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Abstract

The development of Wireless Integrated Network Sensors (WINS) requires
the installation of a large number of sensors around the world. These de-
vices cannot be wired because they are positioned in places hard to reach.
The solution to follow without batteries is the energy harvesting, which is a
process that uses innovative devices to extract energy from the environment,
supplying an endless power to the sensors. In this work we present a novel
energy harvesting device able to capture the kinetic energy from a fluid in
motion and transform it in electrical energy. This device, named FLEHAP
(FLuttering Energy Harvesting for Autonomous Powering), is based on an
aeroelastic effect named fluttering, in which a totally passive airfoil shows
sustained motion depending on few parameters. The aim of the thesis is
to study numerically the problem, through 3D simulations, using the open
source code OpenFOAM, based on a finite volume approach. A campaign
for different wind velocities has been made in order to characterize the de-
vice operation, comparing the numerical solutions with experimental and
analytical results. Moreover, a particular focus is made on the case in which
the fluid-structure interaction is maximized: by means of a Large Eddy
Simulation approach, we study the correlation between the aerodynamic
coefficients and the vortex dynamics, supplying a useful insight for future
investigations.
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Utilizzo di una strategia di
tipo CFD per lo studio di un
sistema aeroelastico per
l’estrazione di energia del
vento

Sommario

Lo sviluppo di reti di sensori integrati (WINS) richiede l’utilizzo di una
grande quantità di sensori per il monitoraggio di un determinato ambi-
ente. La loro posizione è normalmente difficile da raggiungere, dunque
l’alimentazione dei sensori avviene normalmente tramite batterie. Per ovviare
al problema della sostituzione di queste ultime, è conveniente utilizzare dis-
positivi capaci di estrarre energia dall’ambiente in cui i sensori sono inser-
iti. Questo processo è noto come energy harvesting. In questo lavoro ci
occuperemo di un dispositvo innovativo, denominato FLEHAP (FLutter-
ing Energy Harvesting for Autonomous Power), il quale sfrutta i principi
dell’aeroelasticità per estrarre energia da una corrente fluida. Lo scopo
della tesi sarà quello di studiare numericamente il problema, attraverso sim-
ulazioni 3D, utilizzando il codice open source OpenFOAM, il quale utilizza
un approccio ai volumi finiti. Come prima analisi è stata condotta una cam-
pagna per diverse velocità del vento ai fini di caratterizzare il funzionamento
del dispositvo, confrontando i risultati numerici con quelli sperimentali e
con un modello analitico. Il fulcro del lavoro sarà comunque incentrato solo
per una data velocità del flusso che massimizza l’interazione tra il fluido
e la struttura. Attraverso una simulazione LES (Large-Eddy Simulation),
studieremo infine la correlazione tra i coefficienti aerodinamici e la dinamica
dei vortici, fornendo utili informazioni per studi successivi.
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Chapter 1

Introduction

1.1 Energy harvesting

In recent times, the increase in global power generation needs has raised
two major issues, namely the decreasing availability of fossil fuels for power
generation and their impact on the global climate. These two issues are
the main driving force behind the search for alternative methods to produce
energy from renewable sources. Energy harvesting (EH), or energy scaveng-
ing, is a process that allows to recovery little quantity of energy from any
environmental source around us (e.g. solar, wind, thermal, kinetic) using
innovative and simple devices. The power is used to operate small devices
which absorb power of the order of mW.

One of the goals of energy harvesting is to generate power for sensors
or little devices that are difficult to connect to the electrical grid because of
their remote positioning.

A typical application of energy harvesting are the Wireless Integrated
Network Sensors (WINS) that monitor parameters such as the wind speed,
the height of waves, the pollutant concentration in a city and so on. All the
sensors transmit the information to a principal node named sink, which in
turn transmits them to a central unit [35]. This evolution in the electronic
world leverages on the concept of omnipresent connectivity among different
sensors, that is expected to billions in 2020. These sensors cannot be wired,
so they must work with their own energy source, usually a battery. Anyway,
for a large number of application domains, the battery reveals critical issues
in terms of installation and replacement costs, circuit complexity and long-
time reliability. This is especially true when the sensor networks are intended
to be used on very large areas or placed in difficult places to reach (e.g.
buried or in harsh or hazardous locations).

In the EH perspective, the possibility for a certain network to stay reli-
able and economically viable on the long term (10 years or more) will depend
on the node’s capability to recover energy from the node’s environment (en-
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Figure 1.1: Example of thermocouple’s principle of operation (taken by [33]).

ergy harvesting), either to prevent the battery from discharging or, much
better, to get rid of the battery itself.

