, this choice is convenient for two different technical reasons.
Firstly, we need to measure the transverse velocity differences of the edges of fibers,
that are by definition coherent for the whole time. To increase the quality of the
measures, a Gaussian time filter will be applied on the velocity difference signal.
Therefore, we need to have a signal that is time-continuous. Secondly, as it will be
explained forward, the error on the experimental Lagrangian tracking procedure of
the fibers is different considering different direction: therefore to chose a particular
plane can be useful to reduce the tracking error.

It is known that the third order moment of the transverse velocity increments
vanishes, e.g. that the pdf of the longitudinal and transverse velocity increments
have a different nature [23] [24]. Notwithstanding, the even moments show a scal-
ing behaviour similar to the longitudinal structure functions. Indeed, under the
assumption of isotropy, it holds [20, Ch. 6] [24]:

S⊥2 = S‖2 +
r
2

∂S‖2
∂r

(2.52)

We do not have a theoretical based expression for S‖2 ; nevertheless, within the inertial
range it holds the equation (2.45), therefore:

S⊥2 =
4
3

C2ε2/3r2/3 (2.53)

In isotropic turbulence it has to be expected to observe S‖2/S⊥2 ' 3/4.
Moreover, the second order transverse structure function scaling behaviour is

observable in a huge variety of experiments or numerical simulations [24] [21] [25]
[26] [22] [27].
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Chapter 3

Fibers flapping in turbulence

The problem of fibers characterized by a length within the inertial range flapping in a
turbulent flow is formalized. Thereafter, a phenomenological theory and numerical
evidences related to the dynamics of flexible fibers are presented. Finally, an original
conjecture related to rigid fibers behaviour and their tumbling time is presented. The
shown results are related to [17] and [16].

3.1 Coupling the motion of the fibers and the fluid

Firstly we present the model for coupling the fiber dynamics and the fluid flow. We
assume that the fluid flow is governed by the incompressible Navier-Stokes equa-
tions, that are the momentum conservation (2.1) and the continuity equation (2.2)
that we rewrite for convenience:

∂u
∂t

+ u · ∇u = − 1
ρ0
∇p + ν∆u + f (3.1)

∇ · u = 0 (3.2)

where f is the Eulerian fluid structure interaction force, i.e. for per unit volume that
the fiber exerts on the fluid. The fiber position is governed by the unsteady Euler-
Bernoulli 1-D beam equation [28, Ch.5, Sec. 5.2.2]:

ρl
∂2X
∂t2 =

∂

∂xs

(
T

∂X
∂xs

)
− γ

∂4X
∂x4

s
+ F (3.3)

where ρl is the linear density of the fiber, γ is its bending rigidity and T is the ten-
sion needed to enforce the fiber inextensibility. F is the Lagrangian fluid-structure
interaction force, i.e. a force per unit length that the fluid exerts on the fiber.

The Euler-Bernoulli 1-D equation holds since the constituent material of the fiber
is elastic and the ratio between its diameter and its length, is much smaller than
unity. The (3.3) can be derived imposing the second Newton’s law on an infinitesi-
mal element of beam and substituting the elastic constitutive model to relate stress
and strains. The fist term represents the inertia of an infinitesimal element, the sec-
ond is the inextensibility term and the third term is related to the angular momen-
tum equilibrium. The following constrain is needed to guarantee the inextensibility
of the fiber:

∂X
∂xs
· ∂X

∂xs
= 0 (3.4)

The fluid and the fiber motion are coupled at their interface by the no-slip condition:

∂X
∂t

= U (X (s, t) , t) (3.5)
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where U is the fluid velocity at the position of the fiber, therefore:

U (X (s, t) , t) =
∫

u (x, t) δ (x− X (s, t)) d3x (3.6)

The the Eulerian and Lagrangian fluid-structure interaction forces are related by:

f (x, t) =
∫

s
F (s, t) δ (x− X (s, t)) ds (3.7)

Since we are considering a fiber freely flapping in turbulence, free-end boundary
conditions are used at s = 0 and s = c, c being the length of the fiber.

3.2 Flexible fibers: phenomenological theory and numerical
evidences

A phenomenological theory related to flexible fibers flapping in turbulence is pre-
sented; it had been firstly developed in [17]. To describe the fluid-structure interac-
tion, we assume a simplified viscous coupling of the form:

F = −µ

(
∂X
∂t
− u

)
(3.8)

We do not consider an anisotropic expression for the drag since the turbulent flow
can be considered isotropic in a range of scale where r � L and therefore, there are
no preferential alignment. Substituting this coupling, the fiber equation holds:

ρl
∂2X
∂t2 =

∂

∂xs

(
T

∂X
∂xs

)
− γ

∂4X
∂x4

s
− µ

(
∂X
∂t
− u

)
(3.9)

From this equation we carry out an order of magnitude analysis; let us consider the
following scales:

O
(

ρ1
∂2X
∂t2

)
=

ρl · c
τ2 (3.10)

O
(

∂

∂xs

(
T

∂X
∂xs

))
=

T
c

(3.11)

O
(

γ
∂4X
∂x4

s

)
=

γ

c3 (3.12)

O
(

µ

(
∂X
∂t
− u

))
=

µ · c
τ

(3.13)

Two characteristics time-scales can be identified from the fiber equation. Balancing
fiber inertia with viscous damping, the characteristic viscous time is obtained:

τµ =
2ρ1

µ
(3.14)

and balancing fiber inertia with bending rigidity, the characteristic elastic time is
obtained:

τγ = α

(
ρ1c4

γ

)1/2

(3.15)
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where α = π/22.4 is a coefficient that depends on the fist mode of oscillation of the
fiber. The ratio between the elastic and the viscous time is called damping ratio:

ζ =
τγ

τµ
=

αc2µ

2ρ1/2
1 γ1/2

(3.16)

As a matter of principle, the value of the dumping ratio it gives information
on which kind of dynamics affects mostly the fiber motion. As a simple 1− DOF
viscoelastic oscillator, if the dumping ratio is ζ < 1, the system is called under-
dumped and the elasticity strongly affects the fiber dynamics: this means that, in
still water, we expect to observe harmonic oscillation of the end to end distance of
the fiber that reduces their amplitude exponentially in time. On the contrary, if ζ >
1, the system is over-dumped and elastic effects are strongly inhibited. Harmonic
oscillations compleately disappears and the exponential time decay is dominant.

As shown in Chapter 2, the characteristic time scale of an eddy is that is called
eddy’s tumbling time, and can be phenomenologically derived from Kolmogorov
theory in the case of isotropic, homogeneous and stationary turbulence. We rewrite
its expression (2.35) for convenience:

τ (r) ∼ r2/3ε−1/3 (3.17)

By comparing the time-scales of the fiber and the characteristic time-scale of the ed-
dies (i.e. equations (3.14), (3.15) and (2.35)), it is possible to distinguish four different
regimes. For all these regimes, different flapping behaviour are expected.

under-dumped regime For 0 < ζ < 1 (under-damped regime), we expect that the
fiber response shows an oscillatory behaviour. Therefore, we impose a resonance
condition between the elastic time and the hydrodynamic one, from which a critical
value of the bending rigidity can be found:

τγ = τc→ γud
crit ∼ c8/3ε2/3ρlα

2 (3.18)

Looking at the expression above, a further distinction can be made. In the limit of
vanishing γ (sub-critical case), the fiber can be thought to be slaved to the flow due
to the relatively faster forcing compared with its response, therefore flapping at the
eddy frequency. In the opposite supercritical case, where the elastic time is much
smaller than the hydrodynamic one, the fiber reaction is expected to be far more
rapid than the fluid forcing. Physically, this means that the fiber flapping behaviour
is mostly dominated by its own constitutive characteristics and not from the fluid
forcing, e.g. it oscillates with its natural frequency.

over-dumped regime We now turn our attention to the case where ζ > 1 (over-
damped regime), where viscous dissipations becomes dominant. Imposing a reso-
nance condition between the eddy turnover time and the characteristic viscous time
of the fiber, a critical value of the bending rigidity can be derived:

τµ = τc→ γod
crit ∼ µc10/3ε1/3 (3.19)

We shall discuss the expected behaviour in the two limits also here. For γ/γod
crit < 1,

the relaxation is slower than the fluid forcing and thus the fiber is slaved to the tur-
bulence. In the opposite case the fiber is appreciably deformed only by large strains,
similarly to the under-damped regime. However, in this case, elastic oscillations are



18 Chapter 3. Fibers flapping in turbulence

not possible, and the dominant frequency is anyway expected to be the turbulence
one. The fiber motion in the over-damped regime is therefore always expected to be
slaved to turbulence, independently of γ/γod

crit.

under-dumped over-dumped
ζ < 1 ζ > 1

sub-critical over-critical sub-critical over-critical
τ(c)
τγ

< 1, γ < γud
crit

τ(c)
τγ

> 1, γ > γud
crit

τ(c)
τµ

< 1, γ < γod
crit

τ(c)
τµ

> 1, γ > γod
crit

slaved not slaved slaved slaved

TABLE 3.1: Flapping regimes

In three cases out of four the elastic fiber motion is expected to be slaved to the
turbulence forces. This means that the fiber end to end distance oscillates at the same
frequency of the turbulent eddies at its length, e.g. should shows a peak at the same
frequency of turbulence at the length scale of the fiber. Formally, if fpeak is the peak
frequency of the end to end distance and fturb = 1

τ(c) is the turbulence frequency at
the length scale of the fiber, it shall results:

fpeak

fturb
' 1 (3.20)

This behaviour had been shown by direct numerical simulations (DNS) fully re-
solving the fluid-structure coupled problem stated above [17] [16].

