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Abstract

Over the past decades, wind energy has become an important power source.
In 2018, wind energy accounted for 14% of the installed capacity in Europe.
However, the volatility of wind and therefore the fluctuating energy supply
complicates an integration of wind power into the power grid. To keep the
energy demand and supply balanced, accurate wind power forecasts are im-
portant for energy traders, producers, and distributors.
Usually, wind power forecasts for lead times longer than 6 h are based on
numerical weather prediction (NWP) models. NWP models di↵er widely
in their model formulations, space and time resolutions, and parameteriza-
tions. Global models provide global forecasts with a limited spatial reso-
lution. Limited-area models use the output of global models as boundary
conditions and usually have higher resolutions. Furthermore, to estimate
forecast errors arising from errors in the initial state or parametrization,
many weather services also provide an ensemble of forecasts, with perturbed
initial conditions and/or di↵erent model formulations.
During the past decade, the use of forecast ensembles for assessing the un-
certainty of numerical weather predictions has become routine. Three op-
erational methods for the generation of synoptic-scale ensembles have been
developed: the breeding growing modes method used by the National Cen-
ters for Environmental Prediction (NCEP), the singular vector method used
by the European Centre for Medium-Range Weather Forecasts (ECMWF),
and the perturbed observations method used by the Canadian Meteorologi-
cal Centre (CMC). In this thesis the forecasts of the European center will be
used in particular.
Ensemble prediction systems usually has positive spread-error correlation,
but are also subject to forecast bias and dispersion errors, and are therefore
uncalibrated. With this study it will be shown the use of ensemble model
output statistics (EMOS), an easy-to-implement postprocessing technique
that addresses both forecast bias and underdispersion and takes into account
the spread-skill relationship. The technique is based on multiple linear re-
gression and is akin to the superensemble approach that has traditionally
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been used for deterministic-style forecasts. The EMOS predictive mean is
a bias-corrected weighted average of the ensemble member forecasts, with
coe�cients that can be interpreted in terms of the relative contributions
of the member models to the ensemble, and provides a highly competitive
deterministic-style forecast. The EMOS predictive variance is a linear func-
tion of the ensemble variance. For fitting the EMOS coe�cients two di↵er-
ent methods will be used. One is the method of minimum continuous ranked
probability score (CRPS) estimation. This technique finds the coe�cient val-
ues that optimize the CRPS for the training data thus providing an output
as well as a forecast of the wind speed also its variance. The other method is
to apply quantile regression. This regression consists in identifying the values
of the coe�cients that identify the median of the probability distribution of
the training data. In this way, by definition, the absolute average value of
the forecast error is minimized, which is also the most used index to be able
to make an economic estimate of the damage of the forecast error. With
this method, however, it is not possible to exploit the variance of the en-
sembles. Statistical relationships between NWP forecasts and corresponding
observations are formulated from past data and then used to correct future
forecasts. To get stable estimates of these relationships, the dataset of past
forecasts and observations should be as long as possible. However, frequent
model enhancements like increased resolution or improved parameterizations
usually change the statistical properties of NWP model output. This limits
the usable length of the dataset of past forecasts for commonly used statis-
tical models. Reforecasts (or hindcasts) overcome this problem.

This work presents an application of the European Centre for Medium-
Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) to
produce short-term probabilistic wind power forecasts. The ECMWF’s EPS
is based on running a meteorological model multiple times, starting from
slightly perturbed initial conditions. The distribution of these di↵erent runs
allows estimating the prediction uncertainty.
The study carried out derives from the collaboration between the University
of Genoa and the company Ego S.r.l.. The analyzed case is a wind farm
managed by the company located in Marsica, in Abruzzo, in an area where
due to the complex orography it is particularly di�cult to make wind fore-
casts. It were used about two years of data. Forecasts will be made with a
maximum forecast horizon of 48 hours.
The thesis is structured as follows. In the first chapter there is a description
of how the Italian electricity market works, to further understand the impor-
tance of having a good forecast of wind speed and to also be able to justify
certain choices that will be made in the course of the treaty. Mainly the
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need to have good forecasts for the company derives from the fact that the
electricity market system is based on an o↵er made the day before for which
it is necessary to have the best possible forecast. In the second chapter it
will be describe the European Center for Medium-Range Weather Forecasts
(ECMWF). It will therefore be described on which equations their models
are based, on the resolution they have and on how they take into account the
physical parameters involved. In the third chapter it will be explained how
the ECMWF generates the Ensemble Prediction System (EPS) and also the
forecast called HRES which is a unique forecast created at a higher definition.
Will be described specifically the EPS forecast by showing how the perturba-
tions of the initial condition and the clustering operations occur. The fourth
chapter will show the error indices that will be used to check the quality of
the results and of the raw data. The physical meanings of each of them will
therefore be shown to better understand in the following chapters how pre-
dictions change. With the fifth chapter will be made an accurate description
of the available wind observations taken from the anemometer of a turbine
of the Marsica wind farm and of the wind forecasts of that site. The process
that led to the cleaning of the input data from incorrect measurements will
be analyzed, the main parameters will be seen that will then be used for the
calibration of the forecasts and finally the quality of the input data will be
shown as a function of the error indices defined in the previous chapter.

Finally in the sixth and last chapter the techniques used to calibrate the
forecasts and the results deriving from them will be shown. A comparison
and evaluation of the various techniques implemented (quantile regression
and CRPS) will be made to identify the one deemed to be the best. All the
available parameters introduced in the previous chapter will be exploited.
In particular, it will use the wind direction, the hours of the day, the wind
speed, the forecast error at a given time, the di↵erent EPS members and also
the moving average. The power forecast will then be shown after calibration
of the wind speed forecast. It will be discuss how much the number of data
available for training influences. A comparison will also be made with a
Machine Learning strategy and with a study regarding a site similar to that
of this thesis in order to further evaluate the goodness of the results.

xvii



Chapter 1

The Italian Electricity Market

The “power exchange” is an organized system of o↵ers, sales and purchases
of electricity. The power exchange, provided for by legislative decree no.
79/1999 for the liberalization of the electricity market, was established in
Italy starting from April 1, 2004 and is managed by the Electricity Market
Operator, which later became the Energy Market Operator in November
2009. The sale of electricity is carried out every day for the following day by
resorting to bargaining on an hourly basis where the meeting between supply
and demand is carried out through the marginal price system.[1]
This mechanism remunerates producers by paying everyone the equilibrium
price between supply and demand, which is equal to the price of the most
expensive o↵er among those accepted to satisfy demand.[2]

1.1 The institutional subjects of the Electric-
ity Market

In order to better understand the structure and nature of the Electricity
Market, it is essential to identify which are the main subjects that make up
this market:

Ministry of Economic Development (MSE): which defines the strategic
and operational guidelines to ensure the safety and economy of the
national electricity system.

Authority for Electricity, Gas and Water System (AEEGSI): this is
an independent public body. The main function is the control and
regulation of the national energy system. This takes place through the
determination of tari↵ prices and the general rules of the electricity
market, the quality control of the activities and services provided by
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the operators and, finally, the supervision of whether or not their own
rules are fulfilled.

Energy Services Manager (GSE): is the public holding that supports
the development of renewable sources by managing and providing the
related incentive mechanisms. The company operates following the
strategic lines defined by the MSE. GSE is the parent company of the
three subsidiaries AU, GME and RSE.

Electricity market operator (GME): which organizes and manages the
energy market, according to criteria of neutrality, transparency, objec-
tivity, as well as competition between producers. Furthermore, it must
maintain a certain degree of transparency in the operations and choices
made, as it has the duty not only to encourage competitiveness among
market operators, but also to guarantee a determined and constant
availability of power reserves.

1.2 The Electricity Market structure

The electricity market should be as crucial and instantaneous as possible.
In fact, the value of energy it varies from node to node due to congestion
and varies every moment. However, it is not possible to build a market that
describes reality perfectly. Therefore, it is necessary introduce standardiza-
tions, both from a temporal and a spatial point of view. From a time point
of view, one hour is generally assumed as the reference period.
Standardization of traded products brings benefits if liquidity increases mar-
kets and reduces transaction costs. However, it can generate new systemic
costs if too much broad because it would no longer be representative of real-
ity and would induce higher costs to guarantee the real-time balance between
supply and demand of electricity.
The Electricity Market organized and managed by GME, aimed at program-
ming the production and consumption units, is divided, figure 1.1, into the
Spot Electricity Market (MPE), into the Forward Electricity Market with
mandatory delivery and collection (MTE) and in the Platform for the phys-
ical delivery of financial contracts concluded on IDEX1.

1.3 The Electricity Market structure

The electricity market should be as crucial and instantaneous as possible.
In fact, the value of energy it varies from node to node due to congestion
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and varies every moment. However, it is not possible to build a market that
describes reality perfectly. Therefore, it is necessary introduce standardiza-
tions, both from a temporal and a spatial point of view. From a time point
of view, one hour is generally assumed as the reference period.
Standardization of traded products brings benefits if liquidity increases mar-
kets and reduces transaction costs. However, it can generate new systemic
costs if too much broad because it would no longer be representative of real-
ity and would induce higher costs to guarantee the real-time balance between
supply and demand of electricity.
The Electricity Market organized and managed by GME, aimed at program-
ming the production and consumption units, is divided, figure 1.1, into the
Spot Electricity Market (MPE), into the Forward Electricity Market with
mandatory delivery and collection (MTE) and in the Platform for the phys-
ical delivery of financial contracts concluded on IDEX1.

Figure 1.1: The Electricity Market structure. (Taken from [1])

1.3.1 The System marginal price (SMP)

The System marginal price (SMP) is a uniform price. For each relevant
interval, the o↵ers accepted are valued at the equilibrium price of the system,
equal to the value of the last accepted o↵er (o↵er marginal). Each operator
for sale obtains a revenue equal to the price of the marginal o↵er multiplied by
the total volume of energy sold on the market. With this system an operator,
in a competitive market, is induced to o↵er at his own cost variable since the
valuation of the accepted volumes will in any case be carried out based on
the price marginal of the system (the most expensive last accepted o↵er).
The inframarginal production units will receive a remuneration higher than
their own variable costs which will make it possible to cover fixed costs.
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1.3.2 Nodal and zonal markets

Some markets refer to the network node, others to the market area (i.e. to
an area plus extended internally), others to the entire nation:

Nodal markets: presence of frequent and/or economically significant
di↵erences in value of electricity between the di↵erent nodes of the
network

Zonal markets: presence of large groups of nodes (zones) within which
there are no di↵erences in the value of electricity

The more the geographic extension is broad, the more it is possible that
there are network constraints within it that cause electricity does not have
the same value in all geographical points. In the event that markets are
defined. No subsequent interventions are necessary aimed at making the
programs operable in compliance with the network constraints (the so-called
re-dispatching action which instead characterizes the markets is not necessary
zonal).

Figure 1.2: Graphic representation of the di↵erence between node and zone.
(Taken from [1])

1.3.3 The The Day Ahead Market (MGP)

The hourly schedule for the injection and/or withdrawal of electricity is nego-
tiated on the MGP. The operators participate by submitting o↵ers in which
they indicate the quantity and the price maximum/minimum at which they
are willing to buy/sell. The session of the MGP opens at 8.00 on the ninth
day before the day of delivery and closes at 12.00 on the day before the day
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of delivery.
O↵ers are accepted after the close of the market session, on the basis of
economic merit and in compliance with the transit limits between the zones.
MGP is therefore an auction market and not a market continuous bargaining.
Accepted o↵ers to sell are valued at the clearing price of the area to which
they belong (hourly zone price). This price is determined, for each hour, by
the intersection of the curve of supply and demand and di↵ers from area to
area in the presence of saturated transit limits (system marginal price). Ac-
cepted purchase o↵ers are valued at the single national price (PUN), equal to
the average hourly zonal prices weighted for zonal consumption. GME acts
as a central counterparty.

1.3.4 The Intraday Market (MI)

The Intraday Market (MI) allows operators to make changes to the programs
defined in the MGP through further o↵ers to buy or sell. Here too the object
of negotiation is the hourly schedule for the injection and / or withdrawal of
electricity. It takes place in seven sessions: the first session takes place after
the closing of the MGP, opens at 12.55 of the day before the day of delivery
and closes at 15.00 of the same day. The last session opens at 5.30 pm the
day before the delivery day e closes at 3.45 pm on the day of delivery.
The purchase and sale o↵ers are selected on the basis of the same criteria
described for MGP (system marginal price). Unlike MGP, accepted purchase
o↵ers are also valued at the zonal price schedule. GME acts as a central
counterparty.

1.3.5 Dispatching of electricity

Electricity cannot be stored. It is therefore necessary to produce the quan-
tity, instant by instant of energy required by all consumers and manage its
transmission so that the o↵er and demand are always in balance, thus ensur-
ing the continuity and security of supply of the service.
The coordinated management of the injections and withdrawals of electric-
ity and the flows of electricity on the transmission grid for the purpose of
maintaining the balance of the electricity system in conditions of security is
what is called a dispatching service. This service is provided by Terna under
conditions defined by the Authority.
The Market for the Dispatching Service (MSD) is the tool through which
Terna is supplies the resources necessary for the management and control
of the system (resolution of intrazonal congestion, creation of the energy
reserve, balancing in real time). On the MSD Terna acts as a central coun-
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terparty and accepted o↵ers are remunerated at the price introduced.
The MSD is divided into the programming phase (ex-ante MSD) and the
Balancing Market (MB). The MSD ex-ante and MB takes place in several
sessions.
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Chapter 2

The European Centre for
Medium-Range Weather
Forecasts (ECMWF)

Weather observations are neither perfect nor complete. Also, because of
limitations in computer power, the models inevitably approximate the ex-
act equations for weather. Hence every single forecast is, to some extent,
uncertain. But how much uncertain? Uncertainty will vary from day to
day, depending on the atmospheric conditions at the start of the forecast.
When the state of the atmosphere is such that forecasts are not very sensi-
tive to uncertainties in the initial conditions, the forecasts can be made with
confidence many days ahead. However, when the forecasts are particularly
sensitive to the initial conditions, forecasts can be uncertain almost from the
beginning. Is there a way to know beforehand whether a forecast is going
to be accurate or not? The European Centre for Medium-Range Weather
Forecasts (ECMWF) has pioneered a system to predict forecast confidence.
This system, operational at ECMWF since 1992, is the Ensemble Prediction
System (EPS).[3][4][5]

2.1 The European Centre for Medium-Range
Weather Forecasts – an historical back-
ground

The European Centre for Medium RangeWeather Forecasts (ECMWF) is
the consequence of 100 years of development in dynamic and synoptic me-
teorology, and fifty years of development in numerical weather prediction
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Figure 2.1: Artistic sketch of the Ensemble Prediction System.(Take from
Ref. [3])

(NWP).

2.1.1 The creation of ECMWF

From the experience gathered with short–range and climatological simula-
tions, there was, in the late 60’ s, enough know–how to motivate an attack on
the medium–range forecast problem, defined as the interval from 3 to 10 days
ahead. The scientific and technical problems were still formidable, and only
few countries had enough expertise to tackle them. This made medium–range
forecasting an ideal candidate for multi–national co–operation.
In October 1967, the Council of Ministers of the European Communities
adopted a resolution to implement a programme to promote joint scientific
and technical research. A proposal for a “Meteorological Computer Centre
for Research and Operation” occupied the first place on a list of meteorolog-
ical projects submitted by an expert group in April 1969. The proposal was
accepted, and other European nations were invited to participate. In April
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1970, an expanded expert group initiated two study groups to investigate the
economic and scientific motivations for the project.
The reports from the two groups were completed in August 1971, and at
the conference of ministers in the same year it was decided to create the
European Centre for Medium–Range Weather Forecasts. The ambition, laid
out in the plans, was to produce forecasts ten days ahead with the five–day
forecasts having the same accuracy as subjective two–day forecasts in the
50’s.
The ECMWF convention was signed in October 1973. Seventeen European
States are currently members: Belgium, Denmark, Germany, Spain, France,
Greece, Ireland, Italy, the Netherlands, Norway, Austria, Portugal, Switzer-
land, Finland, Sweden, Turkey and the United Kingdom. The objectives of
the Centre were laid down as follows:

To develop dynamic models of the atmosphere with a view to preparing
medium–range weather forecasts by means of numerical methods;

To prepare, on a regular basis, the data necessary for the production
of medium–range weather forecasts;

To carry out scientific and technical research directed towards the im-
provement of these forecasts;

To collect and store appropriate meteorological data;

To make available to the meteorological o�ces of the Member States,
in the most appropriate form, the results of the studies and research
provided for in the first and third objectives above and the data referred
to in the second and fourth objectives;

To make available a su�cient proportion of its computing capacity
to the meteorological o�ces of the Member States for their research,
priority being given to the field of numerical forecasting. The allocation
of the proportions would be determined by Council;

To assist in implementing the programmes of the World Meteorological
Organization;

To assist in advanced training for the scientific sta↵ of the meteoro-
logical o�ces of the Member States in the field of numerical weather
forecasting.
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2.1.2 The ECMWF forecasting model since 1979- an
overview

The ECMWF forecasting system consists of three components: a general
circulation model (coupled with an ocean wave model), a data assimilation
system and, since 1992, an ensemble forecast system.
The first ECMWF numerical model was a grid–point model with 15 levels in
the vertical up to 10 hPa. In April 1983, this grid–point model was replaced
by a model with a spectral representation in the horizontal with a triangular
truncation at wavenumber 63. The spectral technique was more accurate
than the grid point model for the same computational cost.
In September 1991, a high-resolution spectral model was put into operations,
where the spectral truncation was extended to wavenumber 213 and the num-
ber of levels increased to 31. The model used a computational grid with a
resolution of about 60 km.
Until 1995 the ECMWF model did not contain any explicit clouds, only in-
terpretations from other fields like relative humidity, precipitation, vertical
motion, and vertical temperature gradients. A new cloud scheme was intro-
duced in April 1995 with clouds as prognostic parameters, defined through
the cloud fraction and the content of cloud liquid water and cloud ice.
Up to 1996 the analysis system was based on optimum interpolation. That
year it was replaced by a three-dimensional variational system (3DVAR),
which was upgraded to a four-dimensional variational system (4DVAR) in
1997.
In 1992 the ECMWF started its Ensemble Prediction System. In autumn
1996 the number of members was extended from 32 to 50 members and the
model was upgraded from T63 to TL159, in autumn 2000 to TL255. The ver-
tical resolution was increased from 31 to 40 levels in 1999. Crude allowance
for the uncertainty of physical processes was made in autumn 1998 with the
introduction of stochastic physics.

2.2 The ECMWF global atmospheric model

The ECMWF general circulation model, TL511L60, consists of a dynamical
component, a physical component and a coupled ocean wave component.

2.2.1 The model equations

The model formulation can be summarized by six basic physical equations,
the resolution in time and space and the way the numerical computations
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are carried out.
Of the six equations governing the ECMWF primitive equation atmospheric
model, two are diagnostic and tell us about the static relation between dif-
ferent parameters:

The gas law gives the relation between pressure, density and temper-
ature.

The hydrostatic equation shows the relationship between the density
of the air and the change of pressure with height. The other four
equations are prognostic and describe the changes with time of the
horizontal wind components, temperature and water vapour content of
an air parcel, and of the surface pressure.

The equation of continuity expresses the mass conservation and
determines the vertical velocity and change in the surface pressure.

The equation of motion describes how the momentum of an air parcel
changes due to the pressure gradient and the Coriolis force. Included
are also the e↵ects of turbulent drag and gravity wave breaking

The thermodynamic equation expresses how a change in an air par-
cel temperature is brought about by adiabatic cooling or warming due
to vertical displacements. Other physical processes like condensation,
evaporation, turbulent transport and radiative e↵ects are also included

The conservation equation for moisture assumes that the moisture
content of an air parcel is constant, except for losses due to precipitation
and condensation or gains by evaporation from clouds and rain or from
the oceans and continents. Adding to this there are specific prognostic
equations for the cloud fraction, water, ice content and ozone.

2.2.2 The resolution in time and space

The present system uses a temporal resolution of 15 minutes. The compu-
tational time step has to be chosen with care in order to avoid numerical
instabilities and ensure enough accuracy. The vertical resolution (measured
in geometric height) is highest in the planetary boundary layer and lowest in
the stratosphere and lower mesosphere.

The atmosphere is divided into 60 layers up to 0.1 hPa (about 64 km).
These so-called s-levels which follow the earth’s surface in the lower and
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Figure 2.2: To the left the vertical resolution before 1999 ( 31 level to 10
hPa, and to the right after 1999 ( 60 levels to 0.1 hPa).(Take from Ref. [3])

mid-troposphere are used as vertical coordinates but are surfaces of constant
pressure in the upper stratosphere and mesosphere. A smooth transition
between these types of levels is ensured. For its horizontal resolution the
ECMWF model uses two di↵erent numerical representations:

A spectral method, based on a spherical harmonic expansion, trun-
cated at total wave number 511, for the representation of upper air-
fields and the computation of the horizontal derivatives. Apart from
the operational TL511L60 model (511 spectral components and 60 lev-
els), a TL255L40 is run for ensemble predictions (only up to 10 hPa), a
TL159L40 for the 4DVAR assimilations and T63L31 for seasonal fore-
casts.

In addition, there is a grid point representation used for computing
dynamic tendencies and the diabatic physical parametrization. This
so–called Gaussian grid, is regular in longitude and almost regular in
latitude. Due to the convergence of the longitudes toward the poles,
the east–west distance between the grid points decreases poleward.

12



The model surface is logically divided into sea and land points, by using a
land–sea mask. A grid point is defined as a land point if more than 50% of the
actual surface of the grid-box is land. With a TL511 resolution, islands like
Corsica, Crete and Cyprus are represented by around five land grid points,
Mallorca and Gotland by only two. The Faeroe Islands, the Shetland Island
and Rhodos are not represented by any land point.