For those regimes fully slaved to the flow, the fiber may be viewed as a La-
grangian tracker of turbulent eddies, exploitable for evaluating not only their char-
acteristic time but also two-point statistical quantities such as, e.g., scaling exponents
of velocity structure functions. In other words, the probability density function of
longitudinal velocity differences at the fiber length can be measured as the velocity
differences of the extremes of the fibers. If the fiber is rigid, e.g. the under-dumped
and over-critical regime, it oscillates at its own natural frequency. If the fiber is per-
fectly rigid, the end to end distance will not change in time.

The adopted numerical method to couple the problem is called Immersed Bound-
ary Method (IBM) [29]; by using this method, the numerical grid does not need to
conform to the geometry of the object. Indeed, the object is replaced by the La-
grangian force force density distribution F which mimics the presence of the body
in the fluid and restores the velocity boundary conditions on the immersed surfaces.
Therefore, even if it can be considerate accurate, it does not guarantee a completely
realistic coupling between the fluid and the structure motion. Another assumption
lies in the Euler-Bernoulli beam equation: it does not represent the motion of an elon-
gated 3-D object, but it approximates it to a 1-D geometry. Formally, it holds in the
limit of vanishing aspect ratio. For both these reasons, to do physical experiments
tracking the position of flexible fibers can still be worthy.

3.3 Rigid fibers: an original conjecture

The problem of a rigid fibers spinning in turbulence has not been investigated al-
ready. Our conjecture consists in the fact that rigid fibers can be used to measure
transverse velocity increments at the scale of the fiber length. In other words the as-
sumption consists in thinking that a rigid fiber swimming in a turbulence flow, spins
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at the same frequency of the eddies of its length scale. This can be seen measuring
its tumbling time. The tumbling time is a characteristic time-scale that can be seen
as the main frequency at which a rigid body spins:

τtamb =

(
dr̂
dt
· dr̂

dt

)−1/2

(3.21)

The orientation unit vector is defined as:

r̂ =
r
|r| (3.22)

An expression to evaluate the tumbling time an eddy directly from the Lagrangian
velocity differences (i.e. the velocity differences between two particles freely moov-
ing in a turbulent flow) can be derived thinking about the instantaneous variation of
the orientation unit vector, defined in (3.22). The time derivative of the length of the
separation between two particles can be carried out as:

d|r|
dt

=
r · δu
|r| (3.23)

By applying the chain rule, the time derivative of the unit orientation vector can be
evaluated as:

d
dt

(
r
|r|

)
=

δu
|r| − r

r · δu
|r|3 (3.24)

An expression for the tumbling time that depends on the velocity differences and on
the length of the separation vector can be therefore derived:

τtambl =

(
|δu|2
|r|2 −

(δu · r)2

|r|4

)−1/2

(3.25)

If we define respectively the longitudinal velocity differences vector and the trans-
verse velocity difference vector as:

δu‖ = δu‖
r
|r| =

(
δu · r
|r|

)
r
|r| (3.26)

δu⊥ = δu− δu‖ (3.27)

we can write that:
δu = δu‖ + δu⊥ (3.28)

The longitudinal velocity differences are negligible if we consider the extremes of an
almost rigid fiber, therefore:

δu ' δu⊥ (3.29)

τtabl,rigid =
|r|
|δu| (3.30)

Two significant questions arise comparing (2.35), (3.30), and (3.25).
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What does rigid mean? Considering equation (3.25) and (3.25) we can say that the
fiber is rigid compared to the fluid forcing since:

τtambl,rigid

τtambl
∼ 1 (3.31)

Physically, this means that the longitudinal velocity differences does not affect sig-
nificantly the tumbling time of the fiber.

How does a rigid fiber spin in a turbulent flow? We suppose that the tumbling
time of a fiber characterized by a length c within the inertial range swimming in a
turbulent flow spins at the same frequency of the eddies at its length scale; in other
worlds:

τtamb,rigid (c) ∼ c2/3ε−1/3 (3.32)

If this is the case, we suppose that to measure transverse velocity increments by
tracking the edges of the fiber is possible. If this happens and, possibly, under which
condition, has not been investigated already; which are the parameters that govern
this phenomenon is an open question. Both this questions are subject of the present
work.

Despite the fact that to measure the transverse velocity increments is less useful
than longitudinal velocity differences from a turbulence modelling point of view, a
methodology to measure the eddies tumbling time at a fixed scale can be useful; in-
deed, the eddies tumbling time can be difficult to measure directly with Lagrangian
tracker also if long measures are available.

3.4 Stokes numbers

The Stokes number is a non-dimensional group defined as the ratio of a characteristic
time of an object (usually a particle, e.g. 0-D object) to a characteristic time of the
flow.

Stk =
τobj

τf low
(3.33)

τobj is usually an exponential time decay; a quantity Q is subjected to exponential
decay if it decreases at a rate proportional to its current value, that is:

Q (t) = Q0e−λt (3.34)

where Q0 is its initial value. λ is called exponential time decay. This value can
be derived in many different scenarios, i.e. considering different phenomena. For
instance, if we consider a particle heavier that the fluid released into it, it will reach
a steady settle velocity because of the drag force: the exponential decay is a measure
of how long does it takes to reach the final settling velocity.

For a slender body in a Stokesian flow, conventionally, two characteristic time
scale are defined: the translational and the rotational relaxation time. The first one
is conceptually similar to the particle’s one: it can be measured by dragging a fiber
up to a constant velocity and than releasing it in still water; the fiber will decelerate
because of the drag force and stop after a while. By measuring its decaying velocity
and then interpolating it with an exponential function, it is possible to measure the
translational relaxation time. Considering the rotational case, the procedure is simi-
lar but an initial value of angular velocity has to be imposed; thereafter, the angular
velocity decay can be measured and the same procedure has to be followed.
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Since to measure experimentally the Stokes number of a fiber is not feasible, two
different possibilities can be considered:

• perform some direct numerical simulation with which it is possible to impose
the initial condition on the fiber velocity without modify the initial fluid flow;

• consider the slander body theory, even though it is related to body with a
length scale smaller that the Kolmogorov microscales [28, Ch.2, Sec. 8], i.e. a
length scale for which the viscous term is more important than the non-linear
term.

We will consider a value for the Stokes number evaluated theoretically through
the slender body theory, so for a fiber characterized by c < η; therefore, this analysis
is not correct. The Stokes number can be evalueted as [30]:

Stk =
1
32

ρv

ρw
Red · a · ln

(
a2 · e

)
(3.35)

where:
a =

d
c

(3.36)

and
Red =

U · d
ν

(3.37)

are the aspect ratio and the diameter Reynolds number respectively. Even thought
the fact that this analysis is affected by an intrinsic error, this formula will be consid-
ered as a proxy of the fiber real behaviour. Figure 3.1 shows how the Stokes numbers
depends on the Reynolds number of the fiber diameter and on its aspect ratio. From
this formula, some important consideration can be derived:

• the higher is the turbulence intensity (so the diameter Reynolds number), the
higher is the Stokes number; this fact holds because of the (3.33), a priori of the
Stokesian flow assumption. Indeed, Stk =

τobj
τf low

=
τobj·urms

d ; moreover, this fact
physically sounds: the higher is the turbulence intensity, the faster is the fluid
flow around the fiber and the harder will be for the it to follow the fluid flow;

• the smaller is the aspect ratio, the smaller is the Stokes number; this consider-
ation is not ensured also out of the micro-scales.

A direct evaluation of the Stoke’s number for fibers characterized by a length
within the inertial range is being carried out by Prof. Andrea Mazzino and Edoardo
Rosti1 (not yet published) by means of DNS.

In order to consider the added mass effect, instead of using ρl as the linear den-
sity, a new linear density can be used, defined as follow:

ρl,new = ρl + ρw
πd2

4
=

πd2

4
(ρv + ρw) ' ρw

πd2

2
(3.38)

Therefore, a modified expression for the fiber’s volume density can be considered:

ρv,new ' 2 · ρw (3.39)

Taking it to account this effect likely increases the Stokes number.

1post-doc at KTH Royal Institute of Technology

https://www.mech.kth.se/mech/info_staff.jsp?ID=430
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An important comment From what said above, it seems that the lower is the tur-
bulence intensity the better will the fiber follow the turbulence flow; and this is true.
Nevertheless, if the aim is to have a flexible fiber that is slaved to turbulence, the
higher is the turbulence intensity, the easier will be for the fluid force to bend it, so
to fall in one of the slaved regimes. This fact can leads to a conflict in searching an
optimal configuration to test the flexible fiber case.

0.1 0.12 0.14 0.16 0.18 0.2

0.4
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1.2

FIGURE 3.1: Stokes number depends on the aspect ratio a = d/c and
on the fiber Reynolds number Red = U · d/ν.

3.5 From theory to polymeric fibers hand-crafting

In order to hand-craft polymeric fibers with suitable features, three different proper-
ties have to be controlled: firstly, mass properties, because the neutral buoyancy of
fibers is required; the fibers are required to be almost neutral respect to the buoyancy
force; secondly, optical property, because the extremes of the fibers must be trace-
able under laser light; finally mechanical properties, since the fiber flexibility has
to be controlled; ideed, different bending rigidity must be tried. To respect all these
constrains, the fibers are hand-crafted by means of polydimethylsiloxane (PDMS)
and rhodaminea and a new casting technique is developed. Some observation about
they mass and the mechanical properties are discussed below.

We use Polydimethylsiloxane (PDMS) to hand-craft the fibers. In fact, this ma-
terial has all the required properties: firstly is possible to easily hand craft PDMS
samples. Afterward, PDMS is naturally transparent, and it is possible to dye it
while hand-crafting: as shown in Chapter 5, these two features are indispensable
in the Lagrangian tracking procedure. Finally, as shown below, it has suitable vol-
ume density: since we need to produce a neutrally buoyant fiber, PDMS density is
∼ 965 [kgm−3].

We do further manipulation of the theory derived in Section 3.2 in order to un-
derstand which mechanical and geometrical properties we require from the fibers to
be flexible or rigid. Due to the fact that both the damping ratio and the critical band-
ing rigidity depend on the fiber’s characteristics (c and γ), we have that the flapping
regime depends on both the fiber and the turbulence characteristics.

Before producing the fibers, it can be advisable to assume a reasonable constitu-
tive model for the polymer (possibly linear elastic) and to collect informations about
the constituent parameters. Than, we have to know the turbulence properties in our
set up (old experiments) such that them can be reproduced in lab. This will help us

https://polymerdatabase.com/polymers/Polydimethylsiloxane.html
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in estimating the critical values for the dumping ratio and the bending rigidity (ζ
and γc).

Assuming that the turbulence properties and the mechanical properties of the
material can not be changed much, we can only tune the geometrical properties
of the fiber in order to have it flapping in a desirable regime. Therefore, it can be
useful to show how d and c affect the dumping ratio and the critical bending rigidity
explicitly. Moreover, since we have to fix some values of the fiber’s length c within
the inertial range, we want to show how these parameters are affected by the fiber’s
diameter for different values of c.

If we considerer a fiber characterized by a circular cross-section we have that its
linear density is:

ρl = ρv
π d2

4
(3.40)

Assuming an homogeneous and isotropic constitutive low for the hydro-gel and that
its length is at least ten times its diameter (Euler-Bernoulli beam) we can express the
banding rigidity as:

γ = E J (3.41)

where J = π d4

64 is the second order moment of the circular cross section. The damp-
ing ratio can be written as:

ζ =
τγ

τµ
=

αc2µ

2ρ1/2
f γ1/2

=

(
8ανρw

πE1/2ρ1/2
v

)
c2

d3 (3.42)

For each value of c, the critical value dc over which we are under-dumped (elasticity
is governing the motion) and vice versa, is found by requiring that ζ = 1, so we
have:

dc =

(
8ανρw

πE1/2ρ1/2
v

)1/3

c2/3 (3.43)

In the under-dumped regime (d > dc) we have that:

γud
c = c8/3ε2/3ρlα

2 (3.44)

from which we can easily provide and expression for the critical value of the fiber
diameter in the under-dumped case, therefore:

dud
c =

(
4αε1/3ρ1/2

v E−1/2
)

c4/3 (3.45)

In the over-dumped regime (d < dc) we have that:

γud
c = µc10/3ε1/3 (3.46)

from which we can evaluate an expression for the critical value of the fiber’s diame-
ter in the under-dumped case, therefore:

dod
c =

(
64νρwε1/3

πE

)1/4

c5/6 (3.47)

Fixing some realistic range of values for the Young’s modulus, it is possible to
see which regimes we can actually investigate with feasible diameter.

Assuming the values shown in Table 3.2, we can calculate the critical values of
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the diameter. As shown in Figure 3.2, the thinner is the fiber, the easier it to fall in the
under-dumped regime and the easier is to show the longitudinal turbulence statis-
tics; the higher are the dissipations, the easier the turbulence is to investigate. More-
over, we assumed to have an Euler-Bernoulli beam so that the diameter of the cross-
section must be at most 1/10 of the fiber’s length to have negligible shear strain, but
this is never a problem.

To investigate the rigid case, we need to produce a fiber that both over-dumped
and in the over-critical case. To ensure this, the turbulence intensity can be reduced,
and the diameter has to be increased up to 1 mm. To maintain the Euler-Bernoulli
hypothesis can become a problem, but it is no more necessary from a stress-strain
point of view. It can become an issue from the Stokes number prospective.

However, this analysis strongly depends on the value of the Young’s modulus
and of the dissipations: for this reason it is important to have a good a priori estima-
tion of the mechanical properties of the PDMS and of the turbulence intensity.

ρw ν ρv E ε α
[Kg m−3] [m2 s−1] [Kg m−3] [N m−2] [m2 s−3] [−]

999.84 1.004 · 10−6 1000 1000 10−3 π/22.4
999.84 1.004 · 10−6 1000 1000 10−4 π/22.4
999.84 1.004 · 10−6 1000 100 10−3 π/22.4
999.84 1.004 · 10−6 1000 100 10−4 π/22.4

TABLE 3.2: Representative values of the fluid, turbulence and ma-
terial characteristics; the order of magnitude of the dissipation is

achievable in our lab set-up and the Young’s modulus is from [1]
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FIGURE 3.2: critical diameter for the dumping regime (dc), critical di-
ameter for the flapping regime in the over-dumped case (dod

c ), critical
diameter for the flapping regime in the under-dumped case (dud

c ).
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Chapter 4

An overview of photogrammetry

A brief overview of the theory and experimental methods related to photogramme-
try techniques is presented. Firstly the theoretical foundations of particle pothogram-
metry are explained; thereafter, the needed experimental instrumentation is described
and some issues related to this aspect are discussed.

4.1 Theory of photogrammetry

Photogrammetry is a technique that consists in taking two or more pictures of the
same object from different points of view. If the coordinates of some points of the
pictures are known a priori, it is then possible to determine the position of all the
others points in the space observed by the cameras [31].

Firstly the concept of pinhole camera model has to be introduced; the pinhole
camera model describes the mathematical relationship between the coordinates of a
point in three-dimensional space and its projection on the image plane of an ideal
pinhole camera, where the camera aperture is described as a point. For the sake
of simplicity, the image plane is interposed between the focal point and the object
point. The fundamental mathematical concept of particle tracking by means of pho-
togrammetry is the so called collinearity condition that states that the object point P,
the camera projective center O and the image point P′ belong to the same straight
line.