2.2.3 The numerical formulation

The choice of a semi-Lagrangian numerical scheme instead of an Eulerian is
the result of partly the need to save computer time and speed up the forecast.
The basic di↵erence between an Eulerian and a Lagrangian formulation can
be seen from the advection equation (in a one-dimensional space):

dQ

dt
=

@Q

@t
+ U

@Q

@x
= 0 (2.1)

which in an Eulerian way expresses that the local changes in Q are due to
the advection of Q by the wind U:

@Q

@t
= �U

@Q

@x
(2.2)

or in a Lagrangian way that Q is conserved for any fluid parcels:

dQ

dt
= 0 (2.3)

In a pure Lagrangian framework (following a set of marked fluid parcels) shear
and stretching deformations tend to concentrate parcels inhomogeneously, so
that it is di�cult to maintain uniform resolution over the forecast region. A
semi–Lagrangian scheme is used to overcome this di�culty. In this version,
the grid points are stationary and at each time step the scheme computes a
backward trajectory from every grid point. The point reached defines where
the air parcel was at the beginning of the time step. The interpolated value of
the variable in that point is then carried forward to the grid point, applying
the various physical processes.
Whereas all Eulerian schemes require small time steps to avoid numerical
instability, (the quantity Q must not be advected by more than one grid
length per time step), the semi-Lagrangian scheme allows longer time steps.
The limitation for stability is that the trajectories do not cross.
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2.3 Parametrization of physical processes

The primary function of the forecast weather parameters in the ECMWF
model, lies in their impact on the overall atmospheric flow. A ten–day
integration makes it absolutely necessary to include e↵ects with relatively
long-time scale, even as subtle as the evaporation by vegetation, in order
to handle the flow pattern more accurately. The di↵erent time scales and
feed–back mechanisms between the various processes makes the computa-
tions extremely complex and expensive.

2.3.1 The model orography

The representation of the orography uses the mean orography and four ad-
ditional fields describing the standard deviation, orientation, anisotropy and
slope of the sub–grid orography. This takes into account some of the oro-
graphic variability but does not change the fact that for the usefulness of the
weather parameters, the model orography is still significantly smoother than
reality.
However, the parametrization allows a realistic representation of the moun-
tain drag, which is important for the creation of large-scale atmospheric
eddies. A novel and important part of the scheme is that, depending on
dynamical criteria, it can block the low level flow rather than make the air
go over the orography.

2.3.2 The Planetary Boundary Layer

The treatment of the Planetary Boundary Layer (PBL), plays a fundamen-
tal role for the whole atmosphere–earth system. It is through the surface
exchanges of momentum, heat and moisture that the atmosphere “feel” that
it moves over a rough land surface or a wet smooth sea.
The lowest 13 levels are at around 10, 30, 60, 100, 160, 240, 340, 460, 600,
760, 950, 1170 and 1400 m above the model surface. Even with this fairly
high resolution the vertical gradients of temperature, wind, moisture etc. in
the PBL cannot be described very accurately, and therefore it is even worse
for the turbulent transports of momentum, heat and moisture. For the es-
timation of these parameters the model uses the larger scale variables such
as wind, temperature and specific humidity, with the assumption that the
transports are proportional to the vertical gradients.
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Figure 2.3: The model height (in deksmeterd) for southwestern Eu-
rope.(Taken from Ref. [3])

2.3.3 Radiation

In view of the importance of cloud–radiation interaction in both long- and
short-term processes, ECMWF has placed high emphasis on the treatment
of the absorption and scattering by clouds of solar and terrestrial radiation.
About 15 percent of the overall computational time is devoted to the radia-
tion scheme.
The radiation spectrum is divided into eight frequency bands: two in the
short wave spectrum (direct from the sun and di↵use radiation), and 15 in
the long wave spectrum (from the earth and within the atmosphere). The
upward and downward di↵used radiation is computed for each of the 16
spectral bands. The parameters influencing the emission and absorption are
pressure, temperature, moisture, cloud cover and cloud water content, and
carbon dioxide, ozone, methane, nitrous oxide, CFC–11 and CFC–12.
The radiation scheme is designed to take the cloud–radiation interactions
into account in considerable detail. It allows partial cloud cover in any layer
of the model.
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2.3.4 Clouds

The main purpose of the cloud scheme is to provide input to the radiation
computations and to calculate precipitation. The clouds are generated by
large–scale ascent, cumulus convection, boundary layer turbulence and ra-
diative cooling. They are dissipated through evaporation due to large–scale
descent, cumulus induced subsidence, radiative heating and turbulence at
both cloud tops and sides, as through precipitation processes.
The cloud scheme is unique in treating the main cloud–related processes in
a consistent way by forecasting both cloud fraction and cloud water/ice con-
tent with their own prognostic equations. In the scheme the cloud processes
are strongly coupled to other parametrized processes:

Convective clouds are computed in parallel with the convective scheme

Deep convection Deep convection predominantly occurs in disturbed
situations with a deep layer of conditional instability and large–scale
moisture convergence

Shallow convection predominantly occurs in undisturbed flow, in the
absence of large-scale convergent flow.

Mid–level convection describes convective cells which originate at
levels above the boundary layer

Stratocumulus clouds are linked to the boundary layer moisture flux
produced by the vertical di↵usion scheme

Stratiform clouds are determined by the rate at which the saturation
specific humidity decreases due to upward vertical motion and radiative
cooling.

Evaporation processes in connection with clouds are accounted for
in several ways: large–scale and cumulus–induced subsidence and radia-
tive heating, evaporation at the cloud sides due to turbulent processes
and turbulent motion at the cloud tops.

2.3.5 The hydrological cycle

Precipitation processes do not only take into account the local water/ice
content, but also di↵erent precipitation enhancement processes. The e↵ect
of evaporation of falling precipitation is also included. Two mechanisms to
generate precipitation are included in the ECMWF model, for convective and
for stratiform (frontal or dynamical) precipitation:
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Convective precipitation: the condensate formed in the updrafts
of the convection parametrization is water above 0 C, ice below –23 C
and a mixture of the two in between. If the amount of condensate
formed exceeds the value that can be sustained by the vertical velocity,
precipitation is formed in the form of snow or water.

Stratiform precipitation: cloud water and ice from the cloud scheme
are converted into precipitation dependent on the water/ice content.
Precipitation enhancement processes, such as collection of cloud water
by precipitation and the Bergeron process are also taken into account.

Evaporation: it is assumed that falling precipitation evaporates in
non–saturated layers before reaching the ground. This may substan-
tially reduce the surface precipitation. Evaporation of the precipitation
is not assumed to take place within the cloud, but only in cloud free
air besides or below the model clouds.

Melting: melting of falling snow occurs in a thin layer of a few hun-
dreds of metres below the freezing level. It is assumed that snow can
melt in each layer whenever the temperature exceeds 0 C. The melting
is limited not only by the snow amount, but also by keeping the in-
duced cooling of the layer such that the temperature of the layer after
melting is not below 0 C.
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Figure 2.4: Accumulated rainfall during the first 96 hours of the T213 opera-
tional forecast 5 July 1997 12 UTC. The floodings in eastern Europe summer
1997 were call forecast by the ECMWF model. However, the maximum rain-
fall of 400 mm in siutheastern Poland was slightly underastimated. (Taken
from Ref. [3])

Figure 2.5: Accumulated rainfall during the first 96 hours of the T639 ex-
perimental model forecast 5 July 1997 12 UTC. With a higher resolution
model the correct level of intensity is achieved, and the orographic e↵ects
more realistically treated. (Taken from Ref. [3]))

18



Chapter 3

The Ensemble Prediction
System (EPS)

3.1 Introduction

Twenty-thirty years ago the introduction of primitive equation models, the
rapid advance in computer technology, remote sensing from satellites and an
ever-increased sophistication of numerical methods fostered a sense of great
optimism. But progress in predictive skill remained slow and gradually the
question arose if there was an ultimate limit to atmospheric predictability.
The interest came to focus on a strange result, first reported at a NWP
meeting in Tokyo in 1960 by Edward Lorenz at the MIT. He had inves-
tigated if calculations based on non–linear di↵erential equations could be
replaced by statistical methods. The answer was “no”, but during one of
his computational simulations he noticed how very small di↵erences in the
initial conditions could a↵ect his extremely sensitive non–linear di↵erential
equations.
The consequences for NWP was that the limitations in the observational
network and measurement accuracy would impose an upper limit in weather
forecast quality. However, it was realized that in spite of this, the value of
the NWP would be highly enhanced if the quality of the forecasts could be
assessed a priori. The idea of including a stochastic element in NWP was
born, but it had to wait until the late 1980’ s until su�cient computer power
made experiments possible.
For an analysis error to have a more wide spread impact it must occur in
a dynamically sensitive region, in particular where young baroclinic systems
develop. The errors from this weather system will in a few days’ time spread
to the next, in a process reminiscent of a “domino e↵ect”.
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The 2-4-day forecasts for the European area are therefore sensitive to the
analysis over W Atlantic and eastern North America. The intensity and
position of the cut-o↵s frequently forming in the eastern Atlantic, is highly
influenced by the presence of a strong cyclogenesis over the Mexican Gulf
and southern USA. Any error in the forecast of this upstream feature will be
crucial for the success of the downstream cut-o↵.
The 5–7-day forecasts for the European area are sensitive to the initial con-
ditions over the central and western part of North America, and the eastern
part of the Pacific. Forecasts beyond a week are influenced by the initial
conditions over central and western parts of the Pacific, and at day 10 from
eastern Asia.
Since the initial state of the atmosphere is known with a limited accuracy,
even small analysis errors in sensitive parts of the atmosphere may a↵ect
the very large scale flow during the course of the ten day forecast period.
Another, equally accurate analysis with a slightly di↵erent geographical dis-
tribution of the initial errors, might yield a di↵erent forecast. The determin-
istic forecast is just one possible development of a number of alternatives,
not necessarily the most likely.[6]

3.2 The ECMWF Ensemble Prediction Sys-
tem - an overview

The ECMWF Ensemble Prediction System (EPS) has been a part of the
operational production since 1992. The EPS simulates possible initial uncer-
tainties by adding, to the unperturbed analysis, small perturbations within
the limits of uncertainty of the analysis. From these, a number of di↵erent
forecasts are produced.
In 2008, the EPS was merged with the monthly prediction system and has
been coupled to a dynamical ocean model. Since then, the EPS has been pro-
ducing 15-day probabilistic forecasts daily at 00 and 12UTC. On Thursdays,
forecasts are extended to 32 days, to provide users with monthly forecasts.
Since 2010, the EPS probabilistic forecast has been based on 51 integrations
with approximately 32-km resolution up to forecast day 10, and 65-km res-
olution thereafter, with 62 vertical levels.
The ECMWF EPS represents uncertainty in the initial conditions by creat-
ing a set of 50 forecasts starting from slightly di↵erent states that are close,
but not identical, to our best estimate of the initial state of the atmosphere
(the control). Each forecast is based on a model which is close, but not iden-
tical, to our best estimate of the model equations, thus representing also the
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influence of model uncertainties on forecast error. The divergence, or spread,
of the control plus 50 forecasts gives an estimate of the uncertainty of the
prediction on that particular day. On some days, the spread might be small
implying that the atmosphere is very predictable and users can trust that
the reality will fall somewhere in the narrow range of forecasts.
On other days, the 51 forecasts might diverge considerably after just a few
forecast days, indicating that the atmosphere is especially unpredictable.
The variable ensemble spread gives users potentially very useful information
on the range of uncertainty. Having a quantitative flow-dependent estimate
of uncertainty allows users to make better informed weather-related deci-
sions. The main sources of uncertainty in numerical weather prediction arise
from our incomplete knowledge of the exact state of the atmosphere (the
initial conditions) and unavoidable simplifications in the representation of
the complexity of nature in the numerical weather models. Also the intricate
vegetation and soil moisture processes can be described only by assuming
a simplified description of vegetation and soil types and the associated pro-
cesses.

Figure 3.1: Representation of how the di↵erent perturbed initial conditions
return a di↵erent forecast. (The ECMWF Ensemble Prediction System)

The basic principle of ensemble-based probabilistic forecasting is to make
not only a single forecast from our best guess initial conditions, but also to
perform a number of additional forecasts starting from slightly perturbed ini-
tial conditions, with each forecast created with a slightly perturbed model.
This technique provides an estimate of the uncertainty associated with pre-
dictions from a given set of initial conditions compatible with observation
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errors. If the atmosphere is in a predictable state, the spread will remain
small; if the atmosphere is less predictable, the spread will be larger. In a re-
liable ensemble prediction system, reality will fall somewhere in the predicted
range. This means that users get information on the actual predictability of
the atmosphere, i.e. whether a particular forecast can be expected to be
certain or less certain. In addition, they also get information on the range
within which they can expect reality to fall.

3.3 The performance of the ECMWF Ensem-
ble Prediction System

The ECMWF Ensemble Prediction System became fully operational in 1992.
Since then, scientists at ECMWF have been constantly working to further
improve the performance and utility of the EPS forecasts and products. Over
the years, substantial improvements have been made in three key areas: in
the model formulations and the data assimilation procedure used to estimate
the initial conditions, in the use of more and better weather observations, and
in the simulation of the e↵ect of uncertainty in initial conditions and model
equations. In 2010, two major changes were introduced: the simulation
of initial uncertainties has been revised with the inclusion of perturbations
defined by the ECMWF new Ensemble Data Assimilation system, and the
schemes used to simulate model uncertainties have been revised substantially.
As a result, the ECMWF EPS performance improved even further, and the
EPS has kept its leadership position among the global, medium-range and
monthly ensemble prediction systems operational in the world.

3.4 Perturbations

The success of any ensemble system depends on its ability to identify re-
gions where small uncertainties in the analysis are likely to have significant
impact on the forecast, and to create structures which will simulate these
uncertainties.

3.4.1 The calculations of perturbations in the mid-
latitudes

The EPS perturbation technique, based on a mathematical method called
singular vector analysis, tries to identify the dynamically most unstable re-
gions of the atmosphere by calculating where small initial uncertainties would
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Figure 3.2: A comparison of the performance of all global ensemble prediction
systems operational in the world demonstrates the leading position of the
ECMWF EPS. The skill measure used here is the Ranked Probability Skill
Score (RPSS), which is 1 for a perfect forecast and 0 for a forecast no better
than climatology. (The ECMWF Ensemble Prediction System)

a↵ect a 48 hour forecast most rapidly, i.e. both increasing or dampening the
forecast amplification of a developing baroclinic system or unstable ridge.
The first 25 of these singular vectors, chosen not to overlap too much, are
combined in a linear way to calculate hemispheric structures (separately for
each hemisphere) which are able to have a significant e↵ect on the forecast
after 48 hours.
By reversing the signs, 25 “mirrored” perturbations are produced, yielding a
total of 50 global perturbation fields. These initial perturbations are scaled
so that their local maxima are comparable to local analysis errors, and to
have a realistic ensemble spread after 48 hours. The final perturbations are
spatially uncorrelated. They are also considered a priori to be equally likely.
The success of the EPS over Europe is determined to what degree it can
correctly account for the uncertainties and alternative developments of an
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Figure 3.3: The performance of the EPS has improved steadily since it be-
came operational in the mid-1990s. The skill measure used here is the Ranked
Probability Skill Score (RPSS), which is 1 for a perfect forecast and 0 for
a forecast no better than climatology. (The ECMWF Ensemble Prediction
System)

upstream baroclinic development. Most of the EPS perturbations which are
of importance for the medium range forecast over Europe on a weeks range
are inserted in the analysis of baroclinic systems over the north Pacific.

3.4.2 The simulation of model errors

Although the main approach has been to simulate the e↵ects of possible errors
in the initial conditions, increasing research work is devoted to simulating
the e↵ect the finite resolution of the model grid or simplified representation
of the physical processes. These will have importance in connection with
strong physical forcing, for example when tropical cyclones enter the mid-
latitudes and interact with the baroclinic development in the westerlies. The
source of such errors has been addressed by the introduction of stochastic
physics (Buizza et al, 1999). For each ensemble member, the stochastic
physics perturbs grid point tendencies by up to 50%, with a spatial correlation
radius of 10 latitude degrees and a time correlation interval of 6 hours. The
whole globe is perturbed, including the Tropics. The non-perturbed Control
forecast is run without stochastic perturbations.
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3.4.3 Definition of the initial perturbations

Techniques to generate initial perturbation have been based on strategies
to identify those direction in phase space where dynamical instabilities are
strongest. One possibility is to assume that errors in the initial condition
are dominated by those instabilities of the flow which have developed over a
series of previous simulation cycles. However, assuming an isotropic PDF in
phase space for the error at the initial time, the di↵erent amplification rates
of perturbations along di↵erent axes would soon stretch the PDF along the
directions of maximum instability during the early stages of the forecast.
In a meteorological context for any finite time interval in which the dynamics
of perturbations is assumed to be linear the axis of maximum instability can
be computed as the eigenvectors of the asymmetric operator defined as the
product of a linear propagator by its adjoint. In linear algebra notation these
eigenvectors are the singular vectors (SVs) of the linear propagator itself.
The methodology used in the Ensemble Prediction System to define these
linear combinations is a modification of the procedure described in Palmer
et al (1993). Its aim is to create perturbations which cover most of the
Northern Hemisphere and have an amplitude comparable to the estimates of
root-mean-square analysis error provided by the optimum-interpolation (OI)
data assimilation. This proceeds as follows:

The first SVs are always selected

For each SV, a localisation function is defined in three-dimensional
grid-point space, equal to 1 wherever the local energy)per unit mass)
of the SV field is greater than 1% of its maximum value over the grid,
0 elsewhere.

An overlap function is defined at each point as the sum of localisation
functions of the first four SVs. In general, the overlap function gives
the number of selected SVs which ‘cover’ any grid point.

Each subsequent DV is examined in turn and selected only if more than
half of its energy lies in regions where the current overlap function is
less than 4. If this is the case, the localisation function for the new SV
is used to update the overlap function.

The last step is repeated until all the SVs are selected. Once all the SVs have
been selected, an orthogonal rotation in phase space and a final rescaling are
performed to generate the ensemble perturbations. In practice the purpose
of the phase-space rotation is to generate perturbations which have the same
globally averaged energy as the ‘raw’ SVs, but a smaller maximum and a
more uniform spatial distribution.
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3.5 Spread–skill

Depending on the particular hemispheric flow pattern, forecasts originating
from perturbed analyses develop more or less di↵erently during the course of
a ten day forecast.
If model errors played no role, and if initial uncertainties were fully included
in the EPS initial perturbations, a small spread among the EPS members
would be an indication of a very predictable situation. In other words, what-
ever small errors there might be in the initial conditions, they would not
seriously a↵ect the deterministic forecast. In these cases extended and/or
detailed forecast interpretations are possible. By contrast, a large spread in-
dicates a large uncertainty of the deterministic forecast, which prevents any
extended or detailed forecast interpretation.
But the EPS does not limit the interpretation of the spread just as a mea-
sure of uncertainties. The information will also suggest possible alternative
developments and their respective likelihood. Last but not least, it will also
indicate what is not likely to happen, which at times might be as important
as knowing what is likely to happen. When, on some rare occasions, the
spread might cover most of the climatological range, then nothing can be
deduced from the forecast about any significant deviations from climate.
The spread-skill interpretation of the EPS is complicated by the fact that
in one and the same forecast the spread often varies considerably from one
parameter to another. A small spread in the 500 hPa geopotential forecasts
does not necessarily imply a small spread in for example the forecast precip-
itation, and vice versa.

3.6 EPS clustering

To compress the amount of information being produced by the EPS and high-
light the predictable and thus relevant parts, individual EPS forecasts, which
are “similar” according to some norm, are grouped together and averaged to
constitute new forecast fields, so called clusters. The norm for judging this
“similarity” can be the correlations between the fields or, as in the ECMWF
system, their RMS di↵erences.

3.6.1 The operational clustering

The ECMWF operational clustering algorithm is based on the RMS di↵er-
ences between the 500 hPa geopotential height ensemble forecasts, averaged
from +120h to +168h taking the synoptic continuity into account. It is al-
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ways the same members which make up the contents of each cluster.
There are occasions when two members in the same cluster can be rather
di↵erent at the beginning or end of the period, but su�ciently similar during
the rest of the time interval to be placed in the same cluster. On the other
hand, two members, being similar during a part of the period, may be placed
in di↵erent clusters if they are su�ciently di↵erent during most of the period.
The number of clusters depends on three factors:

The spread of the day, i.e. the EPS standard deviation,. It is varying
from day to day, but follows a seasonal trend as the forecast errors,
with higher values in winter than in summer

The clustering threshold used to limit the clusters standard deviation.
It follows the same seasonal trend as the spread and errors

The degree of “multi modality”, the tendency of the forecasts to form
discrete alternatives. For the same spread and threshold a multi modal
distribution might lead to a smaller number of clusters than a mono
modal distribution.

A large spread in the ensemble does therefore not necessarily lead to more
clusters, nor does a small spread necessarily lead to fewer.
The clustering is performed separately for the whole of Europe plus four
European sub–domain.