FIGURE 4.1: Collinearity condition for an inverted pinhole camera
model.
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This concept can be observed in Figure 4.8. Let us assume that (x, y) are the
coordinates of P′ in the image reference frame, (X0, Y0, Z0) are the coordinates of
the camera in the object reference frame, (ω, ϕ, κ) are the orientation angles of the
camera; c is the focal length. In can be derived from geometrical consideration the
two following mathematical relationship between the image coordinates and the real
coordinates:

x′i = xh − c · a11 (Xi − X0) + a21 (Yi −Y0) + a31 (Zi − Z0)

a13 (Xi − X0) + a23 (Yi −Y0) + a33 (Zi − Z0)
(4.1)

y′i = yh − c · a12 (Xi − X0) + a22 (Yi −Y0) + a32 (Zi − Z0)

a13 (Xi − X0) + a23 (Yi −Y0) + a33 (Zi − Z0)
(4.2)

where (xh, yh) are the image coordinates of H′ that is the camera center. Some more
relations have to be carried out to considerer some other parameters. The radial sym-
metric length distortion and the decentering has to be considered; a mathematical
model ([31, Ch. 3, Sec. 1]) involving five new parameters can be derived:

x′i = x′i + dxi, y′i = y′i + dyi (4.3)

where:
dxi = x′i

(
k1r′2 + k2r′4 + k3r′6

)
+ p1

(
r′2 + 2x′2i

)
+ 2p2x′iy

′
i (4.4)

dyi = y′i
(

k1r′2 + k2r′4 + k3r′6
)
+ p1

(
r′2 + 2y′2i

)
+ 2p2x′iy

′
i (4.5)

Moreover, the influence of electronic effects (unknown difference of the clock
rates of camera and framegrabber) can be modelled as an affine transformation:

x̃i = a0 + a1x′i + a2y′i (4.6)

ỹi = b0 + b1x′i + b2y′i (4.7)

All of these consideration can be summarized in the following functional relation
between the camera coordinate and the real reference frame that is a generalization
of the collinearity condition:

(x, y) = f (X0, Y0, Z0, ω, ϕ, κ, X, Y, Z, Φ) (4.8)

Φ is a vector of parameters, such as the length distortion and the focal length. It is
than clear that knowing (x, y) (so taking pictures of one or more particles), (X0, Y0, Z0),
(ω, ϕ, κ) and Φ by calibration procedures, since at least this parameters are known
for a couple of cameras, (X, Y, Z) can be determined solving a system of equation
or by regression in case of more than two cameras. It can be seen that for more that
four cameras, the accuracy will not increase significantly.

4.2 High speed recording

The main issues to deal with using photogrammetry in the context of fluid flow de-
scription are the following: in this context photogrammetry is used to track objects
that move in time, so it is necessary to sampling images at a frequency high enough
to capture correctly particles motion. Indeed, if the sampling frequency is not high
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enough, mismatch between particles tracked in two subsequent time step are possi-
ble. For this reason the need of high speed cameras rises. High speed cameras are
cameras that are able to capture image sequences at an high frame rate.

Two different criterion can be used to understand which is the minimum frame-
rate that allows a correct particle tracking:

• an empirical criterion, for which short time videos are recorded; by means of a
qualitative observation of two subsequent frames, it is possible to understand
if the time-step is small enough to allow a correct distinction between particles;
in other words, the particles motion has to be "smooth enough";

• a theoretical criterion that consists in considering the highest frequency of a
turbulent flow in a Kolmogorov sense. If we want to look at the whole inertial
range (between L and η), it is necessary to sample at least at the smallest eddies
turbulence frequency that is from Kolmogorov theory:

fη =
( ε

ν

)1/2
(4.9)

This sampling frequency is not sufficient if a mean flow is present, so that a
further increase of the frame rate has to be taken in to account. It can be con-
sidered to be proportional to ∆ f ∼ max(U)/L where max(U) is the maximum
intensity of the mean flow.

4.3 Lighting

The necessity of high speed recording leads to a second issue: the higher the frame-
rate is, the less light is captured by the cameras; for this reason in the context of high
speed recording, high power lightning such as laser light is also needed. The laser
light is used during the recording procedure, but during the calibration procedure
a led light is used. Moreover, by using laser light, it is possible to control the light
wavelength, and to use a very small part of the light spectrum: this fact helps while
using fluorescent material as traces and optical filters that cut certain wavelengths.

FIGURE 4.2: A picture of the set-up illuminated by the laser light at
full power, kindly provided by F.G. Michalec.
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Chapter 5

Methods

In the current Chapter, the set-up used to generate turbulence, the fiber hand-crafting
protocol and the methodologies for measuring the flow field and for tracking the
fiber position are described. Finally, the protocols to carry out two different type of
experiments are presented.

5.1 Experimental set-up

The experimental set-up is mounted on a table of almost 5 m2 (Figure 5.1). The set-
up consists in an aquarium with a turbulence generator, held up by a structure of
metal beams. The aquarium is illuminated with a laser beam from below and then
reflected down again by a mirror placed on the aquarium ceiling. The laser light is
squared shaped by means of two optical lenses: the first one is a convex lens that
reduces the laser beam to a small point; the second expands it again in a squared
shape.

(a) top view

(b) front view

FIGURE 5.1: Sketch of the table of the experimental set-up.
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As shown in Figure 5.1(a), the aquarium is placed at such a distance that the size
of the beam illuminates precisely the observation volume. Since the table is not large
enough, a mirror is placed with a 45o inclination on the table corner to extend the
light path. The camera system consists in four cameras focused stereoscopically on
the observation volume: the cameras are connected to two fast writeable hard disks
that are connected to a laptop.

The aquarium is equipped with a turbulence generator (Figure 5.1(b)): the forced
flow domain is a rectangular box of 120 · 120 · 140 mm3. The flow is forced mechan-
ically from two sides by two sets of four counter-rotating disks (Figure 5.2). The
disks have artificial roughness elements and are driven by a closed loop controlled
servo motor. The motor is installed on top of the forcing unit and drives the counter-
rotating disks through a fixed gear chain, where all disks rotate at the same rate
according to the scheme shown in Figure 5.2. The actual observation volume of ap-
proximately 80 · 80 · 80 mm3 was centred with respect to the forced flow domain,
mid-way between the disks. The presented data were recorded with a disk rota-
tional speed of 400 rpm.

The four high speed cameras are used at 400 f ps, that is enough to look at veloc-
ity differences inside the whole inertial range. The cameras are shielded or not with
optical filters depending whether the fibers or the particles, respectively, have to be
observed. The data are stored in real time on the two fast-writeable hard disks and
then transferred on traditional supports to be analysed.

The laser is used to illuminate the observation volume in full power at 34 A; it
is necessary to use laser light since the higher the frame rate is, the less light can
the cameras capture. Led lights in front of the aquarium are used to illuminate the
volume during the calibration procedure: indeed, a calibration target - an object with
known coordinates - is put inside the volume and than a snapshot for each camera
is captured. During the calibration procedure, the frontal illumination ameliorates
the cameras view of the calibration target.

With this set-up it is possible to generate a turbulent flow field that is neither
homogeneous nor isotropic in the whole volume. The generated turbulent flow field
is stationary in the whole volume, meaning that averaging over time on different
- long enough - time windows, the mean flow is always the same. Nevertheless,
the obtained flow field can be considered slightly variable under space translation,
meaning that the mean flow gradients acts on a scale much greater that the integral
scale.

FIGURE 5.2: setup
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5.2 Fibers hand-crafting

Fibers are hand-crafted with Polydimethylsiloxane (PDMS). The standard procedure
to make PDMS consists in mixing an elastomer with a curing agent (ratio 10/1)
by stirring the solution for at least 10 minutes; the prepared solution is therefore
desiccated in a vacuum chamber and placed in a Petri dish: if any bubbles form
while the solution is poured, a pipette can be used to burst them out. Eventually, the
mixture is baked in the oven at 80oC for at least 3 hours.

The idea is to produce fibers that have edges dyed with sulforhodamine b: in-
deed, by means of optical filters, only the dyed edges are visible under laser light.
For this purpose, the following routine is carried out:

1. two different beakers of PDMS are prepared at the liquid state: one of pure
PDMS and the other mixed with sulforhodamine b;

2. a first thin layer of rhodamine-dyed PDMS is poured in a Petri dish and baked
in the oven for only 15 minutes, to obtain a not completely cured solution;

3. a second thicker layer of pure PDMS is added and cooked for 2 hours: at this
point of the procedure, the first layer is completely cured, whereas the second
is not;

4. the third rhodmine-dyed layer is added and the whole sample is cooked for at
least 1 hour, to ensure its complete polymerization;

5. the sample is pierced with a special cylindrical puncher orthogonally to the
layers to pull out the fibres.

In this procedure, the baking time are shortened so that the PDMS solution does
not cure completely when the following layer is added. This allows the above layer
to stick to the lower one without letting the sulforhodamine to diffuse in the pure
PDMS layer. The reported time has been optimized in order to lower the sulforho-
damine diffusion, still maintaining the stickiness of the layers.

FIGURE 5.3: Punching scheme.
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Three layered fibers are obtained. The diameter can be controlled changing the
puncher size, and three commercial punchers are available with the following di-
ameters: 0.50− 0.75− 1.00 mm. The fiber length can be controlled by changing the
thickness of the second layer. With a single sample of about ∼ 10 · 10 mm2, it is pos-
sible to punch more than 200 fibers. In Figure 5.10 three fibers are shown as they are
captured in a single snapshot: the optical filters make only the rhodhamine dyed
edges visible, hiding the reflections of the laser light on the clean PDMS core and on
the particles.

5.3 3-D Particle Tracking Velocimetry (PTV)

The methodology followed to track the particles in the flow field and to measure
their Lagrangian velocity is explained. Firstly, the system has to be calibrate; after-
wards, a series of images (one for each camera and for each time-step) has to be
recorded; after applying a pre-processing routine useful to have clearer pictures, the
images are analysed and the particles are tracked in space and linked between two
subsequent time-step. Finally, a post processing routine on the rough particles coor-
dinates is applied to calculate Lagrangian derivatives.

calibration Plainly, the calibration procedure consists in make the system under-
standing in which position are the cameras and how they are oriented. It consists
mainly in taking four pictures of the calibration target that is a shaped object on
which points of known coordinates are drown (Figure 5.4). Therefore, the four im-
ages are manually filtered in order to delete reflections and other impurities that can
affect the points detection. A comparison between a cleaned calibration target pic-
ture and the original is shown in Figure 5.4: while on the 5.4(a) mismatch between
the white dots and the other white stains that are present on the left side of the image
are possible, on the 5.4(b) only the white dots are visible.

(a) first camera (b) second camera

FIGURE 5.4: The calibration images: they represent the calibration
block seen from the four different cameras.
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The white dots of the calibration block are detected in the 2-D image coordinates
space. Therefore, the white dots coordinates are known in the image coordinate
space of the four camera for a large number of points (the number of white dots).
The collinearity equation (4.8) states that an under-determined relationship exist,
relating the image coordinates of a point and the calibration parameters; the calibra-
tion parameters are the camera position and orientation as well as the other distor-
tion factors discussed in Chapter 4. This functional relation can be written for all the
white dots coordinates of the images in order to have an over-determined system
of equations where the unknowns are the calibration parameters. The system being
over-determined, a regression routine is used to fix the calibration parameters.

image pre-processing In Figure 5.5 it is shown the flow field seeded with white
reflective non-fluorescent particles; an image pre processing routine is carried out in
order to optimize the number of tracked particles.

1. the images are formatted as 8 bit grey-scale;

2. in order to subtract the background from the images, the time-mode of grey
value of each pixel is evaluated and then subtracted from each picture; this
procedure allows to remove fixed in time reflections or glass dirtying;

3. since the rough wheels that are used to generate the turbulence are still visible
in the frames, the edges or the images are setted to black; moreover, also the
low and the top of each picture is cut slightly, to avoid some edge effects.

The post processing routine is carried out for all the time-steps and for each camera.

(a) original (b) after image pre-processing

FIGURE 5.5: View of the first camera without optical filter.

sequencing and tracking The sequence and tacking procedure consists in three
main steps: firstly the particles position is detected by means of the images and
the calibration parameters; then, the positions of each particle is linked between
different time steps when it is possible. The result is a series of text files called
ptv_is.timestep, one for each time-step. Further post processing on ptv_is files is
necessary to evaluate Lagrangian velocities and the spatial derivatives associated to
each trajectory.

The post processing routine is applied on the ptvis.timestep files that are char-
acterized by a high noise on the particles position: this is done in order to have
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a reliable evaluation of the time derivatives that otherwise would leap: indeed, to
take a derivative of a noised function leads easily to unstable results.

Three different kind of files are generated by this procedure:

xuap.timestep: contain both the information about the particle position as the
ptvis.timestep files, but also the filtered position and the Lagrangian deriva-
tives along the particle trajectories, i.e. the Lagrangian velocity and accelera-
tion;

traj.timestep: contain the same informations of the xuap.timestep files, but in a
different format: for each time-step, i.e. for each file, the complete trajectory of
the particles firstly seen in that time-step are reported.

When producing xuap.timestep files along trajectories, moving cubic polynomi-
als of 3rd order are fitted to the raw particle positions. From this filtered positions,
velocities, and accelerations are produced and written into xuap.timestep files [32].
The traj.timestep files contains the same information of the xuap.timestep, however
in a different format; therefore, they are created subsequently to the xuap.timestep
files.

FIGURE 5.6: Representative scheme of the differences between
xuap.timestep and traj.timestep file format.
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flow field visualisation The 3-D flow field can be visualized with different tech-
niques. One possibility is to show iso-surfaces of a significant scalar quantities, e.g.
the enstrophy or the velocity magnitude. Otherwise, the Lapunov exponent can be
used to detect barries to transport, that are surfaces through which mass can not flow
[33]. Otherwise, Lagrangian Coherent Structures (LCS) or Eulerian Coherent Struc-
tures (ECS) of different nature can be detected and displayed: an example of easy to
detect ECSs are the structures defined by means of the so called Q− criterion, that
define a vortex as a region in which the Q > 0, where Q is the second invariant of
the velocity gradient tensor [34]; LCS can be detected also from a Lagrangian point
of view, for instance using the Direct Lyapunov Exponent method (DLE) [35]. While
displaying coherent structures or iso-surfaces, the wall of the volume can be painted
with a significant scalar field.

Another simple but effective method to visualize a 3-D flow field consists in re-
leasing a series of neutral particles and to compute numerically their trajectories
integrating the following system of equations:

dx
dt

= u (x, t) (5.1)

where x is the particles position and u is the Eulerian velocity field evaluated at
the particles position. Thereafter, it is possible to display the computed trajectories
color-coded with a significant scalar field, for instance the velocity magnitude.

In Figure 5.8, the trajectories of some neutral particles released on the Eulerian
flow field coloured the the absolute value of the velocity are shown. In Figure 5.9 the
trajectories are coloured by their mean curvature radius: this figure gives a qualita-
tive representation of the characteristic size of the turbulence eddies.

In Figure 5.7 ECSs obtained by means of the Q-criterion are shown, while on the
wall of the volume the enstropy field is drown.
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FIGURE 5.7: Visualisation of the flow field by means of ECS detected
by the Q-criterion; the enstrophy field is painted on the walls.

FIGURE 5.8: Particles trajectories colour coded with uabs.
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FIGURE 5.9: Particles trajectories colour coded with their ray of cur-
vature.

5.4 3-D Fiber Tracking Velocimetry (PTV)

Two different methodology have been developed to track the the fibers position in
time. The first routine consists in applying optical filters on the cameras, acting
directly on the record acquisition phase. This leads to a measure of the fibers edges
position without seeing the particles; the second method allows to track the fiber po-
sition and the particles simultaneously, carrying out an image pre-processing routine
on a series of non filtered images.

While the first method produce an accurate description of the fiber edges veloc-
ity, the second one provide a strongly noised signal; furthermore, the second method
needs a strong attention on image pre-processing parameters, so that only short time
series can be analysed in a row. Notwithstanding, to have a simultaneous tracking
on both the fibers and the flow can provide a qualitative representation of the fluid-
structure interaction mechanisms.

Method 1: fiber edges detection with optical filters To detect only fibers, optical
filters are used. As described in paragraph 5.2 the fibers are hand-crafted so that
their edges are dyed with sulforhodamine b: the laser emits a light beam at a certain
frequency; because the fact that sulforhodamine b is a fluorescent material, the fiber
edges release light at a frequency that is different from the laser one; therefore, if
the laser frequency is cut off by the optical filters, only fiber edges are visible. Nev-
ertheless, some impurities (dust or small particles) are still visible. Since the fiber
edges are particles clusters, a threshold on the pixel number is set to detect only the
(bigger) fiber edges. To consider only the fibers all the couple of detected points
are taken and then only the couple that are at a distance that is the fiber length are
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considered. Mismatch is still possible since the edges of two different fibers are sep-
arated exactly by the fiber length; nevertheless this is unlikely and it happens only
for short time windows without affecting the statistics.

The calibration procedure is the same as described in the particles analysis. After
the image acquisition, the tracking procedure is the same as described for particles.
To ensure to consider only the fibers, a further check is carried out: all the points that
are not at a distance that is the fiber length (within a tolerance) are discarded.

In order to estimate the error related to the tracking procedure, the fiber rigidity
constrain is used. Indeed, in principle, the fibers end to end distance should not
change. Notwithstanding, the tracking error is strong, since the size of the edges
particles cluster is big as the fiber diameter. This fact leads to a high tracking error
that can be estimate as the standard deviation of the fiber end to end distance.

(a) (b) (c)

FIGURE 5.10: Detail of the first camera view of three different fibers
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Another constrain is given by the fact that, since the fibers are rigid, the longitu-
dinal velocity differences should vanishes: an estimate of the error on the velocime-
try measures can be given by the standard deviation of the longitudinal velocity
differences. Moreover, this value can be compared with the standard deviation of
the transverse velocity differences.

Figure 5.11 shows three fibers trajectories obtained by means of optical filters.
No other filtering on the edges position has been used except that the standard post-
processing routine described in 5.3. It can be seen that, for some time-step, the fibers
seem to disappear: this is due to the strong constrains setted on the edges size: in-
deed, when the fibers rotate, the edges become lighter and can be cut easier by the
high pass filtering procedure. This leads to have post-processed images in which
the edges size is smaller that the original, and therefore the second threshold on the
edges size can delete them. In order to protect from a possible data lack due to these
issues, longer time series had been recorded.