3.6.2 The “tubing” clustering

Another clustering method, called tubing, averages all ensemble members
which are similar, on a RMS basis, to the ensemble mean and excludes mem-
bers which are significantly di↵erent. The average of all these “similar”
members provides a more refined ensemble mean, the central cluster mean.
The excluded members are grouped together in a number of “tubes” (maxi-
mum 9) each represented by their most extreme member allowing to better
visualize the di↵erent scenarios in the ensemble.
The central cluster mean and the tubes are computed for the whole fore-
cast range. For each tubing reference step (+96h, +144h, +168h, +192h
and +240h), tubing products are generated over a 48-hour sequence finish-
ing on the reference step (for example +48/+72/+96h for the +96h tubing),
allowing a sequential view of the di↵erent tendencies. Tubes are computed
over each of the five geographical domains Europe, NW Europe, NE Europe,
SW Europe and SE Europe. They do not intended to serve as probability
alternatives, only to give an indication of what is not included in the central
cluster.
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Figure 3.4: The five main clustering areas, the European and four sub-area.
(Taken from Ref. [3]))

3.6.3 No ideal clustering

Every possible clustering is a compromise; the advantage of condensing in-
formation has to be paid by the risk of losing information which on some
occasions, in hindsight, might have been important. There is really no su-
perior or objective measure of which type of clustering is “best”. Clustering
can be performed over larger or smaller geographical areas, on di↵erent pa-
rameters, it can be done for each forecast time or for a longer period. Other
possible ways:

clustering using correlation measures will highlight similarities in the
patterns but may group together forecasts which di↵er in the overall
level of temperature and geopotential heights.

clustering according to the 500 hPa flow might in a zonal situation give
one cluster, whereas if the clustering had been performed on the MSLP
pattern, the di↵erences in the position and intensity of zonally moving
baroclinic waves might have created 3–4 clusters.

clustering on individual forecast days will have the advantage that each
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day can be judged by its own merits; the disadvantage is that the
temporal continuity and synoptical consistency will be lost.

Ideally the forecaster should have access to more than one clustering
method, since what is the “best” clustering will vary according to the weather
situation.
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Chapter 4

The statistical indices

4.1 Introduction

Performance evaluation is an interdisciplinary research problem. Perfor-
mance metrics (error measures) are vital components of the evaluation frame-
works in various fields. In machine learning regression experiments, perfor-
mance metrics are used to compare the trained model predictions with the
actual (observed) data from the testing data set. Forecasting has a long
history of employing performance metrics to measure how much forecasts
deviate from observations in order to assess quality and choose forecasting
methods, especially in support of supply chain or predicting workload for
software development[7].
Classification is one of the main topics of scientific research. Each knowledge
domain, as a subject of scientific research, requires classification systems (ty-
pology) to structure the contents in a systematic manner. Categories of the
typology are defined based on resemblances (or di↵erences) of items/objects
in a specific context. Typologies are helpful in ordering and organizing knowl-
edge, defining the scope and simplifying studies, facilitating information re-
trieval and detecting duplicative objects.
For the purposes of the study it is therefore necessary to identify the most
suitable indices in order to verify the validity of the corrections that will be
made.
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4.2 The indices of the errors used

The ith discrepancy Di between the ith forecast simulations Si and the ith
observation Oi of a vector variable is defined as:

Di = Si �Oi (4.1)

A variety of verification procedures has been developed and a review of
these can be found. Each measure has its own strengths and shortcomings,
where the latter are not necessarily addressed by other diagnostics. The
indices that have been selected for analysis are therefore shown.

4.2.1 Bias and NBias

The Bias indicates the overall systematic di↵erence between forecast and
reality so that useful guiding notions like “the model is too wet/dry or too
warm/cold” can be derived, but what constitutes a large or small bias is hard
to say from the value of the bias itself without a context [8]. The figure 4.1
shows the above concept of systematic error.

Figure 4.1: Systematic di↵erence between forecast and reality.

From the figure it is clear that there is a constant error that generates
an underestimation of the forecasts with respect to the real data. The Bias
is therefore a very useful index because it can be easily corrected with a
translation. Bias is determined as follows:
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Bias =

P
N

i=1 Di

N
(4.2)

Where:

Di is the discrepancy defined in the (4.1)

N is the number of observation and forecast

The Bias can assume both positive and negative values. The positive
value will highlight an overestimation of the forecast while the negative value
an underestimate (having defined the discrepancy as in 4.1).
The NBias is obtained by carrying out the normalization of the Bias with
the sum of the observations as follows:

NBias =

P
N

i=1 DiP
N

i=1 Oi

(4.3)

By doing so, the percentage of the systematic error is obtained, which
can still be negative.

4.2.2 RMSE and NRMSE

Root Mean Square Error (RMSE) is the standard deviation of the residuals
(prediction errors). Residuals are a measure of how far from the regression
line data points are; RMSE is a measure of how spread out these residuals
are. In other words, it tells how concentrated the data is around the diagonal
(Figure 4.2).

Root mean square gives a good estimate of the overall error between the
model and the observations, but it tends to vary directly with the standard
deviation of the observed quantities. This means the size of RMSE is not
solely due to the model’s performance per se, e.g. small errors for temper-
ature and humidity in the tropics and large errors for wind in the upper
troposphere are somewhat expected from the corresponding small or large
variabilities in physical quantities themselves.
RMSE is determined as follows:

RMSE =

sP
N

i=1 D
2
i

N
(4.4)

As can be seen from the formula 4.4, the RMSE is a non-linear index.
Therefore this index gives more weight to occasional but coarse errors than
to small and frequent ones.
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Figure 4.2: Residuals of the data from the diagonal line.

The NRMSE is obtained by carrying out the normalization of the RMSE
with square root of the sum of the observations raised to the second as follows:

RMSE =

sP
N

i=1 D
2
iP

N

i=1 O
2
i

(4.5)

So the NRMSE gives a percentage of the root mean square error.

4.2.3 MAE and NMAE

The Mean Absolute Error (MAE) measures the average magnitude of the
errors in a set of predictions, without considering their direction. It’s the
average over the test sample of the absolute di↵erences between prediction
and actual observation where all individual di↵erences have equal weight.
MAE is determined as follows:

MAE =

P
N

i=1 |Di|
N

(4.6)

[9]Is interesting to make a comparison between RMSE and MAE:

Similarities: Both MAE and RMSE express average model prediction
error in units of the variable of interest. Both metrics can range from 0
to 1 and are indi↵erent to the direction of errors. They are negatively-
oriented scores, which means lower values are better.
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Di↵erences: Taking the square root of the average squared errors has
some interesting implications for RMSE. Since the errors are squared
before they are averaged, the RMSE gives a relatively high weight to
large errors. This means the RMSE should be more useful when large
errors are particularly undesirable. Di↵erently MAE is a linear term
and so, gives the same weight for small and large errors.

MAE  RMSE: The RMSE result will always be larger or equal to the
MAE. If all of the errors have the same magnitude, then RMSE=MAE.

The NMAE is obtained by carrying out the normalization of the MAE
with the sum of the observations as follows:

NMAE =

P
N

i=1 |Di|P
N

i=1 Oi

(4.7)

It returns a percentage of the Mean Absolute Error.
This is one of the indices that will have the greatest importance in assessing
the skill of forecasts. This is due to the fact that it shows the precise value
of how far the forecast deviates from the observation and therefore by mul-
tiplying for the cost of the electricity ( /kW ), the economic value of the
forecast error can easily be obtained.

4.2.4 SI, Scatter Index

The scatter index (SI) is defined as the standard deviation of the di↵erence
normalized by the mean of the observations. Is obtain subtracting the average
component of the error. It is defined as:

SI =

sP
N

i=1[(Si � S)� (Oi �O)]2
P

N

i=1 O
2
i

(4.8)

Where:

S is the mean value of the simulations (Si)

O is the mean value of the observation (Oi)

4.2.5 HH, Hanna and Heinold index

In order to evaluate the reliability of numerical simulations in geophysical ap-
plications it is necessary to pay attention when using the root mean square
error (RMSE) and two other indicators derived from it (the normalized root
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mean square error (NRMSE), and the scatter index (SI)). In conditions of
constant correlation coe�cient, in fact, the RMSE index and its variants
tend to be systematically smaller (hence identifying better performances of
numerical models) for simulations a↵ected by negative bias. Through a ge-
ometrical decomposition of RMSE in its components related to the average
error and the scatter error it can be shown that the above mentioned be-
havior is triggered by a quasi-linear dependency between these components
in the neighborhood of null bias. This result suggests that smaller values
of RMSE, NRMSE and SI do not always identify the best performances of
numerical simulations, and that these indicators are not always reliable to
assess the accuracy of numerical models[10]. The corrected indicator HH
proposed by Hanna and Heinold (1985) is demostrated that provides a more
reliable information about the accuracy of the results of numerical models.
The corrected statistical indicator proposed by Hanna and Heinold is defined
as:

HH =

sP
N

i=1(Si �Oi)2P
N

i=1 SiOi

(4.9)

As it can be seen from the formula 4.9 the HH indicator overcome the
problem of the RMSE, NRMSE, SI introducing a di↵erent normalization of
the root mean square error.

4.2.6 Pearson index

A Pearson correlation is a number between -1 and +1 that indicates to which
extent 2 variables are linearly related.

As shown in the figure 4.3 the correlation coe�cient is useful to detect
errors arising from phase lead or lag between forecast and observation but
is independent of the di↵erence in the variance of forecast and observation.
So having a correlation of one is of dubious significance if forecast variance
is much smaller than observed variance and is left uncorrected. It is defined
as:

Pearson =

P
N

i=1(Si� S)(Oi�O)

N�S�O

(4.10)

With:

�S =

sP
N

i=1(Si� S)2

N
(4.11)
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Figure 4.3: Variation of the correlation visualized as scatterplots.

�O =

sP
N

i=1(Oi�O)2

N
(4.12)

This index is very important because the more the predictions are related
to the observations, the more it is possible to improve them.
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Chapter 5

Analysis of forecasts and
observations

5.1 Introduction

A wind farm, called Marsica1, was identified in Marsica, a geographic region
of the Abruzzo hinterland, in the province of L’Aquila. In this wind farm
was selected the anemometer of a turbine, called turbine R1, from which the
observed data of the wind in that area were extrapolated. The measurements
of the power produced in kW were also extrapolated from this turbine.
The wind forecasts were then downloaded from the European center referring
to the node closest to the aforementioned turbine.
In this chapter it will be shown how the observed data were imported and
cleaned up. The useful features in order to perform a correction of the
forecasts will also be described.
The Python programming language was used for all analysis.

5.2 Observed data import for Marsica1

First, the files, with the .txt extension, containing the data of the Marsica1
wind farm were downloaded. Inside there were the wind speed data recorded
by the anemometers of 3 wind turbines, including the R1, and also the data
regarding the energy produced in terms of power [kW]. The data had been
recorded with a time interval of 10 minutes. Data cover a total of two years:
2017 and 2018.
Since the forecasts provided by the European center have an interval of one
hour, a moving average has been used on the observed data in order to make
the two datasets uniform.
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Figure 5.1: Marsica wind farm photo. Note how the wind turbines are quite
close to each other.

Before the observations data could be used for analysis, it was necessary
to cleaned them up. Regarding the wind speed measure there were indeed
present several times records that were null. This appeared strange for several
reasons:

1. The anemometer has a good sensitivity and can perceive even very light
winds, up to 0, 1m/s.

2. Since the observations were averaged over the hour, it is statistically
unlikely that there was no wind current in one hour.

3. The blades are located at a height of about 100 meters and are specially
located in a very windy area. At those heights it is almost impossible
not to have the minimum wind speed being very distant from the main-
land and therefore having no nearby obstacles that can prevent it from
moving.

4. Going to analyze one by one the records that marked a null value of the
speed there was a clear discontinuity with the closest non-null values.

In figure 5.2 it can be seen how null values present an unnatural behaviour.

38



Figure 5.2: Wind speed time series measured from 08/01/2017 to
28/01/2017. There is a sudden zeroing of the wind speed for almost 4 days.
This is clearly due to some kind of error in the data acquisition.

There are also errors in the measurements of the power produced. They
are very evident when graphing the transfer function from the potential en-
ergy contained in the wind to the electricity produced. Figure 5.3 shows
precisely how there are many values that are too far away from the transfer
curve. The error is not necessarily due to the collection of power data but
could also be due to incorrect measurements of the anemometer.

From figure 5.3 it is also noted that the transfer function is not perfect.
It does not show a line but a point cloud. This means that even if the
forecast of the wind speed was perfectly known, the perfect power forecast
would never be reached. Table 5.1 shows the error indices of the powers
calculated using the empirical transfer function with respect to the powers
actually measured. Basically it is like simulating having reached a perfect
wind forecast. As it can be seen, however, there is an error. There are
mainly 2 indices: the NMAE which is approximately 6% and the NRMSE
which is approximately 16%. This di↵erence is due to the fact that NRMSE
places much more weight on large errors than NMAE. Therefore, following
the correction of the measurements, a greater improvement is expected from
the NRMSE compared to the NMAE.

Much of the incorrect data mentioned above are not necessarily due to
instrument or processing errors. Many are also due to the fact that during the
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Figure 5.3: Empirical transfer function. Data that is not in the vicinity of
the transfer curve are those that need to be corrected or modified.

Table 5.1: Error index of the original transfer function.
Bias 4.830
NBias 0.012
MAE 24.625
NMAE 0.062
RMSE 115.635
NRMSE 0.162

HH 0.163
SI 0.162

Pearson 0.981

period of activity of the turbine there is the need to carry out maintenance
for which it is necessary to turn o↵ the single turbine or even the entire plant.
To clean this data, two procedures were used in order to throw away as little
data as possible. In fact, to do some of the analyses it is necessary to have
the records of the entire day without missing data. For each null data for
which the replacement could not be made, the entire day of registrations and
the corresponding forecasts were eliminated.
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5.2.1 Substitution of null records with R2 and R3 ones

In figure 5.1 it has been pointed out that the wind turbines are quite close
together. It can also be noted that there are no particular obstacles between
them that can modify the flow of the wind in some way. It is therefore
expected that the wind speed and therefore also the power produced by the
turbines R2 and R3 is similar to that of the turbine R1. Figures 5.4 and 5.5
show how there is indeed a strong correlation and equality between the wind
and the power produced by the three turbines for which the data is available.

This is due, as said before, to the fact that the turbines are located at
a relatively short distance from the distance needed by the wind to be able
to significantly change their motion at a height of 100 m where there are
therefore no obstacles. Figures 5.4 and 5.5 show that there is not a perfect
correspondence between the measurements of the turbine R1 and of the R2.
In particular with regard to the power produced. This is due to the fact
that the same conversion of wind energy into electrical energy is variable,
as can also be seen from the transfer function(figure 5.3), and therefore this
phenomenon is amplified when the two measurements are compared. After
verifying the similarity of the records, the wrong ones of the R1 turbine were
replaced with that of the R2 and R3 turbines.
Not in all the wrong values of R1, however, there could have been replace-
ments because in some cases all the blades had anemometers that did not
work.

5.2.2 Substitution or elimination of wrong records with
the average of the records around

This substitution was only done where there were single wrong values next
to valid records. In these cases the wrong records have been replaced with
the average of the adjacent observations so as to avoid the elimination of
the data of a whole day due to the lack of a single hour. Finally where the
previous operations failed to create a meaningful data it was necessary to
remove that data.
Figure 5.6 shows what the transfer function looks like after it has been cleaned
up.

Table 5.2 shows the values of the error indices of the transfer function,
by simulating having perfect wind forecasts, previously calculated in table
5.1 and those calculated using the cleaned data. All the indices have im-
proved and in particular the NRMSE which, as expected, went from 16%
to a 5. Also the NMAE had an improvement of about 2 percentage points
and was around at 4%. This means that in spite of the cleaning works per-
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Figure 5.4: Scatter plot of the speeds recorded with the anemometer R1 vs
those recorded with the anemometer R2.
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Figure 5.5: Scatter plot of the power recorded with the anemometer R1 vs
those recorded with the anemometer R2.
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Figure 5.6: Transfer function after operations to clean up the data.

Table 5.2: Error index of original transfer function vs cleaned transfer func-
tion

Index Original data Cleaned data
Bias 4.830 -1.886
NBias 0.012 -0.005
MAE 24.625 16.426
NMAE 0.062 0.043
RMSE 115.635 33.219
NRMSE 0.162 0.048

HH 0.163 0.048
SI 0.162 0.048

Pearson 0.981 0.998

formed in the transfer function, an error persists due to the instrumentation
or characteristics that are not controllable for the moment.

5.3 ECMWF forecasts data import for EPS
and HRES

The wind forecast data was downloaded from ECMWF, European Center
for Medium-Range Weather Forecasts. One are the so-called EPS, i.e. one
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‘ensemble forecast’, that consists of 50 separate forecasts made by the same
computer model equation, all activated from the same starting time. The
other one is the HRES (High resolution) which provides a highly detailed
description of future weather and it should be the most accurate forecast.
Unlike EPS, the latter consists of a single forecast.
The data were taken by selecting the node closest to the R1 turbine of the
Marsica 1 plant, that is, with a latitude of 42 and a longitude of 13.6. Since
the resolution of the European center is relatively low (18 km for EPS and
9 km for HRES of resolution), the node is also suitable for being applied to
the entire Marsica 1 plant. The data are sampled at the frequency of of one
hour.
The forecasts download start to run at midnight and have a maximum fore-
cast horizon of 48 hours. For each day there are therefore 2 forecasts: one
made the day before (24-48 hour forecasts) and the other made the same
day(0-24 hour forecasts). It is important to underline that the forecasts are
made available at least 7 hours after the calculation of the forecasts begins.
Therefore, when the 0-24 hour forecasts are available in Italy it is around 7/8
in the morning. This means that the forecast from midnight to 7 is actually
about the past.
The imported data had velocities along the two x and y directions, so it was
necessary to find the velocity module for each prediction.

5.3.1 EPS structure

As mentioned in the previous chapters, EPS are 50 di↵erent predictions re-
sulting from di↵erent boundary conditions obtained by perturbing the initial
condition, considered to be the best, 50 times. It is therefore logical to expect
that these small perturbations the more go forward in time the more they
have an e↵ect on the forecast.
Figure 5.7 shows the trend of the 50 forecasts in the 48-hour forecast. As it
can be seen in the first hour the forecasts are all very close together although
they have di↵erent values. This is due to the e↵ect of the disturbance of the
initial condition. Going forward in time, forecasts tend to move away, ending
at the 48th hour with a greater variance than the initial one. It is obvious
that the opening of the forecast is not due exclusively to the forecast horizon.
In fact, between the 12th and the 28th hour there is the maximum opening
probably due to the presence of a wind that is more di�cult to predict than
that of the following hours.
In Figure 5.8, forecasts 0-24 h were superimposed with those 24-48 h of the
day before. It is clear that the forecasts generated on the day have a much
greater variance than that of the forecasts generated on the same day.
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Figure 5.7: The 50 forecasts of the EPS of 1 and 2 March 2017. Each di↵erent
forecast has its own color, as it can be seen the width of the members tends
to widen over time.

Figure 5.8: The 50 in red are the forecast referring to the run of the day
before, while the black ones are the forecasts generated the same day.
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Figure 5.9: Time series from 12/3/2018 to 16/4/2018 in which the forecasts
0-24 hours were superimposed on those 24-48 hours.

Figure 5.10: Scatter plot of the average forecasts with a time horizon of 0-24
hours vs those of 24-48 hours.
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Finally it is useful to make some comparison between the forecasts of the
same day (0-24 hours) with those of the following day (24-48 hours). Figure
5.9 shows the 5-week time series of the average of the two forecasts. It can be
seen quite clearly that the values of the forecasts are very much in agreement
even from day to day. This is also confirmed in the scatter plot of figure 5.10
in which the values tending to position themselves around the diagonal show
that there is a strong similarity of the forecasts. Calculating the Pearson
index confirms the strong correlation between the two forecasts. In fact, a
Pearson equal to 0.96 is obtained.
This may mean that the models built by the European center turn out to be
very robust as the forecast horizon advances.

5.3.2 HRES structure

HRES is another forecast that is provided by ECMWF. Unlike EPS, it has
only one prediction obtained by running a higher resolution model using the
initial conditions considered to be the best.
To compare this forecast with that deriving from the EPS, the average of the
EPS was used. This because from the literature the EPS mean is considered
as a better forecast than that obtained by selecting the forecast of 50 of the
EPS with the best initial condition.
Figure 5.11 shows the comparison between the time series of the forecasts
generated by HRES with the average of the EPS. The two forecasts appear
very similar albeit di↵erent.

Figure 5.12 instead shows the scatter plot in which the two forecasts seen
above are compared. There is a good, albeit not perfect, correlation. In fact,
the cloud is quite enlarged. Furthermore, for low speeds the values seem
to be around the diagonal while for speeds greater than 2 m/s there is an
underestimation of the EPS forecast compared to that of HRES.
Table 5.3 shows the error indices calculated by comparing the two forecasts.
The Bias confirms the fact that there is an underestimation of the EPS
forecasts compared to the HRES one. It is also noted that the indices do
not vary particularly between 0-24 and 24-48 hours. Finally, it is emphasized
that the Pearson is worth about 0.88 which means that there is a fairly high
correlation between the two forecasts.
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Figure 5.11: Time series from 12/3/2018 to 16/4/2018 in which the HRES
forecast and the average forecast of EPS with a time maturity of 0-24 hours
were superimposed.

Table 5.3: Error index of EPS vs HRES forecast.
Index 0-24 h 24-48 h
Bias -0.412 -0.418
NBias -0.145 -0.147
MAE 0.823 0.833
NMAE 0.288 0.293
RMSE 1.106 1.121
NRMSE 0.315 0.322

HH 0.358 0.367
SI 0.293 0.299

Pearson 0.882 0.877
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Figure 5.12: Scatter plot of the HRES forecasts vs average forecasts EPS.
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5.4 Analysis and characteristics of the start-
ing data

To make an e↵ective improvement of the wind and power forecasts it is
important first of all to know the characteristics of the wind in the site under
analysis.
The characteristics will be analysed most of the time for both observations
and predictions. This is to see if the two things coincide or not.

5.4.1 Seasonal trend of wind speed

The first step in these analyses is to know how the wind behaves over a whole
year. Therefore it is necessary if it is subject to seasonal cycles like many
other natural forces, in particular in the site under analysis.

Figure 5.13: Seasonal trend of the average wind speed observation in 2017
and 2018.