FIGURE 5.11: Trajectory of the fibers detected by means of optical
filters.
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Method 2: simultaneous 3-D fiber and particle tracking An alternative method
to track both the fibers and the particles has been developed. Some fully dyed fibers
are spread in the turbulent flow, and a record without optical filters is taken. After
applying a mean filter to remove the background signal, a series of images as the
one shown in Figure 5.12(a) is obtained.

(a) original image (b) big cluster delated

(c) big cluster delated

FIGURE 5.12: Clustering procedure carried out to delete the fiber.
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The images are therefore binarized in order to have a matrix on which is pos-
sible to apply a clustering routine. The size and the position of each cluster in the
binary images is known and the clusters that are bigger than a threshold are dis-
carded. Setting a proper threshold value, it is possible to delete the fibers from the
image. Figure 5.12(b) is the same of 5.12(a), where the fiber has been deleted by this
procedure.

(a) clustered (b) dotted

(c) tracked

FIGURE 5.13: Automatic fiber edges detection from a non filtered im-
age with both the particles and the fibers.
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This procedure can not been carried out for long time series with the same pa-
rameters: indeed, when the fiber rotates since it is aligned with the camera main
direction, the cluster size decreases and the setted threshold is to high to delete the
fiber. Furthermore, if the threshold is too low, also the particles will be deleted.

Another issues of this procedure is that the algorithm incorporates in the fiber
pixel cluster also the nearest particles: this leads to a leak of particles in the nearest
area of the fiber surface, that is the most relevant from the point of view of the fluid
structure interaction.

By applying the same procedure but keeping only the clusters bigger than a
threshold, a time series of images as Figure 5.13(a) is obtained. By keeping only the
farthest pixels in the images, and substituting them with two fake pixel clusters, a
time series of images in which only the edges are evident is obtained (Figure 5.13(c)).
Therefore, by applying the tracking procedure, the fiber edges position are obtained.

The main issue of this procedure is related to the fact that the resulting edges
signal is strongly affected by noise; indeed, when the particles pass near the fiber
surface, the clustering procedure merges all the pixel together. This makes the fiber
cluster strongly jagged, as shown in Figure 5.13(a).

In Figure 5.14, the results of this tracking procedure is shown: it is possible to
display both the fiber position and the flow filed; the same routine described in sec-
tion 5.3 are carried out to visualize the flow field around the fiber. To obtain smooth
trajectories, the fiber edges position have been filtered with a Gaussian kernel.

FIGURE 5.14: A rigid fiber flapping in turbulence; on the wall the
enstrophy field is represented; ECS detected with the Q-criterion are
displayed; the fiber is the blue line and the white tails are its edges

trajectories.
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5.5 Experimental routine

The experimental routine consists in four main steps that involve the techniques
described before:

1. calibration procedure: the target block or calibration block, that is an object
of known coordinates, is placed inside the aquarium (where the actual obser-
vation volume will be) and lighted with led light. The cameras are focused
on the block and four pictures (one for each camera) are taken. Therefore the
calibration parameters are estimated;

2. if the calibration error is small enough, the calibration block is removed and
the turbulence generator is placed in the aquarium. The volume is illuminated
with laser light and the servo motor is turned on;

3. particles are added to water with a syringe: to check if the particle density is
reasonable, small recordings are taken: since it is possible to "follow" a single
particle between two different time steps, the particle density can be increased;

4. a 1 min recording of the particles motion is taken;

5. without recalibrating the system (e.g. without removing the turbulence gener-
ator and the particles), the fibers are added to the water and the cameras are
shielded with optical filters;

6. from 3 to 5 min recording of the fibers motion is taken;

7. all the data are processed and analysed as described in the previous sections.

An alternative routine is carried out since three different fiber length have to be
investigated:

1. calibration procedure: as described before;

2. if the calibration error is small enough, the calibration block is removed and
the turbulence generator is placed in the aquarium. The volume is illuminated
with laser light and the servo motor is turned on; the cameras are shielded
with optical filters;

3. the fibers characterized by the first length are spread in the flow filed and than
a 3 min recording is taken;

4. the fibers are removed and the second length ones are added; the same proce-
dure is iterate for each fiber length;

5. finally, the particles are added and the optical filters removed; a 2 min record-
ing of the moving particles is taken;

6. all the data are processed and analysed as described before.

This routines are based essential on two different assumptions: firstly the turbu-
lence has to be statistically stationary, that is that neither the mean flow nor the root
mean square velocity change in time; secondly, the conditions between two different
phase of the experiment do not change: this means that, for instance, by applying
the optical filters, the cameras do not lose their focus; moreover, that between two
different fiber lengths the calibration is still good, e.g. that the aquarium does not
move.



46 Chapter 5. Methods

The advantage related to the first routine is essentially that no external distur-
bance is done on the set-up between two different experiments. Indeed, the turbu-
lence generator has not to be removed between two experiments. Notwithstanding,
by applying this procedure, only a single fiber length can be achieved, and there-
fore a comparison at a unique length scale is possible. On the contrary, by using the
second routine, different fiber lengths can be investigated; nevertheless, disturbance
due to the movement of the turbulent generator are possible. While the first rou-
tine had been used to a preliminary investigation of the phenomena, the second had
been used to investigate completely the scaling behaviour of turbulence.
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Chapter 6

Results

In this chapter the main results of this project are presented. After an initial char-
acterization of the turbulence statistical properties, a comparison between 3-D PTV
and 3-D FTV results on tumbling time and transverse velocity differences is illus-
trated.

6.1 Flow field characterization via 3D-PTV

The statistical properties of the turbulent flow field are evaluated through 3-D par-
ticle tracking velocimetry. This flow measurement technique allows the detection of
fluid particle trajectories and thus the fluid particle velocity. Furthermore, a post-
processing routine discussed in [32] permits the access to the full gradient tensor
along trajectories. In the following, the definition of several turbulence character-
istics are presented. It has to be noticed that in order to evaluate some turbulence
characteristics such as the root mean square velocity fluctuations, the integral length
scale and the turbulent average dissipation rate, the particles velocities have been
interpolated on an Eulerian grid.

root mean square velocity The root mean square velocity is computed through
the definition in equation (2.27) where the average operator is taken over both space
and time. The statistical convergence of the root mean square velocity is investigated
computing this observable as a function of the sample size. Figure 6.1 shows that the
urms convergence profile exhibits a rather high initial fluctuation which is probably
due to data lack. After a transitional phase in which the profile increases steadily
(∼ 2 · 105 data-points), the bumps are reabsorbed and the statistics converges.
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FIGURE 6.1: Root mean square velocity as a function of the sample
size.



48 Chapter 6. Results

average turbulent dissipation rate In this work, the turbulent average dissipation
rate is estimated through the approximation shown in equation (2.33). Indeed, the
estimation of the average turbulent dissipation rate by its definition (2.25), requires a
high resolution of the flow field that can capture the lower scales of the energy spec-
trum. On the contrary, if the resolution of the measurements is not high enough, the
higher spatial gradients connected to the smaller scales are smoothed, therefore it is
not possible to observe local changes related to the smaller scales. Since the aver-
age turbulent dissipation rate term acts at the smallest scales of the energy spectrum
(high wave numbers), a low resolution of flow field strongly affects its evaluation by
means of its definition, resulting in an under-estimation of ε.

The flow field resolution is formally time and space dependent, since particles
move and cluster. Notwithstanding, to have an impression of the resolution, a proxy
can be obtained by the following equation:

d =

(
Vobservation volume

〈nparticles〉

)1/3

∼
(

70 · 80 · 30 mm3

3000

)1/3

= 4.21 mm (6.1)

Comparing this value with the probability density function of the separation dis-
tance between all the couples of tracked particles (Figure 6.2) it can be seen that the
probability to observe couples at a distance lower than 4.21 mm is significantly low. It
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FIGURE 6.2: Probability density function of the separation between
the tracked particles.

is clear thus that the resolution of the flow field is not high enough to allow a proper
estimation of the turbulent dissipation rate. Nevertheless, since the production bal-
ances the dissipations, the average turbulent dissipation rate can be also estimated
from the root mean square velocities and the integral length scale (2.33). This expres-
sion is useful when the flow field resolution is not sufficiently accurate. In our case,
since a large volume has to be investigated, the particle density is not high enough to
measure properly space gradients; thereafter, 2.33 is used to evaluate the dissipation
rate.