Figures 5.13 and 5.14 show the average trend of the measurements of wind
speed and power produced for each season. It is noted how both elements
agree in denoting a seasonality of wind speed and power. In fact, the graphs
show a greater intensity of the wind during autumn and winter as opposed
to spring and summer in which there are lower values. This conclusion is ob-
viously only and exclusively referred to the territory that is being analysed
and does not represent an absolute truth being based on only two years of
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Figure 5.14: Seasonal trend of the average power product in 2017 and 2018.

observations. If this were the case, however, it is a point to the advantage
of the wind farm in question since precisely in autumn and winter it is the
period in which for example there is less sun and therefore there is less re-
newable energy deriving from the sun. Furthermore, winter is usually the
period in which, as there are lower temperatures, there is more demand for
energy.
It is also interesting to see if the forecasts confirm what seen from the ob-
servations. Another interesting aspect regarding forecasts is to see if the
variance of EPS is also influenced by the seasons. Figure 5.15 shows the
trend of the average forecasts as the season changes and confirms what was
said previously. Figure 5.16 shows the change in variance as a function of
the season. As it can be seen, there seems to be no particular correlation
between the season and the EPS variation.
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Figure 5.15: Seasonal trend of the average wind speed forecast in 2017 and
2018.

Figure 5.16: Seasonal trend of the average variance of EPS forecast in 2017
and 2018.
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5.4.2 Daily trend of wind speed

Another important wind cycle is the so-called diurnal cycle. Typically, in
fact, the wind tends to be more intense during the day while at night it is
weaker.
Figures 5.17 and 5.18 show which are the average speeds and the average
power observed during the di↵erent hours of the day. As expected there is
a higher average speed during the day but still during the night there is a
considerable energy production.

Figure 5.17: Daily trend of the wind speed observed in 2017 and 2018.

Figure 5.19 shows how the daily trend of the forecasts for the years 2017
and 2018 is. Visually the trend is in agreement with that seen as regards the
observations. It is also interesting to reiterate how the 0-24 hour and 24-48
hour forecasts are practically totally overlapping with the exception of the
first two hours. In fact, the first two hours of the 0-24 hour forecast show
a sort of discontinuity with respect to the rest of the graph. This is due to
the fact that in those two, having just started the run of the prediction, the
model needs a couple of hours to settle and run correctly.
Figure 5.20 shows what the mean trend in the variance of the EPS forecast
looks like during the day. Both holding years are shown for both 0-24 hour
and 24-48 hour predictions. First of all, it is important to underline that
there is a consistently greater variance of the forecasts 24-48 compared to
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Figure 5.18: Daily trend of the average power product in 2017 and 2018.

0-24. This confirms what was said in the previous sections. It is also noted
that the variance, without considering its variation due to the alternation
between day and night, has a constant increase. In fact, the hour 23 of the
forecasts is greater than the hour 0; this di↵erence cannot be justified only by
the fact that there is a physical di↵erence between the two hours but above
all by the simple increase in the forecast horizon. It should also be noted
that the variance is also a↵ected by the first two hours of settling the run of
the opening 0-24 hours.
The other important point that is denoted in this graph is the presence of a
strong variation of the variance due to the time in which it is considered. In
fact, as for the wind speed, it also seems to be subject to a sort of diurnal
cycle. This can be divided into two factors: the first is that the variance
during the daytime is greater because the wind speed has higher values and
therefore the forecasts tend to move away from each other; the second may
be simply due to the fact that during the day the model of the European
center is more di�cult to describe the physical phenomena present. This is
normal because during the day there are and more complex more physical
phenomena due to the presence of the sun, which does not happen at night.
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Figure 5.19: Daily trend of the average wind speed forecast in 2017 and 2018.

Figure 5.20: Daily trend of the variance of EPS forecasts in 2017 and 2018.
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5.4.3 The wind direction

Wind direction is a very important component. In fact, depending on the
morphology and characteristics of the analysed territory, the wind can change
its intensity depending on the direction from which it arrives or in any case
its characteristics. In fact, there are often winds considered more or less
dangerous depending on the territory in which you are located. To give
an example for Liguria the strongest wind comes from “Libeccio”. This is
because the “Libeccio” before arriving in Liguria does not encounter obstacles
for more than a thousand kilometres. However, winds from other directions
are usually more docile.
As can be seen in figure 5.21, the Marsica 1 wind farm is located in a territory
with a complex morphology. In fact, di↵erently from what often happens
around it there is no plain but rather mountain ranges.

Figure 5.21: Mountain range near the Marsica1 wind farm.

Figure 5.23 shows the observed wind speed and direction. It denotes very
clearly how most of the wind is distributed in the second and fourth quadrant.
In particular, looking at the wind rose (figure 5.22) they correspond to the
winds called “Mistral” and “Scirocco”. Looking at figure 5.24 in which the
predicted directions are shown, it confirm what was seen for the observed
wind. Unlike observations, in which a very precise and well-defined direction
appeared, with forecasts the direction is less defined but in any case it is
clear that most of the wind belongs to quadrants 2 and 4.
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Figure 5.22: Wind rose.

Figure 5.23: Distribution of observed wind directions.
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Figure 5.24: Distribution of the forecast wind directions.
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5.5 Quality and accuracy of the starting fore-
casts

To correct the forecasts, it was necessary to divide the dataset into two parts:
one part, corresponding to 2017 dataset, to calibrate the parameters for the
correction, and the other, corresponding to 2018 dataset, to verify the cor-
rectness of the correction.
As seen in the previous sections, between the two years there are no partic-
ular variations in the wind and they are absolutely comparable as shown in
table 5.4 which shows the average of the wind measured and forecast in the
two years. There is a di↵erence but it is absolutely natural due to the normal
variation from year to year.

Table 5.4: Mean value of wind speed
2017 2018

Observed [m/s] 5.38 5.2
HRES [m/s] 2.85 2.57
EPS [m/s] 2.43 2.25

In this section the dataset corresponding to the year 2018 will be anal-
ysed. This is because it will be the dataset that will then be used for the
correction and it will be possible to make a comparison.
First of all it is useful to make a visual comparison between forecasts and
observations.
Figure 5.25 shows the trend of wind speeds for forecasts and observations.
From a simple visual analysis it is clear that the forecasts tend to be un-
derestimated in most cases. Despite the underestimation, however, a certain
correlation seems to remain which, as previously mentioned, will allow for a
better correction. This assumption is confirmed by table 5.4 which shows an
average underestimation of the forecast of more than 2 m/s. It is also noted
that the underestimation is more marked as regards the forecast of EPS than
that of HRES.

Figure 5.26 represents the scatter plot of EPS mean and HRES forecasts
and observations. If the predictions were perfect, all points on the graph
would lie on the black diagonal line. The fact that the points tend to be more
to the left of the diagonal shows once again that there is an underestimation
of the forecasts; in this case it can be said that there is a systematic error
and therefore a negative Bias will be expected. Furthermore, the scatter plot
provides a first view on the correlation. In fact, the more the point cloud is

60



Figure 5.25: Comparison between observed and EPS and HRES forecasts
wind speed.

restricted, the better the two datasets are correlated. On the contrary, the
larger the cloud, the less the data are correlated with each other. From this
figure, the forecast obtained with the average of the EPS seems to have a
narrower point cloud than that of the HRES forecasts.

Figure 5.26: Scatter plot: observed vs EPS and HRES forecasts wind velocity.

Figure 5.27 shows the probability distribution of the EPS and HRES
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predictions and of the wind speed observations. It is noted that there are
velocities that are more likely to be both predicted and observed. This graph
once again confirms the strong underestimation between forecasts and obser-
vations.

Figure 5.27: Probability density of wind velocity observed and forecast.

Table 5.5 shows the values of the error indices for each forecast and also.
The Bias always has a negative value, which confirms what was deduced from
the scatter plot.
It is also noted that for both types of forecast, the more you go forward in the
forecast horizon, the more the forecast gets worse, albeit slightly. The table
confirms what was previously assumed: the HRES forecast shows how, by
exploiting the higher resolution of the model, it generally obtains better in-
dices. In particular, all the indices apart from the Pearson have values closer
to 0 than the EPS forecasts. For example, although the Bias is still negative,
it shows an underestimation of the wind speed is better than that generated
by the EPS; therefore HRES underestimates less than the EPS forecast, as
previously assumed. Therefore, if by hypothesis one were to choose the best
forecast without having the possibility to carry out any operation on it, the
HRES forecast would certainly be chosen. However, the only index that is
shown to be in favor of the EPS average is the Pearson. As mentioned in the
previous chapter, Pearson shows what the correlation between forecasting
and observation is. Therefore, in addition to confirming what is supposed
based on figure 5.26, it leads to the supposition that following corrections,

62



the EPS forecasts may have a better result than that of HRES thanks to the
greater correlation that links them with the observations.

Table 5.5: Error index of raw forecasts.
Index Mean EPS 0-24h Mean EPS 24-48h HRES 0-24h HRES 24-48h
Bias -2.945 -2.941 -2.637 -2.656
NBias -0.566 -0.565 -0.507 -0.510
MAE 3.215 3.223 3.013 3.055
NMAE 0.618 0.619 0.579 0.587
RMSE 4.572 4.599 4.247 4.322
NRMSE 0.687 0.692 0.639 0.650

HH 1.182 1.196 0.999 1.029
SI 0.526 0.532 0.501 0.513

Pearson 0.632 0.615 0.621 0.586

At this point it is interesting to see how the error indices vary according to
the period in which the forecast is calculated. This is in order to identify some
correlation between the period and the quality of the forecast. As regards
the seasonal cycle, Figure 5.28 shows the correlation trend for both years in
possession. There seems to be no clear correlation between the forecast and
the season in which it is made. This analysis, however, is very inconsistent
since two years are too short to be able to determine this aspect. It would be
necessary to have at least ten years to compensate for the random variability
that the variables under analysis.

One aspect for which su�cient data is instead available to be able to
carry out a robust analysis is the correlation between errors and the daily
cycle. Table 5.6 shows the value of the indices for all hours of the day for
the forecast obtained from the average of the EPS with a forecast horizon of
24 hours.

To better understand how the various indices vary, it may be useful to see
them in a graph. Figure 5.29 shows how the RMSE, MAE, NBias, Bias values
vary according to the time expiration, overlapping with the value calculated
on the whole series, without distinguishing the di↵erent time expirations. It
is important to underline that the further the values are from zero, the more
the forecast tends to be wrong. As can be seen, the indices worsen during
the day while they tend to improve at night.

In figure 5.30 the HH, NRMSE, NMAE, SI values vary according to the
time expiration, overlapping with the value calculated on the whole series,
without distinguishing the di↵erent time expirations. As before the further
the values are from zero, the more the forecast tends to be wrong. As can be
seen, the indices worsen during the day while they tend to improve at night.
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Figure 5.28: Scatter plot: observed vs EPS and HRES forecasts wind velocity.

Figure 5.29: Trend over time of the RMSE, MAE, NBias, Bias indices.

Di↵erently from before, the normalized indices have a worsening during the
night and an improvement during the day. This is due to the fact that
during the day, as seen in figure 5.17, wind speeds are greater than at night.
It is therefore likely that non-normalized indices show greater accuracy when
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Table 5.6: Table of the error index as the time limit changes, mean EPS 0-24
h forecast.
Indici Bias NBias MAE NMAE RMSE NRMSE HH SI Pearson
0H -2.433 -0.540 2.799 0.621 4.170 0.692 1.176 0.562 0.575
1H -2.443 -0.561 2.760 0.634 4.181 0.705 1.250 0.572 0.703
2H -2.286 -0.542 2.640 0.626 4.094 0.697 1.217 0.578 0.733
3H -2.193 -0.530 2.592 0.627 4.124 0.699 1.223 0.592 0.737
4H -2.210 -0.531 2.593 0.623 4.278 0.703 1.240 0.602 0.760
5H -2.215 -0.531 2.626 0.629 4.351 0.708 1.257 0.609 0.752
6H -2.294 -0.539 2.730 0.641 4.477 0.715 1.286 0.614 0.730
7H -2.252 -0.532 2.682 0.633 4.331 0.708 1.249 0.604 0.694
8H -2.419 -0.531 2.769 0.608 4.457 0.703 1.226 0.590 0.640
9H -2.671 -0.535 2.969 0.595 4.576 0.693 1.185 0.563 0.582
10H -2.914 -0.535 3.130 0.575 4.563 0.671 1.112 0.516 0.560
11H -3.120 -0.533 3.346 0.572 4.599 0.654 1.061 0.480 0.532
12H -3.224 -0.528 3.457 0.566 4.627 0.646 1.035 0.463 0.481
13H -3.520 -0.547 3.698 0.575 4.727 0.641 1.028 0.428 0.495
14H -3.684 -0.563 3.863 0.590 4.805 0.648 1.051 0.416 0.467
15H -4.080 -0.603 4.189 0.619 5.111 0.669 1.129 0.403 0.515
16H -4.174 -0.625 4.276 0.640 5.186 0.683 1.184 0.405 0.581
17H -4.172 -0.641 4.285 0.658 5.202 0.696 1.236 0.416 0.631
18H -3.872 -0.634 4.024 0.659 5.080 0.703 1.261 0.455 0.638
19H -3.373 -0.609 3.516 0.635 4.733 0.700 1.241 0.491 0.647
20H -3.071 -0.593 3.266 0.631 4.657 0.708 1.266 0.532 0.634
21H -2.880 -0.582 3.161 0.639 4.504 0.707 1.257 0.543 0.622
22H -2.653 -0.567 2.942 0.629 4.327 0.702 1.237 0.554 0.661
23H -2.534 -0.559 2.844 0.628 4.278 0.702 1.238 0.566 0.681

speeds are lower and less accuracy when greater than normalized indices.
Figure 5.31 shows how the correlation varies. The first value (hour 0) is

a bit low but it is due to the fact that the model is still setting itself. It is
quite clear how the correlation decreases during the day and increases during
the night; this is normal, in fact the maximum errors are during the day,
due to convection that the models struggle to describe accurately with a low
resolution. It is however important to note that, for when it resumes, the
correlation at after 6 pm is lower than that of the hours before 8 am. This
result is correct because as the hours advance the forecasts become more
di�cult and therefore there is a loss in correlation.

Finally, table 5.7 is shown containing the indices of the error of the power
forecast with the raw 0-24 hour forecasts. As can also be seen from figure
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Figure 5.30: Trend over time of the RMSE, MAE, NBias, Bias indices.

Figure 5.31: Trend over time of the correlation index.

5.32, with the transfer function based on observed power and wind forecasts,
there are very large errors.

Once the forecasts provided by the European center have been analyzed,
it is possible to correct them.
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Table 5.7: Index value of power prediction with raw wind speed forecasts.
Bias -347.382
NBias -0.954
MAE 349.149
NMAE 0.959
RMSE 638.459
NRMSE 0.962
HH 4.841
SI 0.8071
Pearson 0.410

Figure 5.32: Transfer function with measured power and forecast wind speed.
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Chapter 6

Correction of the forecasts

6.1 Introduction

In this chapter it will be shown step by step how the forecasts were cor-
rected. First, the algorithms considered to be the best for correction will be
evaluated and identified. The corrections will then be made by exploiting
all the available parameters that have been presented in the previous chap-
ter. In fact, the objective is to condition the forecasts as a function of other
variables such as the time or speed in order to find non-linear correlations
that are hidden considering the whole forecasts. Finally, a comparison will
be made with corrections made through the Machine Learning algorithm in
order to evaluate which and when is the best technique to use.

6.2 The best correction techniques

6.2.1 Linear regression

Linear regression attempts to model the relationship between two variables
by fitting a linear equation to observed data. One variable is considered to
be an explanatory variable, and the other is considered to be a dependent
variable.
Before attempting to fit a linear model to observed data, a modeller should
first determine whether or not there is a relationship between the variables of
interest. This does not necessarily imply that one variable causes the other,
but that there is some significant association between the two variables. A
scatter plot can be a helpful tool in determining the strength of the relation-
ship between two variables.
Closely linked to regression is the concept of correlation, in fact:
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In the theory of (simple) regression it is assumed that a variable X as-
sumes certain values and the relationship that links the second variable
Y to the first is sought: in other words, an attempt is made to establish
a functional link between the two variables.

In the theory of correlation the degree of interdependence between the
two variables is determined, that is, it is determined whether a variation
of the character X corresponds to a more or less sensitive variation of
the character Y

The type of regression that will be used is called least squares regression.
By denoting the estimated independent variable with X and the estimated
dependent variable with Y , the aim is to determining real coe�cients a and
b for which the following linear relationship exists between the two variables:

Y = a+ bX (6.1)

The coe�cient a is called intercept and represents the value of the vari-
able Y when X = 0; while b is called the angular coe�cient or regression
coe�cient or, again, slope of the line and represents the variation undergone
on average by the character Y due to a unit increase of the character X.[?]
Basically, linear regression identifies the mean of the variables using the least
squares technique. In this way, by definition, the best values of the intercept
and of the angular coe�cient are obtained to best minimize the values of the
Bias and RMSE indices.

6.2.2 Quantile regression

Quantile regression is a type of regression analysis used in statistics. Whereas
the method of least squares estimates the conditional mean of the response
variable across values of the predictor variables, quantile regression estimates
the conditional median (or other quantiles) of the response variable. Quan-
tile regression is an extension of linear regression used when the conditions
of linear regression are not met.
One advantage of quantile regression relative to ordinary least squares regres-
sion is that the quantile regression estimates are more robust against outliers
in the response measurements. However, the main attraction of quantile
regression goes beyond this and is advantageous when conditional quantile
functions are of interest. Di↵erent measures of central tendency and statisti-
cal dispersion can be useful to obtain a more comprehensive analysis of the
relationship between variables.[11]
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Figure 6.1: Data fitted with quantile regression and linear regression (red
line).

Figure 6.1 shows how if the data have a non-Gaussian probability distri-
bution, in which mean and median correspond, di↵erent values are obtained
using linear regression and quantile regression. Quantile regression is also
not limited to averaging. In fact, the calculation of the median corresponds
very simply to calculating the quantile of 50 . It is therefore also possible to
calculate quantiles corresponding to other percentages. In this way, in addi-
tion to obtaining the best forecast, it is also possible to provide confidence
intervals with the respective probabilities of exceeding.
In conclusion, quantile regression will be used to correct the wind forecast at
the expense of linear regression. This is mainly due to 2 reasons.

The first is that quantile regression also providing the confidence inter-
vals gives the possibility to understand how reliable the forecast is or
not.

The second point is that the median is identified with this regression.
Identifying the median means finding the optimal value to minimize
the NMAE and in view of the fact that the forecasts will then be used
to predict the power produced by a wind power plant, the index to be
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taken into consideration (as seen in the previous chapters) is just the
NMAE.

6.2.3 Gamma distribution

During the past decade, the use of forecast ensembles for assessing the un-
certainty of numerical weather predictions has become routine. Three op-
erational methods for the generation of synoptic-scale ensembles have been
developed: one is the singular vector method used by the European Centre
for Medium-Range Weather Forecasts. The ability of ensemble systems to
improve deterministic-style forecasts and to predict forecast skill has been
convincingly established. Statistically significant spread-error correlations
suggest that ensemble variance and related measures of ensemble spread are
skilful indicators of the accuracy of the ensemble mean forecast.
Case studies in probabilistic weather forecasting have typically focused on the
prediction of categorical events. Ensembles also allow for probabilistic fore-
casts of continuous weather variables, such as air pressure and temperature,
which are ideally expressed in terms of predictive cumulative distribution
functions (CDFs) or predictive probability density functions (PDFs). How-
ever, ensemble systems are finite and typically include of 5 to 50 member
models. Hence, raw ensemble output does not provide predictive PDFs, and
some form of postprocessing is required.
In this section, is shown the use of ensemble model output statistics (EMOS),
an easy to implement statistical postprocessing technique that addresses the
aforementioned issues. The method is a variant of multiple linear regression
or model output statistics (MOS) techniques that have traditionally been
used for deterministic-style and probability of precipitation forecasts.[14]
Specifically, suppose that X1, . . . , Xm denotes an ensemble of individually
distinguishable forecasts for a univariate weather quantity Y. A multiple lin-
ear regression equation for Y in terms of the ensemble member forecasts can
be written as

Y = a+ b1X1 + ...+ gmXm + " (6.2)

where a and b1, . . . , bm are regression coe�cients, and where " is an
error term that averages to zero. Regression approaches of this type have
been shown to improve the deterministic-style forecast accuracy of synoptic
weather and seasonal climate ensembles, and the associated forecast systems
have been referred to as superensembles. The use of regression techniques
for probabilistic forecasting has not received much attention in the litera-
ture, except for forecasts of binary events. With this approach, is obtain full
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predictive PDFs and CDFs from ensemble forecasts of a continuous weather
variable. Standard regression theory suggests a straightforward way of con-
structing predictive PDFs and CDFs from a regression equation, by taking
them to be Gaussian with predictive mean equal to the regression estimate,
and predictive variance equal to the mean squared prediction error for the
training data. This approach corrects for model biases and takes account of
dispersion errors. However, the resulting assessment of uncertainty is static,
in that the predictive variance is independent of the ensemble spread, thereby
negating the spread-skill relationship. Hence, the variance was modelled of
the error term in the following equation as a linear function of the ensemble
spread, that is,

V ar(") = c+ dS2 (6.3)

where S2 is the ensemble variance, and where c and d are nonnegative coef-
ficients. Combining 6.2 and 6.8 yields the Gaussian predictive distribution

@(a+ b1X1 + ...bmXm, c+ dS2) (6.4)

whose mean derives from the regression equation and forms a bias-corrected
weighted average of the ensemble member forecasts, and whose variance de-
pends linearly on the ensemble variance. It refers to the resulting predictive
PDFs and CDFs as ensemble model output statistics or EMOS forecasts.
For estimating the EMOS coe�cients it was used the novel approach of min-
imum CRPS estimation, which forms a special case of minimum contrast
estimation (MCE). This method is best explained in terms of verification
measures.[12][13] The CRPS is the integral of the Brier scores at all possi-
ble threshold values t for the continuous predictand. Specifically, if F is the
predictive CDF and y is the verifying observation, the continuous ranked
probability score is defined as

crps(F, y) =

Z 1

�1
[F (t)�H(t� y)]2, dt (6.5)

where H(t–y) denotes the Heaviside function and takes the value 0 when
t < y and the value 1 otherwise. Applications of the continuous ranked prob-
ability score have been hampered by a lack of closed-form expressions for the
associated integral.
It is therefore necessary to identify a probability distribution that best rep-
resents the data under analysis.
Figure 6.2 shows how the probability distribution of conditional observations
at di↵erent speed intervals of the predictions is shown. The distributions
show a similar trend between them. In fact, they do not have a symmetrical

72



trend but instead seem to be subject to an important skewness. The left tail
is in fact for all cases shorter than the right curve which decays very slowly.

Figure 6.2: Density function probability of observed wind speed for di↵erent
intervals of wind speed forecast.

There are several probability distributions with such characteristics. To
identify the probability distribution that best describes the data in posses-
sion, it is necessary to look at figure 6.3. This graph was made in a semi-
logarithmic scale to better evaluate the behaviour of the queues. A compar-
ison is therefore shown between a gamma distribution and the probability
density of the observations conditioning to the period of the day between
10 and 15, to a forecast of wind speed between 1.5 and 2.5 m/s and also
conditioning to a variance of the EPS between 0.3 and 0.7 m2/s2. In this
comparison it is evident that the two curves are very similar and therefore
it can be assumed that the gamma distribution is the best that can describe
the data under analysis. This is good because of the gamma distribution
it is possible to calculate its parameters through techniques such as that of
maximum likelihood or even CRPS which, as previously mentioned, is the
technique that is considered the best.

In probability theory and statistics, the gamma distribution is a two-
parameter family of continuous probability distributions. There are three
di↵erent parametrizations in common use:

With a shape parameter k and a scale parameter ✓.
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Figure 6.3: Probability density in semilogarithmic scale (y axis) of the ob-
servations of the conditioned wind speed to: observed wind from hour 10 to
15, with a forecast speed between 1.5 and 2.5 m/s and with a variance of the
EPS as between 0.3 and 0.7.

With a shape parameter ↵ = k and an inverse scale parameter � = 1/✓,
called a rate parameter.

With a shape parameter k and a mean parameter µ = k✓ = ↵/�.

The parametrization with k and ✓ appears to be more common in econo-
metrics and certain other applied fields, where for example the gamma distri-
bution is frequently used to model waiting times. For instance, in life testing,
the waiting time until death is a random variable that is frequently modelled
with a gamma distribution.[15] The figure 6.4 shows how the gamma distri-
bution vary at the variation of the parameters k and ✓.
For future analyses, the k and ✓ parameters will be used. Where:

k = M2/�2

✓ = �2/M

With M representing the mean of the predictions and ✓ the variance. So,
going to minimize the CRPS function:

CRPS =
1

N
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Figure 6.4: The probability density function on y axis of Gamma distribution
for x variable for di↵erent parameters.

Where:

Ki = (a+ bFi) / (c+ dS2
i
)

✓i = (c+ dS2
i
) / (a+ bFi)

P = the incomplete function of gamma

� = is the beta function

Oi = the i observation

So knowing Fi (the forecasts) and S2
i
(the variance of the forecasts) it is

possible to determine the parameters a, b, c, d which allow to calibrate the
forecast (F cal

i
) and its variance (S2cal

i
) as follow:

F cal

i
= a+ bFi

S2cal
i

= c+ dS2
i
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Therefore, to conclude, two techniques will be used for the correction of
the forecasts: the first is that which, using quantile regression, provides the
best result in terms of NMAE, however, giving a non-dynamic variance as the
reliability of the forecast; the second is that using the gamma distribution
with which the best punctual forecast is not obtained but rather the best
probability distribution of the forecast by exploiting the variance of the EPS
dynamically.

6.3 The strategies for correcting the forecasts

This section goes into actual forecast correction. In the various subsections it
will be shown how the error indices vary according to the correction strategy
adopted. The goal is to find elements that lead to a correlation between
forecasts and observation to better calibrate the forecast.
All corrections apart for the first and the one that will be considered to
be the best, will be shown using the one obtained from the average of the
EPS as a starting forecast and using the quantile regression to calibrate the
parameters. Only with the best correction strategy will it also be shown how
the HRES forecast varies to compare it with that of EPS. The correction will
also be shown using the gamma distribution both to make a comparison but
above all to see the resulting distribution.
As regards the correction of the forecasts with a forecast horizon of 0-24
hours, they will be recorded as follows. The first strategies will be of the
“static” type. In other words, strategies will be used that provide for the
division of the datasets according to di↵erent variables but without ever
considering the observed data of the same day. For these strategies, the full
correction of the forecasts from 0 to 24 hours will be shown. Further on,
other strategies will be used that exploit the fact that 0-24 hour forecasts
are made available after about 7 hours and therefore there are already field
observations ranging from 0 to 7 hours; this strategies are of the “dynamic”
type. For this reason, it makes no sense to correct the forecasts previous to
7 because it would be enough to replace the value of the observation as it
would be the past. Therefore, only the hours ranging from 8 to 24 will be
corrected and shown.
This assumption is absolutely legitimate not only because the forecasts arrive
7 hours late due to the time needed to make the models of ECMWF appear
but also because the electricity market closes after this time and therefore
there is time to enter in possession of the wind observations in those hours.
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6.3.1 The correction on the forecasts without condi-
tioning

This first subsection shows how the error indices improve by calibrating the
parameters without using any kind of division or particular technique.
Table 6.1 shows the error indices calculated before and after the correction
for cases 0-24 and 24-48 hours. The Bias and the NBias decrease consider-
ably but without tending to 0, they also continue to have a non-negligible
value. In fact, the NBias is between 17 and 18%. This is due to the fact that
quantile regression and gamma distribution regression do not aim to mini-
mize the Bias, as does linear regression. Furthermore, it must be considered
that even in the case of linear regression, an absolute 0 would not be reached
because, since the training dataset is di↵erent from the verification one, they
have slightly di↵erent characteristics due to the normal variation between
year and year. If hypothetically infinite years were available in the past and
in the future, then one could search for the 0 fulfilled (assuming that there are
no variables such as global warming etc ...). The indices of MAE and NMAE,
as expected, reach their lowest value thanks to quantile regression. On aver-
age there is an improvement of about 15% and between quantile regression
(QR) and regression due to gamma distribution (GM) there is a di↵erence
of only 1.5 percentage points. This confirms the fact that the gamma distri-
bution is suitable for the data in possession. Regarding the RMSE and the
NRMSE there is a better result using the gamma distribution. As confirms
the HH index the gamma distribution, between the two, is the most suitable
technique to correct the forecast. However, as the most important index is
NMAE, quantile regression remains necessary. SI improves without showing
particular di↵erences between the two techniques. Finally, it is interesting
to note that the Pearson has not changed its value in the slightest. This is
absolutely normal; in fact the Pearson does not undergo any variation if a
certain dataset is multiplied or added to some value. This is because doing so
changes the dataset linearly. The Pearson changes when there are variations
that are not linear.

Table 6.2 shows the error indices starting from the HRES forecast. Also
in this case there is the same results as in table 6.1 at the qualitative level.
Going however to compare the two tables, it is noticed something that was
previously supposed. That is, the indices obtained following the correction
are worse despite starting from better values. This is precisely due to Pearson
and therefore confirms the fact that this index is the most important to
understand which forecast after a calibration contains the most correct and
reliable information.

Figures 6.5 and 6.6 show how the forecasts have varied due to the correc-
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Table 6.1: Error indices of EPS mean before and after correction for the 0-24
and 24-48 h forecasts, QR represents the correction using quantile regression
while GM using the gamma distribution.

Index
0-24 h forecast 24-48 h forecast

Raw QR GM Raw QR GM

Bias -2.945 -0.923 -0.067 -2.941 -0.896 -0.038
NBias -0.566 -0.177 -0.013 -0.565 -0.172 -0.007
MAE 3.215 2.443 2.532 3.223 2.477 2.572
NMAE 0.618 0.469 0.486 0.619 0.476 0.494
RMSE 4.572 3.337 3.217 4.599 3.383 3.266
NRMSE 0.687 0.502 0.484 0.692 0.509 0.491

HH 1.182 0.619 0.561 1.196 0.628 0.569
SI 0.526 0.482 0.484 0.532 0.491 0.491

Pearson 0.632 0.632 0.632 0.615 0.615 0.615

Table 6.2: Error indices of HRES before and after correction for the 0-24
and 24-48 h forecasts, QR represents the correction using quantile regression
while GM using the gamma distribution.

Index
0-24 h forecast 24-48 h forecast

Raw QR GM Raw QR GM

Bias -2.637 -0.996 -0.058 -2.656 -1.061 -0.057
NBias -0.507 -0.191 -0.011 -0.510 -0.204 -0.011
MAE 3.013 2.531 2.612 3.055 2.612 2.698
NMAE 0.579 0.486 0.502 0.587 0.502 0.518
RMSE 4.247 3.393 3.259 4.322 3.516 3.361
NRMSE 0.639 0.510 0.490 0.650 0.529 0.505

HH 0.999 0.636 0.571 1.029 0.670 0.593
SI 0.501 0.488 0.490 0.513 0.504 0.505

Pearson 0.621 0.621 0.621 0.586 0.586 0.586

tion used. In the first there is the scatter plot with respect to the observations
before and after the correction of the forecasts. As it can be seen the points
tend to be more on the diagonal following the correction while before they
were conspicuously more to the left to indicate the underestimation of the
forecasts. It is not appreciable to the eye but as there is still a negative
NBias (almost 20%) the points should tend to stay a little to the left of the
diagonal. The second figure provides a view over a time series of 5 weeks
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in which the large di↵erence between the forecasts before and after the cor-
rection is shown. Here, too, the forecasts become much more reliable and
less underestimated, although as mentioned earlier an underestimate of the
observation persists.

Figure 6.5: Scatter plot of forecasts before and after correction vs observa-
tion. The forecast are the EPS mean with a forecast horizon of 24-48 hours.
The correction used is the quantile regression.
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Figure 6.6: Time series of the forecasts before and after the correction from
12/3/2018 to 16/4/2018. The forecasts are the EPS mean with a forecast
horizon of 24-48 hours. The correction used is the quantile regression.
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6.3.2 Correction dividing for the directions

In this section will be analyse the correction that exploits the di↵erent wind
directions. As shown in figure 5.21, the wind farm is located in a territory
with a very complex orography. This complexity is due to the presence of
the mountains around the site. Therefore, analysing the wind directions both
observed and predicted it was found that there were two main directions from
which most of the winds came and which statistically had greater intensity.
In the forecasts the distinction was slightly less sophisticated, but the four
quadrants were clearly distinguished.
As already announced, the tactic is to condition the forecasts according to
direction in order to find correlations that would otherwise be hidden.
Figure 6.7 shows the scatter plots for the 4 wind directions. Compared to
the scatter plot that was shown previously, it can be seen how the point
cloud, for quadrants 1 and 3, is much narrower. It is also noted that scatter
plots have very di↵erent characteristics from each other. This leads to think
that the technique of conditioning the directions can bring great benefits
because it would seem to have been able to identify a parameter that gives
the possibility to find those correlations that were previously hidden.
Table 6.3 shows the error indices of the 24-48 hour forecasts all together and
conditioned by the 4 directions. The most important index is precisely the
Pearson which varies considerably from direction to direction. As mentioned
above, in fact, the correlation of the 1st and 3rd quadrant is much greater
than the total one as well as the 2nd and 3rd quadrant have a much lower
correlation.

Table 6.3: Error indices for raw predictions (EPS average) 24-48 hours for:
whole dataset merged and divided into 4 quadrants.

Index
24-48 h forecast

Total 1 quad 2 quad 3 quad 4 quad

Bias -2.945 -1.757 -1.134 -5.191 -1.246
NBias -0.566 -0.419 -0.356 -0.692 -0.438
MAE 3.215 2.028 1.788 5.326 1.651
NMAE 0.618 0.484 0.562 0.709 0.580
RMSE 4.572 2.846 2.576 6.562 2.606
NRMSE 0.687 0.547 0.638 0.740 0.674

HH 1.182 0.781 0.946 1.431 1.082
SI 0.526 0.431 0.573 0.453 0.592

Pearson 0.632 0.766 0.362 0.708 0.512
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Figure 6.7: Scatter plot: comparison between observations and forecasts 24-
48 of the average of the EPS for the 4 main directions.

Going to perform a quantile regression (and even if not shown using the
gamma distribution) is obtained the results reported in table 6.4. All the in-
dices have undergone a clear improvement compared to the simple calibration
carried out in the previous sub-chapter and consequently also with respect
to the values of departure. The NBias begins to tend towards zero, settling
around 6/7% (10% less than the tt correction). The NMAE undergoes an
improvement of about 8/9% on the tt correction for an overall �23% about
the raw forecast. It is very interesting to underline the strong variation that
correlations have undergone. In fact, the Pearson, which had previously re-
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mained constant, has undergone an increase of almost 15 percentage points.
It is a notable improvement that shows once again how conditioning on the
directions has been a winning tactic. The increase in Pearson is since com-
pared to before, having been performed 4 di↵erent regressions, the linearity
condition necessary to keep the Pearson constant has been lost.

Table 6.4: Comparison between the various indices of the error for the raw
forecasts (mean EPS, 0-24 and 24-48 hours), corrected without divisions (tt),
and corrected by conditioning for the directions.

Index
0-24 h forecast 24-48 h forecast

Raw tt dr Raw tt dr

Bias -2.945 -0.923 -0.349 -2.941 -0.896 -0.329
NBias -0.566 -0.177 -0.067 -0.565 -0.172 -0.063
MAE 3.215 2.443 2.009 3.223 2.477 2.072
NMAE 0.618 0.469 0.386 0.619 0.476 0.398
RMSE 4.572 3.337 2.659 4.599 3.383 2.760
NRMSE 0.687 0.502 0.400 0.692 0.509 0.415

HH 1.182 0.619 0.451 1.196 0.628 0.469
SI 0.526 0.482 0.396 0.532 0.491 0.412

Pearson 0.632 0.632 0.773 0.615 0.615 0.750

Finally in Figure 6.8 the scatter plots of the raw predictions vs the ob-
servations were superimposed with that of the predictions corrected with the
direction vs the observations. Compared to the scatter plot 6.5 can appreci-
ate how the point cloud is much better around the diagonals. In fact, it is less
wide (due to the raising of Person) better distributed between the right and
left side of the diagonal (due to the lowering of the Bias) and finally better
lying along the diagonal (due to the lowering of MAE, RMSE and HH).

Finally, figure 6.9 shows the di↵erence between the forecast obtained with-
out conditioning (tt) with respect to that conditioning on the directions (dr).
Briefly the di↵erence is not as evident as it is for the error indices. The im-
provement in forecasts is very evident also from a graphic point of view.
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Figure 6.8: Scatter plot of forecasts (mean EPS, 24-48 hours) vs observations
before and after the correction, influencing the directions.

Figure 6.9: Time series of the forecasts before and after the correction from
12/3/2018 to 16/4/2018. The forecasts are the EPS mean with a forecast
horizon of 24-48 hours. The correction used is the quantile regression with
two techniques: using all the dataset (tt), conditioning on the directions(dr).

84



6.3.3 Correction dividing for day hours

As shown in table 5.6 and in figure 5.31, the Pearson index does not remain
constant throughout the day. It has been highlighted that there is less cor-
relation in the daytime hours and that moving away from the time in which
the forecast was made, the correlation decreases.
It may therefore make sense to try to divide the dataset according to the
time limit, in order to make the most of the correlation present. It is proba-
ble that, if there is a systematic error that depends on the time, by dividing
the dataset, it would be possible to correct it. By dividing by the hours of
the day, a correlation is sought mainly linked to two aspects: the first is due
to the physical phenomena that have di↵erent behaviours as the hours vary;
the second is due to the time that has passed since the start of the forecast
made by the model for which there could be significant variations.
Figure 6.10 shows how actually going to divide for hours the scatter plots
take on a more defined shape. Furthermore, as already seen thanks to the
Pearson index, it is clear that the correlation in daylight hours is lower; in
fact the point cloud is much larger than that of the daytime hours.

Table 6.5 shows the error indices with the correction of the forecasts
without conditions and of that made by conditioning the hours of the day. All
the indices, including the Pearson, undergo an improvement albeit limited.
The NMAE, NRMSE and Pearson all improved by about 2%. Compared to
conditioning with the management it is undoubtedly worse but there is still
a not negligible improvement.

Table 6.5: Comparison between the various indices of the error for the raw
forecasts (mean EPS, 0-24 and 24-48 hours), corrected without divisions (tt),
and corrected by conditioning for the day hours.

Index
0-24 h forecast 24-48 h forecast

Raw tt dH Raw tt dH

Bias -2.945 -0.923 -0.768 -2.941 -0.896 -0.710
NBias -0.566 -0.177 -0.148 -0.565 -0.172 -0.136
MAE 3.215 2.443 2.341 3.223 2.477 2.382
NMAE 0.618 0.469 0.450 0.619 0.476 0.458
RMSE 4.572 3.337 3.225 4.599 3.383 3.273
NRMSE 0.687 0.502 0.485 0.692 0.509 0.492

HH 1.182 0.619 0.588 1.196 0.628 0.595
SI 0.526 0.482 0.471 0.532 0.491 0.481

Pearson 0.632 0.632 0.654 0.615 0.615 0.635
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Figure 6.10: Scatter plot of forecasts (mean EPS, 24-48 hours) vs observa-
tions for the di↵erent hours of the day (0, 3, 6, 9, 12, 15, 18, 21 and 23
hour)

It is interesting to analyse the MAE from a graphic point of view. Figure
6.11 plots the Bias and MAE indices before and after making the correction
as the hours change.

As already seen in the previous chapter and as the graph reconfirms,
daytime hours are those with the worst forecasts. Looking at the graph, the
MAE undergoes a greater improvement during the hours of the day. The
fact is curious because from graph 5.31 it was seen that during the hours
of the day it was where there was less correlation. This improvement must
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Figure 6.11: Comparison between MAE and Bias before and after correction,
depending on the time of day. They are shown how they change as the hour
changes.

therefore be sought in another index, the Bias. In fact, the Bias shows the
systematic error of the forecast. The systematic error most of the time is
the most easily correctable in the predictions. Therefore, the improvement
of the MAE in the day’s hours is due to the fact that in those hours the
greatest systematic error is recorded and therefore the other indices such as
the MAE benefit more from the correction in these hours than the others.
From an economic point of view this is good news as the wind during the
day is more di�cult to predict. Furthermore, during the day it is the time
when there is more demand for energy, and it is therefore necessary to have
a good forecast.

At this point, having verified that conditioning on the hours leads to a
benefit in terms of forecasts, it is possible to combine the two conditions
made up to now, thus simultaneously conditioning for the direction and for
the time.
Table 6.6 shows the error indices for forecasts 0-24 and 24-48 hours calcu-
lated on the raw forecast, on the forecast calculated by conditioning on the
directions (dr) and on the forecast calculated by conditioning on the direc-
tion and time (drdH). As expected, the indices all improve even more than
the di↵erence between the “tt” and “dH” correction (table 6.5). This means
that there is also a correlation between time and direction of the day. So if
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you take a wind with a certain direction, as the time of day changes, it will
show a di↵erent phenomenology.

Table 6.6: Comparison between the various indices of the error for the raw
forecasts (mean EPS, 0-24 and 24-48 hours), corrected by conditioning for
the directions(dr), and corrected by conditioning for the directions and for
the hours.

Index
0-24 h forecast 24-48 h forecast

Raw dr drdH Raw dr drdH

Bias -2.945 -0.349 -0.241 -2.941 -0.329 -0.268
NBias -0.566 -0.067 -0.046 -0.565 -0.063 -0.051
MAE 3.215 2.009 1.837 3.223 2.072 1.919
NMAE 0.618 0.386 0.353 0.619 0.398 0.369
RMSE 4.572 2.659 2.501 4.599 2.760 2.637
NRMSE 0.687 0.400 0.376 0.692 0.415 0.397

HH 1.182 0.451 0.416 1.196 0.469 0.442
SI 0.526 0.396 0.374 0.532 0.412 0.395

Pearson 0.632 0.773 0.800 0.615 0.750 0.774

Finally, figure 6.12 shows the di↵erence between the forecast obtained by
conditioning only on the directions (dr) with respect to that also condition-
ing on the hours (drh). At a glance the di↵erence is not as evident as it
is for the error indices. It is good to underline that even if this di↵erence
is not particularly appreciable on a visual level, since it is instead apprecia-
ble from the point of view of the indices, it will be useful when the wind
speed is transformed into energy power since often this operation involves an
amplification of the mistakes of forecasts.
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Figure 6.12: Time series of the forecasts before and after the correction from
12/3/2018 to 16/4/2018. The forecasts are the EPS mean with a forecast
horizon of 24-48 hours. The correction used is the quantile regression with
two techniques: conditioning on the directions(dr), conditioning on the di-
rections and on hours(drdH).
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6.3.4 Correction dividing in intervals of wind speed

The last conditioning that will be performed is the one on the speed of
predictions. In fact it may be that by dividing the forecasts according to
speed intervals, the fit lines have di↵erent slopes. To understand how many
speed ranges to use and how e↵ective they are two tests were done:

Division into 3 intervals: (0� 3), (3� 6), (6�1)[m/s]

Division into 12 intervals: (0� 0.5), (0.5� 1), (1� 1.5), (1.5� 2), (2�
2.5), (2.5 � 3), (3 � 3.5), (3.5 � 4), (4 � 4.5), (4.5 � 5), (5 � 5.5), (5.5 �
1)[m/s]

Figure 6.13 shows the scatter plots of the 24-48 hour forecasts. The left
figure in red shows the broken line of best fit created by dividing the dataset
into the 3 intervals, while on the right the best fit broken into the 12 intervals.
Both graphs show that for speed values below 5/5.5 m/s the best fit tends
to be substantially linear. The di↵erence between lower and higher speeds of
5 m/s is more evident.