Another possible technique to evaluate the turbulent dissipation rate is to inter-
polate the 4/5 law (2.30). In Figure 6.6(a), the longitudinal third order moment is
compared with the 4/5 law where ε has been evaluated independently balancing
production and dissipation. As can be seen, a good accordance between the two
evaluation methods can be observed.
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integral length scale The integral length scale can be evaluated as the integral of
the averaged space autocorrelation function, defined as:

L =
∫ ∞

0
C (r) dr, C (r) =

〈
E

[
u′(x) · u′(x + r)

u′(x)2

]〉
(6.2)

where r is a space increment. To determine C (r), for each time-step an ensemble
of random segment of fixed length is extracted from the volume; then, the signal of
one of the velocity components is evaluated along this segment. The auto-correlation
of this signal is taken and then the average both over space and time is computed
(Figure 6.3). Since L depends slightly on which segments are taken (that is a random
choice), only the order of magnitude is considered. Moreover, a good check for L
can be done observing Figure 6.6(b) and 6.6(a): here, the size of the separation r that
does not follow any more the scale 4/5 scale low is expected to be of the same order
of the integral length scale evaluated with (6.2).
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FIGURE 6.3: Space autocorrelation function averaged over space and
time.

micro-scales From the turbulence average dissipation rate, the Kolmogorov and
the Taylor microscales as well as the Reynolds number of the Taylor micro-scale are
evaluated as in (2.37), (2.38), (2.39) and (2.41), (2.40).

The main turbulence statistical properties are listed in Table 6.1 and 6.2: the tur-
bulent dissipation rate is evaluated balancing the production and the dissipation,
whereas the integral length scale is evaluated as shown in Figure 6.3.

urms [mm s−1] L[mm] T [s] ReL [−]
94.65 15.00 0.1585 1420

TABLE 6.1: Flow integral properties.

ε [m2 s−3] η [mm] τη [s] uη [mm s−1] λ [mm] Reλ [−]
0.0565 0.065 15.47 0.0042 1.54 145.93

TABLE 6.2: Flow micro scales.
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6.2 Velocity differences

The velocity differences are evaluated directly from the Lagrangian trajectories: for
each time-step, all the possible particles couples are considered and the separation
vector r as well as the velocity difference vector δu are calculated. Thereafter, the
longitudinal (δu‖) and transverse (δu⊥) projection of δu on r are evaluated for each
couple of fluid particles as described in Section 2.4.

(a) longitudinal direction (b) transverse direction

FIGURE 6.4: Joint pdf of the velocity differences evaluated from the
particle trajectories.

probability density functions In Figure 6.4, the joint probability density functions
of δu‖ (Figure 6.4(a)), δu⊥ (Figure 6.4(b)) and r are presented.

Here, as well as in the other jpdfs in the thesis, the bin size was obtained auto-
matically by means of the function hist2 (MATLAB R©), which provides an optimal
trade-off between the bin size and the amount of available data by means of a V-fold
cross validation procedure (see [36]).

AS can be seen from Figure 6.4, there is a rather high probability to observe par-
ticles couples separated by a distance r ∼ 60 mm. This means that, convergence
problems at the smaller scales can be encountered. As it will be shown below, al-
though the integral scale is significantly smaller (about 15 mm), it is still possible to
have converged statistics inside the inertial range.

To obtain the mono-variate empirical probability density functions as the ones
shown in Figure 6.5, the optimal trade-off between the bin size and the amount of
data is obtained automatically by means of the function ksdensity (MATLAB R©) that
implement a k-density algorithm.

In Figure 6.5, the normalized probability density functions of the particles at the
length-scale of the fibers are shown; by normalizing the velocity differences with the
square root of their second order moment, a perfect accordance between the three
pdfs should be observed, except for extreme events that are the tails of the distribu-
tion. This discrepancy between the PDFs of the velocity differences is usually called
intermittency and it is commonly observed in 3-D turbulence. More in details, the
intermittency consists of infrequent strong bumps in the time velocity signal mea-
sured in a fixed point of a turbulent field when a high-pass filter is applied; the
higher the pass frequency, the more frequent the bumps appear. An efficient way to
appreciate this phenomenon is to focus on the tails of the pdfs: if the pdfs built for
different values of the separations are scaled with their standard deviation, a strong
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difference in the tail behaviour has to be observed while r is decreased. Another
valuable method that can be used to observe the intermittency is to evaluate the
higher order even moments of these pdf: accordingly to K41 theory, these moments
should follow a power law of rp/3, where p is the moment order. However, it is
well-known in the turbulence literature the existence of a deviation of the data form
these moments, because of the intermittency effect [18, Ch. 8]. Notwithstanding,
intermittency seems not to be present by looking at Figure 6.5. We can not observe
an intermittent behaviour as the separation reduces because the collected data does
not provide enough resolution at the smallest scales to have converged statistics.
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FIGURE 6.5: pdf of the transverse velocity differences evaluated with
particles at the length scales of the fibers.

structure functions The observables related to a fixed value of the separation |r|
are evaluated averaging the value within the interval [|r| − dr, |r| − dr], where dr
can be chosen as small as possible, in order to have a good trade off between the
structure functions smoothness and the random sampling. To make this concept
more clear, the schematic procedure is described in the following:

1. the dataset is shuffled randomly;

2. a small certain bin width (dr) is chosen;

3. two structure functions are built: one with the first half of the dataset and the
second with the other part;

4. if dr is too small the two structure functions will be completely different and
really unstable, e.g. very scattered;

5. the bin width is increased;

6. the procedure starts again from point 1 and repeated until the two structure
functions are equal within an error.

This algorithm provides a good criterion to find an optimal trade-off of the kind
of the well known bias variance decomposition ([37]). This approach is used in the
field of density estimation, which is a common problem in the Machine learning
which consists in building empirical probability density function from data without
supervision and without preliminary assumption about the statistical model.

In Figure 6.6(a) the scale laws for the second and the third order moments of the
longitudinal velocity differences are shown; in both cases, the data follows rather
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well the curves of the power law rp/3 within the limit of the inertial range (r < L ∼
15 mm). In particular, the longitudinal third order structure function represents the
skewness of the probability density function of the longitudinal velocity differences.
As can be seen from Figure 6.6(a), this function exhibits more relevant convergence
problems. Indeed, this function converges by data deleting, and a higher amount
of data is needed for its convergence. In any case, the classical negative values pre-
dicted by the K41 theory are captured. Furthermore, for the third order longitudinal
structure function, the dissipation are calculated independently and no curve fitting
procedure has been carried out. The 4

5 ε coefficient fits very well the power law.
In Figure 6.6(b), the transverse second order structure function is presented. As

can be seen, for a large range of the separation distance, our data collapse very well
on the the well known r2/3 law within the inertial range for values of r/L smaller
than the unity.

As expected, for the scale equal or bigger than L in all the showed structure
functions, the well known Kolmogorov power laws are not respected any more, that
means that the turbulence at this scales is not freely decaying.

Since the Kolmogorov 4/5 law has been derived for an ideal turbulence scenario,
the accordance between the scale laws and the experimental data (that are not nether
isotropic or homogeneous but only stationary) is due to fact that the turbulence field
recreated is locally ideal; in fact this means that the mean flow gradients are slowly
variant, e.g. the gradient related to the mean flow are far weaker than the local and
instantaneous gradient related to the turbulent fluctuations: the variations of the
mean flow acts on a scale that is greater than the integral length scale.
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FIGURE 6.6: Structure functions; length and velocities are adimen-
sionalized with the integral scale and the root mean square velocities.

6.3 Comparison between fibers and particles

In the following a comparison between the transverse velocity increments computed
by means of tracer particles and rigid fibers is presented. Here the transverse veloc-
ities are evaluated as discussed in the section 2.

More in detail, for each time step of the PTV output, all the possible particle cou-
ples are evaluated. Among these particle couples only for those at a fixed distance
(within a tolerance), the velocity increments δu are computed. In FTV the only sep-
aration distance available is the fiber length. Given their rigidity, the longitudinal
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velocity differences of their edges is almost zero. It is also worth to note that for
a single fiber length it is possible to evaluate only single point on the S⊥2 , which is
S⊥2 (r = c) where c is the fiber length.

probability density functions In Figure 6.7, the probability density functions of
the transverse velocity differences evaluated both with particles and fibers at three
different separation distances is presented. Here, in order to avoid non-convergence
problem in the density estimation, some extreme events were discarded removing
data characterized by too low probability in a first rough estimation. As can be
seen from these three pdfs, the FTV and the PTV data provide very similar results.
A minor difference between the two methods in the negative tail of the pdf of the
intermediate fiber length can be noted.
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(b) 6.31 mm

-4 -2 0 2 4
10

-3

10
-2

10
-1

10
0

(c) 7.84 mm

FIGURE 6.7: pdf of the transverse velocity differences evaluated both
PTV and FTV; the distributions are normalized with the variance of

the particles velocity differences.
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second order structure function In Figure 6.8, the second order structure function
of the transverse velocity differences, evaluated both with particles and fibers, is
shown. Here,the fibers, are represented by the three red points. Again the results
from the FTV show a very good accordance with the PTV data. The results from the
both techniques scale with the 2/3 power of the separation distance, as predicted by
the Kolmogorov theory. Nevertheless, the longest fiber shows a better accordance
with the particles at its length scale. On the plot, there are shown also the errorbars
of points evaluated with the fibers. Not surprisingly, the errorbars are too small to
be visualized. This means that there are no appreciable errors related to convergence
problems: indeed, a large amount of data is available.
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FIGURE 6.8: Second order transverse structure function evaluated
both with fibers and particles; length and velocities are made dimen-
sionless with the integral scale and the root mean square velocities.