Figure 6.13: Scatter plot of forecasts (average EPS 24-48 hours) vs observa-
tions with 2 di↵erent best fits (in red). On the left a best fit dividing the
dataset into 3 speed ranges while on the right dividing by 12 speed ranges.

Table 6.7 shows the index values of the raw predictions, corrected for the
entire dataset, corrected by conditioning for 3 speed intervals and finally for
12 intervals. Comparing the tt correction with the dv3 correction shows that
there is an improvement in the indices. In particular, the NBias improves
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by about 2.5%, the NMAE by about 0.5% and the NRMSE by almost one
percentage point. Confirming the overall improvement, HH improves by
as much as 2%. Finally, it is emphasized that the Pearson also improves,
attesting in fact that inserting a conditioning on the speed leads to better
correlations.
A comparison is now made between which of the two strategies implemented
is the best and therefore whether it is better to condition on 12 intervals or 3
intervals. From the table it appears that some of the indices would seem to be
better if the forecasts are divided into 12 speed intervals while others in the
case where it is divided by 3 intervals, paying particular attention to the HH
index which shows a perfectly equal value. These di↵erences are absolutely
insignificant. This was expected given that, as mentioned before, in graph
6.13 a best fit line was shown which, apart from the two macrozones above
and below 5 m/s, was particularly linear. Therefore, for the future this
conditioning will be used by dividing only and exclusively into 2 intervals
in order to detect the significant non-linearity shown now without however
fragmenting the dataset too much, thus losing its robustness.

Table 6.7: Error indices values, starting from mean EPS 24-48 hour forecast,
of the raw predictions, corrected for the entire dataset (tt), corrected by
conditioning for 3 speed intervals (dv3) and finally for 12 intervals (dv12).

Index
24-48 h forecast

Raw tt dv3 dv12

Bias -2.941 -0.896 -0.761 -0.746
NBias -0.565 -0.172 -0.146 -0.143
MAE 3.223 2.477 2.458 2.455
NMAE 0.619 0.476 0.472 0.472
RMSE 4.599 3.383 3.332 3.340
NRMSE 0.692 0.509 0.501 0.502

HH 1.196 0.628 0.607 0.607
SI 0.532 0.491 0.488 0.490

Pearson 0.615 0.615 0.622 0.619

Now it is possible to make a correction by joining all the conditionings
that have been presented so far. Therefore, the forecasts will be conditioned
simultaneously on directions, time and speed intervals.
Table 6.8 shows how they improve by also inserting the speed condition com-
pared to the best predictions obtained so far. It is clear how the improvement
is clear for all the indices and how it is amplified compared to that seen in
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the previous table. In particular, if highlighted an NBias that begins to be
close to 0, settling at 3%, an NMAE improved by almost a percentage point
and overall, by almost 30 compared to the raw forecast and finally a Person
also improved by almost 1% compared to the correction drdH and 20% of
the raw forecast.

Table 6.8: Comparison between the various indices of the error for the raw
forecasts (mean EPS, 0-24 and 24-48 hours), corrected by conditioning for the
directions and hours(drdH), and corrected by conditioning for the directions,
hours and velocity (drdHdv).

Index
0-24 h forecast 24-48 h forecast

Raw drdH drdHdv Raw drdH drdHdv

Bias -2.945 -0.241 -0.158 -2.941 -0.268 -0.124
NBias -0.566 -0.046 -0.030 -0.565 -0.051 -0.024
MAE 3.215 1.837 1.802 3.223 1.919 1.878
NMAE 0.618 0.353 0.346 0.619 0.369 0.361
RMSE 4.572 2.501 2.446 4.599 2.637 2.559
NRMSE 0.687 0.376 0.368 0.692 0.397 0.385

HH 1.182 0.416 0.400 1.196 0.442 0.419
SI 0.526 0.374 0.367 0.532 0.395 0.384

Pearson 0.632 0.800 0.808 0.615 0.774 0.787

Finally, figure 6.14 shows a comparison between the raw forecasts, those
with the correction conditioning on direction and hours, the correction made
now conditioning on direction, time and speed and the observations in a
time series of 5 weeks. The two correct predictions are very similar since
even the error indices have not diverged very much. However, it is very
interesting to note what the e↵ect of conditioning was on speeds lower and
higher than 5 m/s. In fact, while the lower speeds seem to have had few
variations, the higher speeds are those that seem to have benefited most
from this conditioning. It can be said that this result was expected because,
as seen from figure 5.26, most of the forecast speeds were below 5 m/s and
that means that when the best fit was carried out on the whole dataset,
these speeds presented a di↵erent trend from the others but were not very
represented and therefore the best fit that was created was more similar to
that for speeds below 5 m/s.
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Figure 6.14: Time series of the forecasts before and after the correction from
12/3/2018 to 16/4/2018. The forecasts are the EPS mean with a forecast
horizon of 24-48 hours. The correction used is the quantile regression with
two techniques: conditioning on the directions and on hours(drh), condition-
ing on the directions, hours and velocity(drdHdv).
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6.3.5 Correction using prediction error correlation

As previously mentioned, the wind forecast ranges from 0 to 48 hours. These
forecasts begin to be calculated at midnight by the ECMWF. Logically, for
all the forecasts to be calculated and distributed, several hours of calculation
are required as the models are computationally very heavy. Thus, the first
available hour of this forecast turns out to be after 7 in the morning. In
addition to this fact is added that the electricity market closes at certain
established times. For example, the one for the next day closes at 11.45 am.
This means that there are forecasts available which refer to the past and are
therefore apparently useless. From this point on, it is simulated to have to
calculate the forecast at 7:30 in the morning. This means that for the 0-24
hour forecast only the 8-24 hour forecast will be considered. In doing so,
however, you come into possession of a data that was not known before and
so it can be known how and how much the forecasts from 00 to 07 hours
were wrong. In this section it will analyse if it exists and how to exploit
the correlation between the errors of the forecast at 7 am with that of the
following hours.
First of all, it is necessary to take a look at how the 0-24 hour forecasts
change by considering only those from 8 to 24. They are expected to be
worse as the hours have been eliminated as the least forecast horizon and the
hours that, as seen in the previous chapters, being mainly nocturnal they are
easier to predict.
Table 6.9 shows this comparison. As expected, many of the indices have dete-
riorated but not all. However, the indices can be divided into two categories.
In fact, going to see which are the improved indices, they are only those that
have been normalized. In fact, since the diurnal hours are typically windier
than the nocturnal ones, the moment in which it is normalized there is a
higher denominator and therefore the index is lower. On the other hand,
looking at the non-normalized indices as expected, they have worsened. In
conclusion, the Pearson also gets worse.

At this point the first thing to do is to see if and how much correlation
there is between the error at 7 and those at other hours. Figure 6.15 shows
precisely how this correlation varies throughout the forecast period. Two
correlations are shown. The first (in green) shows the correlation of the error
(forecasts - observations) of the raw predictions without any calibration. The
second in red shows the correlation of the error with the forecasts calibrated
with the best technique currently available (drdHdv, conditioning on direc-
tion, time, and speed). The error correlation of the raw predictions is much
greater than that of the corrected predictions. This is normal and is since
the correct prediction, by virtue of the fact that conditioning has been made,

94



Table 6.9: Comparison between the forecasts from 0 to 24 with the forecasts
only from 8 to 24.

Index
Raw drdHdv

0-24 h 8-24 h 0-24 h 8-24 h

Bias -2.945 -3.273 -0.158 -0.097
NBias -0.566 -0.576 -0.030 -0.017
MAE 3.215 3.484 1.802 1.897
NMAE 0.618 0.613 0.346 0.334
RMSE 4.572 4.723 2.446 2.533
NRMSE 0.687 0.681 0.368 0.365

HH 1.182 1.162 0.400 0.394
SI 0.526 0.491 0.367 0.365

Pearson 0.632 0.584 0.808 0.771

has changed its raw nature. So, for example, when the correction is made at
7 it will have a direction “d7” and a speed “v7”, while on the same day the
hour 10 will have its direction “d10” and its speed “v10”. Therefore, the two
forecasts will be subjected to di↵erent corrections due to the fact that they
have di↵erent hours, directions and speeds. Having two di↵erent corrections
therefore changes the relationship between the two errors. For this reason,
the raw predictions have a greater correlation of the error, because they have
the same origin. Logically, since the predictions are correct, however derived
from the raw ones, they maintain a certain correlation of the error. Analysing
the graph further, it is noted first that at 7 o’clock there is a perfect correla-
tion and how the more one moves away from 7 the more it decreases. There
would seem to be a slowdown in the decay of the correlation in the hours
around 7 of the following day, even in the correct case there is an increase
in the correlation. This phenomenon could be traced back to the fact that
repeating the same time of day there are more similar weather conditions.
By virtue of such an evident loss of correlation, it is legitimate to ask whether
it is not worthwhile to first make a correction using this correlation and then
do that by viewing the various terms. It will later be shown that this as-
sumption is incorrect.

At this point it was possible to make a correction by exploiting this cor-
relation. In other words, taking the error of the forecast at hour 7, a quantile
regression was made to calibrate it on the error of all the following hours one
by one. Once the new calibrated error for each hour was obtained, it was
simply added to the forecast thus obtaining the correct forecast. Logically,
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Figure 6.15: Trend of the correlation between the di↵erence between forecasts
and observations at 7 am with those in the 48 hours of forecasting. This
with the following predictions: EPS mean 0-48 h raw and EPS mean 0-48 h
corrected by conditioning on direction, time and speed (drdHdv).

given the poor correlation that exists the next day (forecasts 24-48 hours)
a great improvement is not expected, while for the hours closest to 7 (8-24
hours) yes.
Table 6.10 shows the results of this correction after the correction already
made previously. As expected, the hours 8-24 have undergone a marked im-
provement. The NBias is practically 0, the NMAE is improved by more than
2% as well as the NRMSE. HH also improved by nearly 3 percentage points,
which confirms that forecasts have improved overall. Finally, the Pearson
also made a jump of more than 3 percentage points. As regards the forecasts
at 24-48 hours, there was no benefit from this correction. In fact, the indices
have remained almost identical.

Table 6.11 answers the question posed previously, that is, whether it was
more convenient to put this last correction downstream since it showed high
correlations. Well, the indices show indisputably how best the previously
used approach is. In fact, all the indices have a marked deterioration.

Finally, in figure 6.16, the time series of the raw predictions is shown,
corrected with the conditionings on direction, time and speed (drdHdv) and
further corrected with the correlation of the error (drdHdv-df). This forecast
is that of 0-24 hours as regards the drdHdv while for the drdHdv it goes from
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Table 6.10: Comparison between the various indices of the error for the raw
forecasts (mean EPS, 0-24 and 24-48 hours), corrected by conditioning for the
directions, hours and velocity (drdHdv), and corrected by conditioning for
the directions, hours, velocity and using the correlation of the error(drdHdv-
df).

Index
8-24 h forecast 24-48 h forecast

Raw drdHdv drdHdv-df Raw drdHdv drdHdv-df

Bias -3.273 -0.097 -0.041 -2.941 -0.124 -0.123
NBias -0.576 -0.017 -0.007 -0.565 -0.024 -0.024
MAE 3.484 1.897 1.768 3.223 1.878 1.878
NMAE 0.613 0.334 0.311 0.619 0.361 0.361
RMSE 4.723 2.533 2.382 4.599 2.559 2.561
NRMSE 0.681 0.365 0.344 0.692 0.385 0.385

HH 1.162 0.394 0.365 1.196 0.419 0.419
SI 0.491 0.365 0.344 0.532 0.384 0.385

Pearson 0.584 0.771 0.802 0.615 0.787 0.787

Table 6.11: Comparison to see if it is better to do the correction of the error
correlation before (df-drdHdv) or after the correction with the conditioning
on direction, time and speed (drdHdv-df). All this starting from the forecast
of the average EPS for 8-24 and 24-48 hours.

Index
8-24 h forecast 24-48 h forecast

Raw drdHdv-df df-drdHdv Raw drdHdv-df df-drdHdv

Bias -3.273 -0.041 -0.090 -2.941 -0.123 -0.241
NBias -0.576 -0.007 -0.016 -0.565 -0.024 -0.046
MAE 3.484 1.768 1.874 3.223 1.878 2.131
NMAE 0.613 0.311 0.330 0.619 0.361 0.409
RMSE 4.723 2.382 2.546 4.599 2.561 2.961
NRMSE 0.681 0.344 0.367 0.692 0.385 0.445

HH 1.162 0.365 0.395 1.196 0.419 0.501
SI 0.491 0.344 0.367 0.532 0.385 0.444

Pearson 0.584 0.802 0.769 0.615 0.787 0.703

8 to 24, in fact there are holes. Well, it appears that the correlation of the
error has led to an improvement in the data, especially as regards the hours
closest to 7. Such improvements are seen particularly where there are peaks
or particularly low values.
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Figure 6.16: Time series of the forecasts before and after the correction from
12/3/2018 to 16/4/2018. The forecasts are the EPS mean with a forecast
horizon of 8-24 hours. The correction used is the quantile regression with
two techniques: conditioning on the directions, hours and velocity(drdHdv)
and using the error correlation after conditioning on the directions, hours
and velocity(drdHdv-df). The last forecast is only for 8 to 24 hour.

6.3.6 The moving average

As seen by the graphs depicting the time series of the forecasts, they have
a rather fluctuating aspect. This is certainly due to the nature of the wind
which has large variations even in small periods of time. Furthermore, the
fact of having conditioned and calibrated the forecasts could have led to an
amplification of the noise now exposed. It may therefore make sense to try
to make moving averages to see if the forecast can gain an advantage.
It is therefore necessary to first understand how many hours it is convenient to
use for the moving average. Several cases have been made with the following
number of hours:

3 hour

5 hour

7 hour

9 hour
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11 hour

13 hour

The number of hours is always odd because excluding the current time you
want to have the same distance back and forth in time. Logically close to the
forecast limits (when approaching the 48 hour forecast) the moving average
must necessarily consist of fewer hours because for example for the hour 47
with a moving average composed of 7 hours it would also be necessary to
know the hours 49 and 50 which, however, do not know each other. So, for
47 hours the best can be done is use a 3 hour moving average.
The formula for calculating the moving average(V (t)) is as follows:

V (t) =
1

k

m2X

i=m1

V (t+ i) (6.7)

With:

m1 the number of periods before t.

m2 the number of periods following t.

k = m1 +m2 + 1 is the period or order of the moving average, and is
equal to the number of addends.

V is the forecast of the wind speed.

Figure 6.17 shows how the NMAE, HH and Pearson indices change by
the number of hours used to make the moving average. First of all, the
graph shows that even if only using 3 hours of moving average there is a
considerable improvement of all indices. It also appears that the optimal
number of hours to run the moving average is 7. So 3 hours forward and 3
hours back.

At this point it is possible to make the moving average for all forecasts.
Table 6.12 shows the error indices for the raw forecast, the best forecast so
far and the same after making a 7-hour moving average. Well all the indices
have improved apart from the NBias which has a very slight deterioration.
The NMAE instead improves by more than 1% as well as NRMSE and HH.
The Pearson also shows a good improvement of up to 2 percentage points.

Finally, the usual time series is shown in figure 6.18. It is quite clear
what the e↵ect of the moving average is. In fact, the trend of the forecast is
much sweeter than before and all the noise that previously existed has been
eliminated. Of course, in doing so, some small speed peaks are lost that were
previously taken better but overall, as confirmed by the error indices, the
result is better.
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Figure 6.17: How the NMAE, Pearson and HH indices vary as the floating
window used varies. On the ordinate there is the value of the indices while
on the abscissa there is the heat of the number of hours considered to make
the moving average. The moving average was made on the forecast corrected
with the best available correction (drdHdv-df) on the EPS mean 24-48 h
forecast.
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Table 6.12: Comparison between the various indices of the error for the raw
forecasts (mean EPS, 8-24 and 24-48 hours), corrected by conditioning for the
directions, hours and velocity and using the correlation of the error(drdHdv-
df), and corrected by conditioning for the directions, hours, velocity, using
the correlation of the error and making a moving average(drdHdv-df-mv).

Index

8-24 h forecast 24-48 h forecast

Raw
drdHdv- drdHdv-

Raw
drdHdv- drdHdv-

-df -df-mv -df -df-mv
Bias -3.273 -0.041 -0.107 -2.941 -0.123 -0.142
NBias -0.576 -0.007 -0.019 -0.565 -0.024 -0.027
MAE 3.484 1.768 1.686 3.223 1.878 1.816
NMAE 0.613 0.311 0.297 0.619 0.361 0.349
RMSE 4.723 2.382 2.262 4.599 2.561 2.466
NRMSE 0.681 0.344 0.326 0.692 0.385 0.371

HH 1.162 0.365 0.349 1.196 0.419 0.405
SI 0.491 0.344 0.326 0.532 0.385 0.370

Pearson 0.584 0.802 0.823 0.615 0.787 0.804
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Figure 6.18: Time series of the forecasts before and after the correction
from 12/3/2018 to 16/4/2018. The forecasts are the EPS mean with a fore-
cast horizon of 24-48 hours. The correction used is the quantile regression
with two techniques: conditioning for the directions, hours and velocity and
using the correlation of the error(drdHdv-df) and conditioning for the direc-
tions, hours, velocity, using the correlation of the error and making a moving
average(drdHdv-df-mv)
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6.3.7 Correction of negative values

Due to the corrections previously made it may have happened that some
wind speed predictions have assumed a negative value. For example, when
correlating the error, it can happen that at 7 o’clock there is an error opposite
to the ratio it usually has with that of any hour later and therefore if a
forecast is close to 0 it can easily become negative. This perhaps does not
happen in the time series shown so far but it is something that for example
for the 24-48 hour forecast has occurred 29 times. Since these predictions are
mathematically wrong, it makes sense to change them manually. From the
literature there are 2 di↵erent methods, one that replaces the negative values
with a zero and the other that replaces them with opposite values. In this
case, being so few points, one method or the other is absolutely indi↵erent.
From the table 6.13 there is practically no type of improvement in general
and that the di↵erence between replacing with 0 and the opposite value does
not change anything. The technique of replacing with 0, which seems to be
slightly better, will therefore be adopted.

Table 6.13: Comparison between the various indices of the error for
the raw forecasts (mean EPS, 24-48 hours), corrected with the best
correction(drdHdv-df-mv) and then later replacing negative values with their
opposite (sub. opp.) or with a 0(sub. 0).

Index
24-48 h forecast

Raw drdHdv-df-mv sub. opp. sub. 0

Bias -2.941 -0.142 -0.140 -0.139
NBias -0.565 -0.027 -0.027 -0.027
MAE 3.223 1.816 1.814 1.814
NMAE 0.619 0.349 0.349 0.348
RMSE 4.599 2.466 2.466 2.465
NRMSE 0.692 0.371 0.371 0.371

HH 1.196 0.405 0.405 0.405
SI 0.532 0.370 0.370 0.370

Pearson 0.615 0.804 0.804 0.804

6.3.8 The use of the 50 members of the EPS

EPS are 50 di↵erent wind speed predictions. As previously explained, they
are di↵erent because they start from 50 di↵erent initial conditions generated
going to perturb the initial condition considered to be the best. The average
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of these 50 forecasts has been used so far. The goal of this sub-chapter is to
try to make the most of all 50 members.
As seen in the sub-chapter where forecast was corrected using error corre-
lation, it was exploited the fact that forecasts, when made available, have
hours of forecasts that are now in the past. The idea is therefore to identify
one or more members who in the first 7 hours seem to have predicted the
wind better. Once identified, these n members will be used to predict the
next 40 hours.
First of all, it is therefore necessary to understand how many members should
be taken. In fact, since the members are very variable (much more than their
average), taking too few would risk having a forecast with too many fluctua-
tions. On the contrary, by taking too few of them it risks inserting too many
who have a too wrong forecast. The members will be chosen according to
the NRMSE index. In fact, those who will have the best NRMSE in the first
7 hours of forecasting will be the members who will be used. To put them
together, will not be use a simple average but a weighted average (< V > (t))
according to the NRMSE:

< V > (t) =
NX

i=1

NRMSEi(t)
NX

i=1

Vi(t)
1

NRMSEi(t)
(6.8)

t is the instant considered

< V > (t) is the result of the prediction at time t

N is the number of members used

NRMSEi(t) is the NRMSE at time t of member i

Logically, to give more weight to the best members it is necessary to point
them a lot by the inverse of the NRMSE since the more NRMSE tends to
zero the better.
To understand how many members, it is best to consider starting from the
correct predictions with the drdHdv (conditioning on direction, time and
speed).
Figure 6.19 shows how the NMAE, HH and Pearson indices vary as a function
of how many members of the EPS are considered. It is immediately evident
how there is a huge di↵erence between taking only one member compared to
taking even only 2. In fact, as said before, taking too few members leads to
a too disturbed and “turbulent” forecast, while increasing the number the
forecast becomes more “stable”. The best condition seems to be taking a
number of members between 30 and 40. In fact, after 40 there appears to be
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a counter-trend in the indices. It is quite indi↵erent which number to take
between 30 and 40 as the di↵erences are very tiny. From now on, therefore,
the best 35 members will be considered.

Figure 6.19: How the NMAE, Pearson and HH indices vary as the number
of members used varies. On the ordinate there is the value of the indices
while on the abscissa there is the number of members used. The moving
average was made on the forecast corrected with the correction conditioning
on direction, time and speed(drdHdv) on the EPS mean 24-48 h forecast.

Table 6.14 shows a comparison between the forecasts starting from the
best static forecast (drdHdv) to which one exploits the correlation of the
error while the second the choice of the best members. The result is quite
interesting. In fact, for the 8-24 hours case the best correction is the one
that starts from the average of the EPS and uses the error correlation while
for the 24-48 hours the best is the one that chooses the best 35 members and
puts them together. This is probably since for the hours 8-24 the correlation
of the error, as seen previously, has a big e↵ect that cannot be matched by
the choice of the best member. For the 24-48 hour case, on the other hand,
the correlation of the error had not led to any benefit. On the contrary, the
choice of the best members seems to maintain a good solidity even 24 hours
later. In fact, all the indices in this case improve between 0.5 and 1%.

Table 6.15 shows how the indices vary using the techniques seen in the
previous sections on the forecast obtained by choosing the best members
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Table 6.14: Comparison between the error indices calculated for the following
cases: raw case with the average of EPS (8-24 and 24-48 hours) and the
other two cases which both start from the best “static” correction (drdHdv,
conditioning on directions, time and speed) in which a prediction is obtained
using the correlation of the error (df) while the second one choosing the best
35 members and making the weighted average (mx).

Index

8-24 h forecast 24-48 h forecast

Raw
drdHdv- drdHdv-

Raw
drdHdv- drdHdv-

-df -mx -df -mx
Bias -3.273 -0.041 -0.073 -2.941 -0.123 -0.167
NBias -0.576 -0.007 -0.013 -0.565 -0.024 -0.032
MAE 3.484 1.768 1.838 3.223 1.878 1.842
NMAE 0.613 0.311 0.324 0.619 0.361 0.354
RMSE 4.723 2.382 2.446 4.599 2.561 2.495
NRMSE 0.681 0.344 0.353 0.692 0.385 0.375

HH 1.162 0.365 0.382 1.196 0.419 0.415
SI 0.491 0.344 0.353 0.532 0.385 0.374

Pearson 0.584 0.802 0.791 0.615 0.787 0.803

after correcting them. These forecasts are compared with the best dynamic
correction that was obtained starting from the average of the EPS. Using only
the correlation of the error, the forecasts are worse under all indices (drdHdv-
mx-df) while when the moving average is also used (drdHdv-mx-df-mv) the
situation changes. In fact, some indices are better while others are not. In
particular, the NMAE fails to fall below the value found previously while
the NRMSE does. HH is best for 8-24 hours but worse for 24-48. However,
all these variations remain in the order of one thousandth. The index that
undergoes a greater variation is the Pearson. This bodes well in the fact
that since the correlation increases, doing a simple quantile regression on the
whole forecast without any conditions can be an overall improvement of the
indices.

Table 6.16 shows the error indices of the best forecast starting from the
average of the EPS, of the best correction using the di↵erent members that
has just been described and finally with the forecast obtained by making
a quantile regression on the whole forecast just mentioned. This was done
considering that a good increase in Pearson was noted, but not followed by an
equally increase in the other indices. In doing so it was possible to make the
most of the correlation that had been added. In fact, all the indices (apart
from Pearson of course) are improving by a percentage ranging from 0.5 to
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Table 6.15: Comparison between the best forecasts corrected starting from
the average of the EPS (drdHdv-df-mv) with those correcting the single mem-
bers and then after choosing the best ones by correcting them further thanks
to the correlation of the error(drdHdv-mx-df) and then with the moving
average(drdHdv-mx-df-mv).

Index

8-24 h forecast 24-48 h forecast

drdHdv- drdHdv- drdHdv- drdHdv- drdHdv- drdHdv-
-df-mb -mx-df -mx-df-mv -df-mb -mx-df -mx-df-mv

Bias -0.107 -0.004 -0.076 -0.142 -0.175 -0.194
NBias -0.019 -0.001 -0.013 -0.027 -0.034 -0.037
MAE 1.686 1.718 1.690 1.816 1.842 1.827
NMAE 0.297 0.303 0.298 0.349 0.354 0.351
RMSE 2.262 2.297 2.240 2.466 2.494 2.458
NRMSE 0.326 0.331 0.323 0.371 0.375 0.370

HH 0.349 0.353 0.347 0.405 0.414 0.411
SI 0.326 0.331 0.323 0.370 0.374 0.369

Pearson 0.823 0.816 0.830 0.804 0.803 0.814

1. This is interesting because in this way it was possible to fall, especially as
regards the NMAE, under the best forecast that had been obtained so far.

Figure 6.20 shows the time series of the best forecast obtained previously
with the one obtained now. The di↵erences are very low as they were in the
indices but there is still some di↵erence. The three major peaks present seem
to have been better predicted with this latter prediction, albeit slightly.

To conclude the search for the best spaghetti it can be said that it has led
to an improvement. However, this improvement proved to be quite limited
and in the face of the much greater computational e↵ort it requires compared
to the correction starting from the average of the EPS (about 50 times more)
it is not necessarily worth it.
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Table 6.16: Comparison between the best forecasts corrected starting from
the average of the EPS (drdHdv-df-mv) with those correcting the single mem-
bers and then after choosing the best ones by correcting them further thanks
to the correlation of the error and with the moving average(drdHdv-mx-df-
mv) and then making a quantile regression on all the forecasts(drdHdv-mx-
df-mv-tt).

Index

8-24 h forecast 24-48 h forecast

drdHdv- drdHdv- drdHdv- drdHdv- drdHdv- drdHdv-
df-mb mx-df-mv mx-df-mb-tt df-mb mx-df-mv mx-df-mb-tt

Bias -0.107 -0.076 0.033 -0.142 -0.194 -0.037
NBias -0.019 -0.013 0.006 -0.027 -0.037 -0.007
MAE 1.686 1.690 1.662 1.816 1.827 1.784
NMAE 0.297 0.298 0.293 0.349 0.351 0.343
RMSE 2.262 2.240 2.221 2.466 2.458 2.407
NRMSE 0.326 0.323 0.320 0.371 0.370 0.362

HH 0.349 0.347 0.338 0.405 0.411 0.390
SI 0.326 0.323 0.320 0.370 0.369 0.362

Pearson 0.823 0.830 0.830 0.804 0.814 0.814
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Figure 6.20: Time series of the forecasts before and after the correction from
12/3/2018 to 16/4/2018. The green and red forecasts are the EPS mean with
a forecast horizon of 24-48 hours. The correction used is the quantile regres-
sion with two techniques: conditioning for the directions, hours, velocity,
using the correlation of the error and making a moving average(drdHdv-df-
mv) and using the di↵erent members of EPS conditioning for the directions,
hours, velocity, choosing the best 35 member of EPS and put them together,
using the correlation of the error, making a moving average and finally mak-
ing a quantile regression on all the forecasts(drdHdv-mx-df-mv-tt)
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6.4 Analysis of the best corrections

In this section the corrected forecasts will be seen starting from the two down-
loaded ECMWF forecasts, the EPS ones (already shown in the previous ones)
and the HRES ones, in order to make a comparison between them. It will
then be shown how the predictions change depending on which methodology
is used, that is, if the quantile regression or the CRPS of the gamma distri-
bution is used. Finally, it will be shown how the confidence bands appear to
understand how much a prediction can be variable and reliable.

6.4.1 Comparison of the corrected forecasts starting
from EPS or HRES

First, a comparison will be shown between the results of the forecasts ob-
tained starting in one case from the EPS forecast and in the other from the
HRES forecast. As for the EPS, the last described technique will be used
as the best technique which exploits the choice of the best members down-
stream of the correction that conditions on direction, hours, speed, uses the
correlation of the error and makes the moving average, and then downstream
of all this it makes a further quantile regression. As for the HRES forecast,
obviously it cannot be made a choice of the best members since it is a sin-
gle forecast, and therefore the same technique will be used, stopping before
the choice of the best members (therefore conditioning on direction, hours,
speed, use error correlation, do the moving average). Quantile regression will
be used to make this comparison.
Table 6.17 shows the comparison between the best forecasts obtained starting
from the average of the EPS and the individual members of the EPS, seen in
the previous chapters, with the best forecast starting from the HRES fore-
cast. In the previous chapter it was seen how the correlation of the mean of
the EPS was better than the correlation of the forecast of the HRES. Given
the di↵erence in correlation, it was assumed that following the correction
strategies, the forecast that would have turned out better would have been
the one starting from the average of the EPS. From the table this hypothesis
seems to be partially confirmed. In fact, for the forecast from 0 to 48 hours,
the best forecast seems to be the one deriving from HRES, even if the di↵er-
ences are minimal. Instead, this theory is confirmed for the forecasts from 8
to 24. This is probably since when conditioning in HRES, hidden correlations
were found that were not highlighted by looking at the correlation in full.
As for the comparison of the forecasts obtained starting from the individ-
ual members of the EPS with those obtained starting from the HRES, it is
quite clear that the forecast deriving from the EPS is the best. In fact, all

110



the indices assume a higher value. NMAE is between 0.5 and 1% better as
well as HH between 0.5 and 1.5%. Furthermore, Person also shows a not
insignificant di↵erence.

Table 6.17: Comparison of the error indices between the best forecast starting
from the average of EPS, the best forecast starting from the EPS and the
best forecast starting from the HRES. All this done with quantile regressions.

Index

8-24 h forecast 24-48 h forecast

EPS HRES EPS HRES

drdHdv- drdHdv- drdHdv- drdHdv- drdHdv- drdHdv-
-df-mv -mx-df-mv-tt -df-mv -df-mv -mx-df-mv-tt -df-mv

Bias -0.107 0.033 0.037 -0.142 -0.037 -0.080
NBias -0.019 0.006 0.007 -0.027 -0.007 -0.015
MAE 1.686 1.662 1.715 1.816 1.784 1.805
NMAE 0.297 0.293 0.302 0.349 0.343 0.347
RMSE 2.262 2.221 2.308 2.466 2.407 2.429
NRMSE 0.326 0.320 0.333 0.371 0.362 0.365

HH 0.349 0.338 0.354 0.405 0.390 0.395
SI 0.326 0.320 0.333 0.370 0.362 0.365

Pearson 0.823 0.830 0.815 0.804 0.814 0.810

6.4.2 Correction using the gamma distribution

The correction strategy exploiting the gamma distribution can be used with
all the forecasts available. In fact, it is not necessary to have the variance
of the forecast to use it. This is because when the CRPS is minimized, if
the variance is not available, it is su�cient to determine one less parameter
corresponding to the parameter that should be very sensitive precisely for
the missing variance. In doing so, however, a variance is obtained that de-
pends only on the conditioning carried out and on the expected wind speed.
It therefore turns out to be a static variance. By doing so, however, a con-
fidence band is obtained for the forecast also for the HRES forecast. If the
EPS forecast is used, the variance is available and therefore by using the
CRPS of the gamma distribution a new variance is obtained and therefore a
confidence band of the so-called dynamic forecast. Which means that it is a
function of how large the forecast members are.
Table 6.18 shows the value of the indices obtained with the two best strate-
gies obtained so far using the CRPS for the gamma distribution instead of
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quantile regression. The table shows how, although having more correlation,
using single spaghetti leads to less precise forecasts. This is probably due to
the fact that the gamma distribution was selected because it was considered
that it best represented the distribution of observations as a function of the
velocity and variance of the predictions obtained from the mean of the EPS.
It is therefore probable that this distribution is not the most optimal for all
50 members of the EPS and therefore the error indices are a↵ected, albeit to
a limited extent.
Therefore, looking at the forecast column only, starting from the average of
the EPS (drdHdv-df-mv) it can be seen how the Bias and the NBias strongly
try to 0. This leads us to think once again that the choice of the gamma
distribution has been correct. At this point it is interesting to compare
this prediction with those obtained in table 6.17 (using quantile regression).
Well, looking at the drdHdv-df-mv columns, corresponding to the best fore-
cast obtained from the average of the EPS, is clear how the NMAE values
are very close. Once again this confirms how well the gamma distribution
describes the data held. As previously said using quantile regression it is
logical to arrive at the absolute lowest value of NMAE by definition. It
is therefore correct that the forecast obtained using quantile regression has
better NMAEs. Looking at the other indices, however, it is noted that some
are better for the prediction obtained using the gamma function. Consider-
ing the best prediction obtained starting from the individual members using
quantile regression and the one starting from the average of the EPS using
the gamma distribution (two of the best 2 predictions for the two techniques
used), the precision of the forecast is a little more in favour of prediction
obtained with quantile regression. However, these are non-abysmal di↵er-
ences, indeed they can be considered negligible. Finally, it can be said that
the prediction obtained from the gamma distribution is a prediction that can
very well be substituted for that obtained from quantile regression by virtue
of the fact, although less precise, it possesses the accuracy of the dynamic
rather than static prediction.

Finally, figure 6.21 and figure 6.22 show the time series of the forecast
obtained with the gamma distribution with the relative confidence bands of
30, 60, 90%. As can also be seen from the graphical point of view, the wind
observations are almost always within the confidence band.
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Table 6.18: Comparison of the error indices for the corrected predictions
with the two best strategies (one starting from the average of the EPS and
the other considering each single member) using the CRPS method for the
gamma distribution.

Index

8-24 h forecast 24-48 h forecast

Raw
drdHdv- drdHdv-

Raw
drdHdv- drdHdv-

-df-mv -mx-df-mv-tt -df-mv -mx-df-mv-tt
Bias -3.273 0.001 0.458 -2.941 -0.016 0.370
NBias -0.576 0.000 0.081 -0.565 -0.003 0.071
MAE 3.484 1.692 1.806 3.223 1.848 1.901
NMAE 0.613 0.298 0.318 0.619 0.355 0.365
RMSE 4.723 2.248 2.317 4.599 2.473 2.474
NRMSE 0.681 0.324 0.334 0.692 0.372 0.372

HH 1.162 0.345 0.348 1.196 0.407 0.397
SI 0.491 0.324 0.328 0.532 0.372 0.368

Pearson 0.584 0.826 0.828 0.615 0.807 0.814
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Figure 6.21: Time series of the forecasts before and after the correction
from 12/3/2018 to 16/4/2018. The forecast generated starting from the
average of the EPS for the 24-48 hour forecast, correcting by conditioning
on direction, time and speed, exploiting the correlation of the error and
making the moving average. This correction was done using the CRPS of
the gamma distribution. The confidence bands were created considering a
probability from the low of 5, 20 and 35% while from the top of 65, 80, 95%.

Figure 6.22: Zoom of figure 6.21 from 26/3/2018 to 9/4/2018.
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6.4.3 The variation of principal index as function of
the forecast horizon before and after the best
correction

In the previous chapter it was seen how throughout the day the error indices
did not have constant values but variable values. The aim of this section
is to see if and how following the corrections the indices have changed their
trend according to the forecast horizon.
Figure 6.23 shows the trend of the two main indices, the EAW and the
RMSE, normalized and not. The errors were calculated using the best cor-
rection starting from the EPS members. The forecast horizons considered
are from 8 to 48, this because it is hypothesized to be positioned at 7 in the
morning.
First, it is noted that, although with di↵erent values, both indices show simi-
lar trends. With the raw forecast it is noted that for the non-normalized case
during the day there was a worsening of both indices. Following the correc-
tions, however, the absolute error of the indices does not seem to show any
correlation with the diurnal cycle. This had already been noted previously
when, influencing the time, it was seen that the daytime hours were those
that had improved the most since there was a greater systematic error (Bias)
which was therefore more easily correctable. It is also noted that in the first
hours of the forecast there is a very rapid increase in the value of the indices
which then tends to decrease. This is due to the fact that, as seen before,
the first hours after 7 were those that had a high correlation with the error
at 7 o’clock. This correlation was seen to be lost very quickly within a few
hours and therefore it could not benefit from it for too long.
Finally, it can be seen how apart from the first few hours the trend of the
two indices tends to increase their value but in a very slow way. This agrees
with the trend of the raw forecasts. In fact, as seen, the 24-48 hour forecasts
showed a very slight decline in the precision of the forecast. This is since
the Central European model is a very stable and robust model over time.
Moving on to the two normalized indices, there is an average trend very sim-
ilar to that seen for non-normalized ones. In fact, it can be seen how the
indices tend to worsen very slowly as the time horizon advances. Even here
in the hours closest to 7 there is a very low value of the indices. Unlike the
non-normalized indices, however, this time a daily trend is shown. This daily
trend is the opposite of that seen for the MAE and NRMSE indices of the
raw forecasts. This is simply since while the correct MAE and NRMSE are
constant the intensity of the wind is not. Therefore, following the normaliza-
tion, the hours in which the wind blows the most will be the hours that will
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have a greater denominator and therefore in which the normalized indices
will have their lowest value.

Figure 6.23: Trend of the MAE, NMAE, RMSE and NRMSE indices as a
function of the forecast horizon before and after the best correction.

Figure 6.24 shows the Pearson trend as a function of the forecast horizon.
The trend of the raw forecast was highly correlated with the diurnal cycle.
Well, following the correction it would seem that this oscillation has flattened
out considerably. Except for the first few hours in which correlation is at
its maximum for the reasons set out above, also in this case the decline of
Pearson is very slow as the forecast horizon advances.
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Figure 6.24: Trend of the correlation index (Pearson) as a function of the
forecast horizon before and after the best correction.
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6.4.4 Summary of how correction strategies a↵ected
the forecast.

In this section will be shown how the di↵erent strategies a↵ected the final
correction. To do this, the three error indices considered to be the main ones
will be considered as well as those that provide a more intuitive physical
meaning.
Figure 6.25 shows the NMAE, NRMSE and Pearson indices in relation to the
type of strategy that was used to correct the forecast. Remember that the
NMAE and the NRMSE tend to zero the more they are synonymous with
good prediction while the Pearson more tends to 1 plus it is a symptom of
good forecast (more specifically of forecast correlated to observation).
As seen, the simple calibration without any particular conditioning or strat-
egy leads to significant improvements as regards the NMAE and NRMSE
indices but not for the Pearson which remains constant. This is since these
forecasts have a very strong systematic error that can be easily corrected
by translating and greatly referring to these forecasts. The conditioning on
the direction instead is that which has given the greatest contribution to the
increase of the correlation; it is no coincidence that there has also been a
clear improvement in the other two indices. For the rest, the other strategies
were less e↵ective and more or less all the same. In particular, the one that
exploits the correlation of the error from this graph does not seem to have
brought about any improvement, but this is due to the fact that unlike the
other strategies it depended more on the proximity to the forecast time. The
minor improvement of the indices that was seen downstream of the “dr” is
however sincet a lot had already been considered with the simple regression
“tt”.
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Figure 6.25: Graphical representation of the NMAE, NRMSE and Pearson
indices of the forecast in the following order. Raw: Raw previews; tt: Pre-
dictions calibrated without any division of the same; dr: Forecasts calibrated
by influencing the direction; drdH: Forecasts calibrated by conditioning on
direction and time; drdHdv: Forecasts calibrated by conditioning on direc-
tion, time and speed; drdHdv-df: Forecasts calibrated by conditioning on
direction, time and speed and then exploiting the correlation of the error;
drdHdv-df-mv: Calibrated forecasts by conditioning on direction, time and
speed, exploiting the correlation of the error and finally making a moving
average; drdHdv-mx-df-mv-tt: Calibrated forecasts by conditioning on direc-
tion, time and speed, choosing the best spaghetti, exploiting the correlation
of the error, making a moving average and finally redoing a calibration with-
out conditioning. The forecasts in particular are those 24-48 hours that have
been corrected using quantile regression.
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6.5 Variation of indices as a function of the
number of data for training

The aim of this sub-chapter is to analyse how the result obtained so far would
vary according to how much data are available for training. For the analyses
carried out so far, almost 1 year had been used to train. In truth, following
the cleaning of the data, done in the previous chapter, there were 346 days
left which is 19 days in less than a year. To see how the results obtained
vary, it was decided to take the best static forecast as a reference point, i.e.
the one that a↵ected direction, time and speed. This is because this strategy
is the one that, in addition to having generated the greatest improvement in
forecasts, is the one that can be most a↵ected by the variation of the training
set. This is because undergoing many conditions, and therefore dividing the
dataset into many parts, when there are few data, this aspect is amplified.
For this analysis only the forecast deriving from the average of the EPS with
a forecast horizon of 24-48 hours will be used. Furthermore, only quantile
regression will be used.
Table 6.19 shows the values of the indices calculated as the months avail-
able for training vary. Several months ranging from 11 to 1 were used. In
particular, fewer months were used when conditioning on hours instead of
distinguishing hour by hour they were grouped into groups of 2, 3, 4, 6, 8.
It is possible to do this because, as seen above, from now to now there is no
substantial change in the phenomenological characteristics of the wind. It is
therefore convenient to give up this conditionality a little to favour a more
robust training. The table shows how the e↵ectiveness of the correction strat-
egy is logically progressively decreasing the months at worst dispositions. For
greater clarity on the trend of the main error indices it is useful to see them
in a graph.

Figure 6.26 shows how the NMAE, NRMSE, HH, Pearson indices vary
according to the number of months available for training. It is quite clear that
up to 7/6 months the strategy remains very valid and is very little a↵ected
by the decrease in the months of training. From 6 months to 3 months, the
trend of the indexes to worsen increases a little but without then leading to
excessively gross errors. For example, using 3 months of training, the NMAE
still remains below 40%, as does the NRMSE below 45 and the Pearson above
72/73. From 3 months to 1 there is a more marked worsening which makes
the strategy much less e↵ective.
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Table 6.19: Error indices varying the number of months used to train for the
drdHdv strategy (depending on direction, time and speed). The predictions
were obtained starting from the average of the EPS 24-48 hours and using
quantile regression.