Kolmogorov constant The Kolmogorov constant is evaluated as shown in (2.53).
This constant represents the best fitting of the scale power law of the scale of the
power law with exponent 2/3. Ideally, both the black circles and the red bullets
should be constant at different r/L, with r/L < 1. Figure 6.9 shows more clearly
that the best description of the second order scale law is given by the longer fiber
that is characterized by a smaller value of the aspect ratio.
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FIGURE 6.9: Kolmogorov constant.
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convergence profiles of the second order moment In Figure 6.10 the convergence
profiles of the second order moment of the transverse velocity differences evaluated
with the fibers are shown. No substantial differences can be appreciated in all the
cases. No convergence problem are present. To have a good convergence of the
second order moment, it is necessary to use ∼ 2 · 104 data points, that means, con-
sidering our frame-rate (400 f ps),∼ 50 s. The width between the errorbars (red solid
lines), are evaluated as:

error = max
(

S⊥2 (#)
)
−min

(
S⊥2 (#)

)
(6.3)

considering # to be within the last 1/5 of the data sample. From these results it is
clear that no convergence issues are present. Therefore, the small discrepancies be-
tween the second order moments evaluated with fibers and particles are due purely
to physical reason that are discussed later.
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FIGURE 6.10: Convergence profile of the second order moment for
the three different fibers.
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tumbling time In Figure 6.11, the so called tumbling time evaluated through the
FTV is presented. Here the tumbling time is evaluated as described in section 3.3
and compared with the Kolmogorov scale law (equation (2.35)). Again, surprisingly
an almost perfect accordance between the results from the FTV and the Kolmogorov
theory can be noticed. Such results constitute an extremely encouraging proof of the
possibility of using FTV techniques for the turbulent flows description and charac-
terization.
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FIGURE 6.11: Tumbling time measured with the three fibers.
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Chapter 7

Discussion and further steps

In this thesis, a new optical technique, the so-called Fibers Tracking Velocimetry
(FTV), for flow measurements was introduced and tested. This technique has some
similarity with the well-known Particle Tracking Velocimetry (PTV) in that both
techniques reconstruct particle trajectories. However, if the PTV technique aims to
reconstruct the fluid particle trajectories of neutrally buoyant flow tracers, the FTV
consists in tracking the two edges of a 1-D rigid element (fiber), that can, and usually
does, not follow the local fluid flow. More interestingly, it was shown that by mea-
suring the velocity at the edges of the fibers, it is possible to reconstruct the second
order moment scale law of the transverse velocity differences that is in very good
accordance with PTV data. Furthermore an estimation of the fiber tumbling time
matches the eddies turn-over time at the scale of the fiber length.

7.1 Fibers measure the transverse velocity increments and the
eddies turn-over time

Figure 6.7, 6.8 and 6.9 show clearly that is possible to obtain an estimation of the
transverse velocity difference by means of rigid fibers instead of particles. The sec-
ond order structure function constant C2 is slightly underestimated using the fibers
(∼ 10%). Figure 6.11 shows a perfect accordance between the tumbling time of the
fibers and the Kolmogorov 2/3 law up to a constant factor: this fact can be tricky;
indeed, since the turbulence scenario is not ideal, it is possible that the 2/3 scale law
can be not followed by the turbulent flow.

Nevertheless, given that the scaling constants for different turbulent flow scenar-
ios are well-known, it is possible to have an indirect estimation of the other scaling
constants, such as the Kolmogorov C2 constant for the second order longitudinal
structure function (indeed it can be obtained by equation (2.52)) or the turbulent
diffusivity of a passive scalar field.

7.2 The rotational Stokes number affects the fiber dynamic

A rather significant adversity of using the FTV is related to the difficulty of obtain-
ing rigid fibers characterized by low Stokes numbers. In fact, as shown in figure Fig-
ure 6.9 the aspect ratio of the fibers plays a crucial role on the characteristic Stokes
number of the fiber. In particular St increases with the aspect ratio of the fiber (3.1).
Since, in our study, the diameter of the fibers cross-section is somehow limited by
their hand-crafting technique, the only free parameter is their length. Therefore, the
lower the fiber length is, the less the fiber follows the flow. Moreover, comparing Fig-
ure 6.7(a) with the Figures 6.7(b) and 6.7(c), it can be seen that the main differences
between the pdfs of the transverse velocity difference between fibers and particles
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are related to the stronger positive or negative velocity differences. This observa-
tion is probably due to the fact that the faster the flow field around an object (i.e.
the fiber), the higher is the instantaneous Stokes number related to that forcing. At
the state of the art it is not possible to have a direct experimental measure of the
rotational or translational Stokes number of a rigid fiber, but the observation above
discussed about the fibers behaviour can be seen as a proxy of the fact that the Stokes
number is increasing with the aspect ratio with the same trend as expected by the
slender body theory.

Notwithstanding, even if the differences between the shorter fibers and the flow
behaviour are probably due to the different fiber length (bigger Stokes number), the
possibility to observe discrepancy because of the non stationary of the phenomena
is still present. This problem can be fixed in future experiments using three of the
four cameras to look at the fiber motion, and a fourth camera with an image splitter
(that is a system of mirrors that makes four points of view out of a single camera)
to look at the flow field in the same experiment: this is one of the step forward that
I would like to achieve in the next months; it is also useful to understand how the
fiber motion influence the instantaneous flow field.

7.3 Further questions and possible experiments

A list of other questions and possible new experiments that that can further improve
the work presented in this thesis is provided in the following:

floating fibers can measure free surface turbulence? A range of floating fibers
characterized by different lengths can be spread on the free surface of a tur-
bulent flow, such as an open channel flow or a tidal pool. Then the surface
turbulence can be estimated by means of PIV technique to have a reliable char-
acterization of the surface flow field; therefore it is possible to make a 2-D track
of the fiber position and measure, for instance the tumbling time or the trans-
verse velocity increments with both the methods. The fibers are expected to
tumble at the same frequency of the eddies of their length scale;

how does the Stokes number affect the fiber flapping behaviour? With the same
set-up and fiber casting methods of our work, it is possible to increase the
Stokes number, changing the fluid properties (adding ethanol to increase the
viscosity), changing the fiber properties (changing the inertia of the fibers chang-
ing the material properties), and increasing as much as possible the turbulent
intensity, and thus the root mean square velocity; doing so, it should be possi-
ble to observe that the pdf of the velocity differences evaluated with the parti-
cles and the fibers is different; also, analysing a wide range of cases, it should
be possible to see in which limits of the Stokes number it is possible to measure
the transverse velocity differences;

real life frexible fibers Both with human hairs or nylon sting it should be possible
to investigate the flexible case that has been already investigated by direct nu-
merical simulations; such an experiment could be feasible within the Holzner
lab at ETHZ.

meso-scale experiments A rather interesting and useful experiment at meso-scale
could be thought within the oceanographic environment: a system composed
by two surface floats connected with a rope that can be laid down on the ocean
surface. The system can be designed such that the rope is rolled up on one
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of the floats and can be released in a controlled manner. In this way, several
separation distances can be achieved with a single system. For instance, by
means of a remote control, or with a timed system, the rope is released after
some large eddy turnover time, i.e. an amount of time sufficiently large for the
statistics to converge. With such a procedure one can build an estimation of
the scale laws of interest within the inertial range.

FIGURE 7.1: Scheme of two oceanographic drifters connected with a
rope.

an assembly of freely moving rigid fibers measures the flow velocity gradient
tensor? As shown in [38],for sufficiently small Stokes times of the assembly,
the flow velocity gradient tensor can be reconstructed by tracking the fiber as-
sembly and measuring suitable fiber velocity differences evaluated at the fibers
edges; a feasible experiments can be designed by means of small closed loop
pumps (flow rate ∼ 10 − 200 ml/s) and PDMS made channels; keeping the
channel and the flow rate size small enough, it is possible to create a quasi 2-D
sheared laminar flow and to measure the the position of the edges of the fibers
by means of a single camera recording and a 2-D particle tracking algorithms.
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