T.Months Bias NBias MAE NMAE RMSE NRMSE HH SI Pearson
11 -0.271 -0.052 1.909 0.367 2.659 0.400 0.440 0.398 0.771
10 -0.285 -0.055 1.929 0.371 2.692 0.405 0.446 0.403 0.765
9 -0.274 -0.053 1.937 0.372 2.705 0.407 0.448 0.405 0.763
8 -0.283 -0.054 1.939 0.372 2.702 0.406 0.447 0.404 0.763
7 -0.298 -0.057 1.954 0.375 2.726 0.410 0.453 0.407 0.759
6 -0.303 -0.058 1.972 0.379 2.769 0.416 0.460 0.414 0.751
5 -0.312 -0.060 2.001 0.385 2.805 0.422 0.467 0.419 0.744
4 -0.304 -0.058 2.021 0.388 2.839 0.427 0.472 0.424 0.739
3 -0.281 -0.054 2.052 0.394 2.900 0.436 0.480 0.434 0.730
2 -0.283 -0.054 2.109 0.405 3.018 0.454 0.498 0.452 0.715
1 -0.374 -0.072 2.222 0.427 3.196 0.481 0.531 0.477 0.690

Figure 6.26: Trend of the NMAE, NRMSE, HH and Pearson index as a func-
tion of the number of months used to make the trining for the correction
drdHdv(depending on direction, time and speed). The predictions were ob-
tained starting from the average of the EPS 24-48 hours and using quantile
regression.
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6.6 The prediction of power

Once the best strategies to correct the wind forecast have been defined, it
is possible to transform this forecast into a power forecast. To do this, it is
su�cient to use the empirical transfer function calculated on the observed
data.
Table 6.21 shows the value of the indices calculated on the power forecast be-
fore and after correcting the wind forecast. As already seen, the raw forecast
has very poor indices, even with NMAE and NRMSE that reach 100% (which
can also be exceeded by being normalized for the average of the observations
and not for the nominal power of the wind turbine). As for the correct
forecasts, it is noted that the indices have improved to the point of being
practically halved in the cases of the NMAE and NRMSE. In particular, the
NBias still shows an underestimation of the power between 10 and 20%. The
NMAE fluctuates around 50% as well as the NRMSE and the HH which is
slightly above. The Pearson also undergoes a noticeable improvement from
about 40 to 80%. By comparing these indices with those used for wind fore-
casting, it can be seen that, except for the Pearson and the non-normalized
indices that it makes no sense to compare, they have worsened considerably.
This is since, as seen in the previous chapter, the transfer function has a basic
error due to the uncertainty of the instrument and also due to the fact that
the transfer function is not linear and leads to the amplification of the error
made on the predictions of the wind. it is curious, however, that Pearson
has kept its value quite well without undergoing great variations. This is
an excellent point in favour that it may be that following correct corrections
there may still be an improvement in the forecast.
The only test that was carried out to see if there were any corrections that
could be easily performed like those already carried out on the weather fore-
cast was to condition on the direction, since it may be that the power pro-
duced may somehow be correlated to the direction with which the wind meets
the wind turbines, and also conditioning on the power itself as it was done
on the speed for the wind.
Table 6.21 shows the result of this correction. By comparing tables 6.20 and
6.21 this strategy did not lead to great improvements apart from a little bit
for the Bias. However, in some cases the NMAE and NRMSE have undergone
an improvement of half a percentage point.

Finally, figure 6.27 shows the time series of the power forecasts obtained
starting from the members of the EPS with a forecast horizon of 24-48 hours.
First, comparing the correction made, no particular di↵erences appear with
the forecast without the drdp correction. On the contrary, the di↵erence
between the raw forecast and the best one obtained is very marked.
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Table 6.20: Comparison between the raw power prediction and the best
prediction obtained starting from the average of the EPS and the individual
members of the EPS using quantile regression.

Index

8-24 h power forecast 24-48 h power forecast

Raw
Best from EPS:

Raw
Best from EPS:

mean members mean members

Bias -381.0 -61.1 -41.3 -348.3 -70.4 -52.6
NBias -0.951 -0.152 -0.103 -0.957 -0.193 -0.145
MAE 383.2 197.1 193.4 350.1 205.9 200.0
NMAE 0.957 0.492 0.483 0.962 0.566 0.550
RMSE 659.6 336.4 327.8 640.7 366.1 355.8
NRMSE 0.960 0.490 0.477 0.966 0.552 0.537

HH 4.647 0.566 0.536 5.089 0.667 0.630
SI 0.784 0.482 0.473 0.811 0.542 0.531

Pearson 0.411 0.807 0.817 0.384 0.764 0.777

Table 6.21: Comparison between the raw power prediction and the best
prediction obtained starting from the average of the EPS and the individual
members of the EPS using quantile regression and making a further correction
on the expected power by conditioning on direction and power.

Index

8-24 h power forecast 24-48 h power forecast

Raw

Best from EPS:

Raw

Best from EPS:
mean members mean members
+drdp +drdp +drdp +drdp

Bias -381.0 -47.4 -42.9 -348.3 -46.8 -48.7
NBias -0.951 -0.118 -0.107 -0.957 -0.128 -0.134
MAE 383.2 195.4 191.9 350.1 205.3 199.9
NMAE 0.957 0.488 0.479 0.962 0.564 0.549
RMSE 659.6 335.2 327.6 640.7 363.5 352.9
NRMSE 0.960 0.488 0.477 0.966 0.548 0.532

HH 4.647 0.554 0.535 5.089 0.644 0.624
SI 0.784 0.483 0.473 0.811 0.544 0.527

Pearson 0.411 0.809 0.818 0.384 0.766 0.780
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Figure 6.27: Time series of the raw predicted power (red) compared with the
predicted power obtained by making the transfer function on the best forecast
starting from the members of the EPS (green) and with that obtained by
further adding a correction by conditioning on direction and power (black).
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6.7 Comparison with other forecast calibra-
tion techniques

In this section comparisons will be made with other techniques with which
predictions can be corrected. Two cases will be seen. The first will be
applied to the same data that has been used up to now using a machine
learning technique. The second will be a case taken from a scientific article
that concerns another wind farm.

6.7.1 Comparison with Machine Learning

Machine learning (ML) is the study of computer algorithms that improve
automatically through experience. It is seen as a subset of artificial intel-
ligence. Machine learning algorithms build a model based on sample data,
known as “training data”, in order to make predictions or decisions without
being explicitly programmed to do so.[16]
The intent is to make a comparison between the results obtained so far with
those that can be obtained with a particular machine learning technique. To
do this it is therefore necessary to start from the same data. The data taken
as reference only the average forecasts of the EPS. The best strategy will
therefore initially be compared, starting from the average of the EPS with
the result of Machine learning.
Machine learning was performed by the company that dispatches the en-
ergy of the wind farm analysed. It is therefore not possible to provide many
details of how this machine learning was performed. Machine learning was
implemented using the python XGBoost algorithm. XGBoost is an optimized
distributed gradient boosting library designed to be highly e�cient, flexible,
and portable. It implements machine learning algorithms under the Gradient
Boosting framework. Gradient boosting is a machine learning technique for
regression and classification problems, which produces a prediction model in
the form of an ensemble of weak prediction models, typically decision trees.
It builds the model in a stage-wise fashion like other boosting methods do,
and it generalizes them by allowing optimization of an arbitrary di↵erentiable
loss function.[17] XGBoost provides a parallel tree boosting (also known as
GBDT, GBM) that solve many data science problems in a fast and accurate
way.
Table 6.22 shows the values of the error indices of the raw forecast (average
of EPS), of the best forecast obtained starting from the average of the EPS
and of the forecast obtained with machine learning always starting from the
average of the EPS. As it can be seen, with the use of Machine learning index
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values are got compared to the starting ones. In fact, the di↵erences are not
particularly big. NBias for the 0-24 hour case is better with the drdHdv-
df-mv technique while with the 24-48 hour case it is better with Machine
learning. The other indices are all in favour of the drdHdv-df-mv strategy;
in particular, the NMAE is better than 2/3%, the NRMSE between 0.5 and
3% as well as for HH and Pearson. It is interesting to underline that in the
8-24 hours there is a greater di↵erence than in the 24-48 hours. This could
be due to the strategy that exploits error correlation as it was very e↵ective
in the first 24 hours and very little from 24 to 48 hours.

Table 6.22: Comparison between the best forecast obtained starting from the
average of the EPS with the strategies shown previously with the Machine
learning strategy.

Index

8-24 h forecast 24-48 h forecast

Raw
drdHdv- Machine

Raw
drdHdv- Machine

df-mv learning df-mv learning

Bias -3.273 -0.107 -0.189 -2.941 -0.142 -0.013
NBias -0.576 -0.019 -0.033 -0.565 -0.027 -0.002
MAE 3.484 1.686 1.877 3.223 1.816 1.925
NMAE 0.613 0.297 0.331 0.619 0.349 0.370
RMSE 4.723 2.262 2.456 4.599 2.466 2.497
NRMSE 0.681 0.326 0.354 0.692 0.371 0.376

HH 1.162 0.349 0.380 1.196 0.405 0.406
SI 0.491 0.326 0.353 0.532 0.370 0.376

Pearson 0.584 0.823 0.789 0.615 0.804 0.797

Table 6.23 shows the comparison between the best expected power ob-
tained so far starting from the average of the EPS with the forecast of the
power generated by Machine learning always starting from the average of the
EPS. NBias is clearly in favour of Machine learning with a di↵erence of about
10%. Even the NRMSE is better with the prediction produced by Machine
learning as well as the HH albeit in low percentages. The only index that
remains in favour of the forecast generated in this treaty is the NMAE. This
is a point in favour of this strategy because as mentioned previously when it
comes to forecasting power, NMAE is the most important index. Therefore,
this result could be due to the fact that using quantile regression this index
has been minimized to the detriment of the others. It is very interesting that
Pearson is also better for the Machine learning strategy. This means that the
ML is able to find correlations that were not found with the simple regres-
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sion conditioning on direction and power that was performed. Therefore, it is
possible that by investigating where Machine learning finds this correlation,
a strategy can be identified to further improve the forecast.

Table 6.23: Comparison between the raw power prediction of the EPS average
with the best generated by the EPS average with the best one of machine
learning.

Index

8-24 h power forecast 24-48 h power forecast

Raw
Best from Machine

Raw
Best from Machine

EPS mean learning EPS mean learning

Bias -381.0 -47.4 3.9 -348.3 -46.8 4.0
NBias -0.951 -0.118 0.010 -0.957 -0.128 0.011
MAE 383.2 195.4 223.6 350.1 205.3 216.8
NMAE 0.957 0.488 0.558 0.962 0.564 0.596
RMSE 659.6 335.2 333.3 640.7 363.5 332.2
NRMSE 0.960 0.488 0.485 0.966 0.548 0.501

HH 4.647 0.554 0.548 5.089 0.644 0.578
SI 0.784 0.483 0.485 0.811 0.544 0.501

Pearson 0.411 0.809 0.803 0.384 0.766 0.800

Table 6.24 shows the error indices of the best correction starting from the
individual members of the EPS, and therefore the absolute best forecast so
far, with the forecast generated by feeding Machine learning this last forecast.
The improvement due to machine learning leads to almost zero benefit; in
fact, the indices have almost equal values. This confirms how the strategies
implemented to arrive at this forecast have been able to collect almost all
the correlation available.

Finally, table 6.25 shows the result of having applied Machine learning
to the best prediction of the power starting from the average of the EPS.
It is very interesting to make a comparison between this table and 6.23. In
fact, against all predictions, instead of improving, the forecast seems to have
worsened compared to that obtained by machine learning starting from the
raw data. This can therefore be an excellent clue as to how a strategy to
improve forecasting could be adopted in the future. In fact, this result leads
us to think that the transition from wind forecast to power forecast through
the transfer function leads to the loss of important information that can be
used for a possible correction. For this reason, therefore, Machine learning
has a greater result starting from the wind; it may therefore be that he has
found a correlation that exists between the forecast of the wind and the
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Table 6.24: Comparison between the best available wind forecast (drdHdv-
mx-df-mv-tt) with the forecast obtained using machine learning in cascade
at the best forecast

Index

8-24 h forecast 24-48 h forecast

Raw
drdHdv- +Machine

Raw
drdHdv- +Machine

-mx-df-mv-tt learning -mx-df-mv-tt learning

Bias -3.273 0.033 0.048 -2.941 -0.037 0.023
NBias -0.576 0.006 0.008 -0.565 -0.007 0.004
MAE 3.484 1.662 1.661 3.223 1.784 1.764
NMAE 0.613 0.293 0.292 0.619 0.343 0.339
RMSE 4.723 2.221 2.236 4.599 2.407 2.409
NRMSE 0.681 0.320 0.323 0.692 0.362 0.362

HH 1.162 0.338 0.340 1.196 0.390 0.389
SI 0.491 0.320 0.323 0.532 0.362 0.362

Pearson 0.584 0.830 0.827 0.615 0.814 0.813

observed power which, however, does not exist between the forecast of the
power and the observed power.

Table 6.25: Comparison between the best prediction of the power obtained
starting from the average of the EPS with that obtained by making a cascade
Machine learning.

Index

8-24 h power forecast 24-48 h power forecast

Raw
Best from +Machine

Raw
Best from +Machine

EPS mean learning EPS mean learning

Bias -381.0 -47.4 15.2 -348.3 -46.8 -14.0
NBias -0.951 -0.118 0.038 -0.957 -0.128 -0.038
MAE 383.2 195.4 211.8 350.1 205.3 218.0
NMAE 0.957 0.488 0.529 0.962 0.564 0.599
RMSE 659.6 335.2 327.5 640.7 363.5 355.3
NRMSE 0.960 0.488 0.477 0.966 0.548 0.536

HH 4.647 0.554 0.534 5.089 0.644 0.635
SI 0.784 0.483 0.476 0.811 0.544 0.535

Pearson 0.411 0.809 0.811 0.384 0.766 0.768
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6.7.2 Comparison with a scientific article of a forecast
generated in a site similar to the one analyzed

In this section a comparison will be made with a scientific article of an
analysis on the predictions made for a site similar to the one analysed so
far. The chosen article is: Wind Power Forecasting techniques in complex
terrain: ANN vs. ANN-CFD hybrid approach.[18]
The following explanation shows the strategy used in this article.Wind power
forecast is calculated applying a post-processing on the NWP (numerical
weather prediction) output. In this study, the weather research forecast
Model - WRF is used. Each of the two proposed methods is composed of
di↵erent steps, leading to the estimate of the power production of a wind
farm. The two approaches employed in this study can be summarized as
follows:

A single ANN (Artificial Neural Networks, a statistical method) pro-
cesses the output of the NWP model and directly calculates the power
production of each single turbine or the whole wind farm. This is the
pure ANN approach: the ANN has wind speed and direction of the
wind as input variables and power production as output variable.

An ANN processes the wind conditions, as predicted by the NWP
model, targeting the wind conditions on site. These are used as input to
the CFD (computational fluid dynamics), in order to transfer the fore-
cast from the reference wind measurement position to the positions of
the turbines. The nominal power curve is employed for estimating the
power output. This is the hybrid approach: the ANN has NWP wind
speed and wind direction as input variables and observed wind speed
and direction as output variable. The CFD flow simulations enable to
transfer the wind conditions in the layout area up to the position of
each turbine, and to calculate the power production.

The first approach is purely statistical: the ANN stores the correlation in-
formation between wind speed and direction from NWP and the measured
power production. Such an approach can be seen as an artificial neural
network power curve (ANN wind-power). The second approach is more com-
plex, a hybrid of statistical and deterministic methods. The ANN acts as
an MCP (measure correlate predict), detecting and using the correlation of
the wind data between two time series. In this case, the correlation is used
between NWP data and observed wind speed and direction at target site.
The output of the ANN is used, within the CFD framework, to transfer the
forecast from the wind measurement position to the positions of the turbines,
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considering the simulated behaviour of the wind depending on the direction
of the flow. Also, the wake e↵ects between turbines are taken into account
using the Jensen model and the nominal turbine thrust coe�cient Ct. The
calculation is performed using WindSim software. In short, this approach
can be defined as ANN windwind + CFD method. In both methods, the
ANN is fed with the same data in the input layer: time series of wind speed
and direction obtained by the NWP model at a defined position in the wind
farm layout. Depending on the method, the ANN gives di↵erent outputs:
the power production of each single turbine (or of the complete wind farm)
for the pure ANN approach, or the wind speed and direction at the target
reference point for the hybrid method. Therefore, the two ANNs di↵er in the
number and type of the variables set at the output layer. In both cases, the
ANNs are single layer perceptrons, trained by feed-forward back-propagation
method, unsupervised training. The ANNs can be set with di↵erent number
of neurons in the inner layer and the performance is sensitive to such a set-
ting. Therefore, many configurations are tested, and the best is chosen.
To simulate the run of a real day ahead, as the forecast has to be done in
the morning for the day after, 18 hours of each forecast run are cut out and
the following 24 hours are used
The wind farm used for validation is sited in southern Italy. On site, 24
turbines are installed. The terrain is extremely complex: the presence of
mountains is important in all the directions and there are severe slopes all
around.
Therefore, the site considered in this article is very similar to the one con-
sidered in the thesis. In fact, both wind farms are located in a complex
orography environment due to the constant presence of nearby mountain
ranges.
Figure 6.28 shows the table of results present in the article cited. This ta-
ble shows the Bias, RMSE, NMAE and NRMSE indices. Logically it is not
possible to make a comparison with non-normalized data as the dimensions
of the plants considered are clearly di↵erent. It is possible instead to make a
comparison with the two normalized indices. To do this, however, it is nec-
essary to normalize the MAE and RMSE indices seen so far with the same
technique used in the article. In fact, while up to now these indices have been
normalized as a function of the average of the observations, for the MAE,
and of the average of the observations squared, for the RMSE, in the article
they are normalized as a function of the nominal power.

The nominal power of the plant considered is 2000 kW. It will therefore
be su�cient to divide the values of MAE and RMSE by this value. Since the
article only considers the forecast for the next day (24-48 hours), only the 24-
48 hour forecast will be considered to make the comparison more meaningful
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Figure 6.28: The figure shows the table taken from the cited article. There
are indices of the error as the technique used varies. The indexes present
only the Bias, the RMSE, the NMAE, and the NRMSE. The NMAE and
NRMSE were normalized using the nominal power of the plant (Layout 1
6600 [kW], Layout 2 8700 [kW]). (Taken from Ref. [18]

and correct.
Table 6.26 therefore shows the NMAE and NRMSE normalized with the
nominal power for the prediction of the power at 24-48 hours. These values
are therefore comparable with those seen in figure 6.28. Well, the lowest value
of the article cited of the NMAE is greater by about 6 percentage points than
that found with the analyses of this study. The same goes for the NRMSE
which is below the 20% threshold as opposed to the NRMSE of the article
which always exceeds this threshold.
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Table 6.26: Value of the NMAE, NRMSE indices of the power forecast nor-
malized using the nominal power of the plant (2000 kW). The forecast is the
best obtained so far for a 24-48 hour forecast horizon.

Index Value

NMAE 0.100
NRMSE 0.176
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Conclusions

In this thesis, the strategies implemented to improve the forecast of wind
speed were analysed step by step in order to have a forecast of the best
possible power output. These analyses led to di↵erent results and di↵erent
perspectives for future studies.
The first derive from the comparison between the EPS forecasts and the
HRES forecast. Although the HRES forecast is the result of a model with a
resolution double than of EPS, it has been seen that the second forecast is
better, albeit slightly, than the first. This highlights the fact that a strategy
involving multiple predictions with less resolution appears to be better than
a single prediction but with better resolution.
Another result is that the use of the CRPS technique with the gamma distri-
bution has led to results very similar to those obtained using quantile regres-
sion which by definition is the best to obtain the absolute lowest NMAE. The
di↵erence that leads to the use of one of the two techniques is small enough
to be ignored since with the CRPS not only a precise forecast is obtained
but also the variance of this forecast dynamically.
Carrying on the third result is about the strategies used. In fact, it has been
seen that in a site with a complex topography such as the one considered,
distinguishing the forecast according to the direction of the event is essen-
tial to improve it. That also the time of day leads to di↵erent correlations
between forecast and observation and finally that distinguishing in speed in-
tervals does not lead instead to particular characteristics. It has also been
seen how exploiting the correlation of the prediction error is very e↵ective in
the hours immediately after but that after a while there is a rapid decay of
the correlation in reverse instead of choosing the right member that seems
to maintain a better correlation with advancing the forecast horizon.
Furthermore, it has been shown that using 50 di↵erent forecasts and aver-
aging them results in a slower decay in time of the quality of the forecast
compared to a single forecast but with higher resolution.
It was also analysed how the strategy of conditioning as a function of direc-
tion, time and speed varies according to how many historical data on which

133



it is possible to train exist, resulting in that up to 3 months of historical
series it is possible to use the strategy e↵ectively.
Finally, it was shown by a comparison with a Machine Learning technique
and with the forecast of another study, in a site similar to the one analysed,
the goodness of the calibration of the prediction made. Moreover, from the
comparison with Machine Learning it appeared that it could be convenient,
to predict the power, to carry out calibrations starting directly from the wind
forecast and not from that already transformed into power.
Some prospects for the future also appeared from this study.
The forecasts of the ECMWF in fact do not only concern the wind speed
but also all the other physical phenomena. One perspective is to extend this
method to the forecast of the waves in the Mediterranean. In fact, even the
waves have a strong dependence on the direction. More generally, the cali-
bration technique can also be extended to other physical variables such as the
ground temperature or even for irradiation. The latter is in fact fundamental
for the forecast of the energy production from a solar system which, as for
the wind, foresees the same market rules.
Another idea is to combine several forecasts to exploit the correlation of both;
for example, can be successfully combine the HRES and EPS forecasts with
coe�cients.
Another aspect is to use the forecasts at di↵erent altitudes or even in the
nodes close to the one considered to see if by inserting this additional variable
there is no greater correlation.
Yet another field to explore is that of the correlation of error. In fact, in
this analysis the error was correlated without any conditioning; on the other
hand, it may be that by inserting conditions on it, it is possible to arrive at
better predictions. For example, a condition that could be useful is that of
direction because doing so would only correlate the wind of the same “fam-
ily” and not two winds with two di↵erent directions which obviously cannot
have the same characteristics.
Finally, it is necessary to deepen the prediction related to power. In fact,
from the comparison with Machine Learning, it appeared that using the sim-
ple transfer function leads to the loss of information useful for finding the
correlation. In fact, it could be possible to identify a non-linear function that
describes the transfer curve in order to be able to make fits from the wind
to the power directly without having to go through the transfer function.
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