It is therefore necessary to design innovative energy harvesters, that allow
the recovery of energy from the environment in which they are installed.

1.2 Types of energy harvesters

In the world of energy harvesting we can encounter all sorts of devices that
recover power from many different sources of energy. To make the treatment
clearer, we will refer to a classification according to the principle of opera-
tion. We will briefly review three possible ways, although there are many
other ones:

� thermoelectrical;

� electromagnetic;

� mechanical.

1.2.1 Thermoelectrical energy harvesters

These devices, better known as thermocouples, work using the Seebeck’s
effect, which consist in the creation of a electric potential difference in two
different metals when their junction points experience a temperature gradi-
ent (Fig. 1.1). The main relation is:

∆U = α∆T (1.1)

where α is the Seebeck’s coefficient dependent from the material and of the
order of µV/oC. Hence, for an efficient system it is better to put the highest
possible number of thermocouples in series [33].

1.2.2 Electromagnetic energy harvesters

These devices are able to convert electromagnetic waves in electrical energy.
The photovoltaic cells are one of the countless examples, where we obtain
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Figure 1.2: Example of Rectenna’s principle of operation (taken by [25]).

voltage differences in a material upon exposure to light. Another example
is represented by the so called Rectenna (rectifying antenna), recently pro-
posed in literature [25]. A rectenna (Fig. 1.2) is a special type of antenna
that is used to convert electromagnetic energy into direct current (DC). It
can be used in wireless power transmission systems that transmit power by
radio waves. A simple rectenna element consists of a dipole antenna with an
RF diode connected across the dipole elements. The diode rectifies the AC
current induced in the antenna by the microwaves to produce DC power,
supplying a load connected across the diode. Schottky diodes are typically
used because they have the lowest voltage drop and highest speed and there-
fore have the lowest power losses due to conduction and switching. Large
rectennas consist of an array of many dipole elements of this kind.

1.2.3 Mechanical energy harvesters

These devices are able to convert directly the mechanical energy in electric
energy mainly through piezoelectric effect and/or electromagnetic coupling
(EMC). Only few materials present piezoelectric effect. It consists in the
creation of an electrical potential difference as a consequence of a mechanical
deformation. The EMC is based on the well known Faraday-Neumann’s law
from which it is possible to extract energy [17]:

∆U = −dΦ

dt
(1.2)

indeed if the vibrations are such as to induce oscillation, a magnet fixed to
the device can produce a variation of electromagnetic flux (Φ) on a fixed
coil.

1.3 Aeroelastic energy harvesters

These devices belong to mechanical energy harvesters. Indeed, in the pres-
ence of a fluid current, self-sustained vibrations of the device may be induced
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Figure 1.3: Diagram of operation of a piezoelectric element (taken by [17]).

from which it is possible to obtain electrical power [18]. Several aerolastic
instabilities can be exploited such as vortex induced vibrations and/or gal-
loping for bluff bodies, or flutter for airfoils and slender structures. In this
work we will focus on the so called flapping energy harvesters, where moving
wings are capable of harvesting energy from vortices, free-surface waves and
uniform streams. The first case involves the foil’s capacity of manipulating
the ambient vorticity field as well as controlling its own vorticity shedding.
At least two distinctive interaction modes have been identified: the con-
structive mode and the destructive mode. In the constructive mode, the
vortices created by the foil and the incoming vortex street are in the same
phase and reinforce each other. It leads to stronger reverse Kármán vortex
streets and increased thrust. The destructive mode, on the other hand, is
characterized by a phase difference of approximately 180◦ between the foil-
generated vortices and the incoming ones. As a result the combined wake
is weakened, while the propulsion efficiency is increased. Similar vorticity
control mechanisms have been discovered in interactions between leading-
edge vortices (LEV) and trailing-edge vortices in a flapping foil. The basic
idea to use a foil to harvest energy from a uniform flow was proposed over
2 decades ago [20]. Indeed, the capacity of the foil to absorb flow energy is
clearly demonstrated in flow-induced vibrations such as flutter.

These devices are inspired by nature, indeed aquatic animals, as well
as insects and birds, which exploit periodic motions with fins or wings to
achieve highly effective propelling and maneuvering, instead of rotational
propellers. For example, tunas, dolphins and sharks exhibit excellent hy-
drodynamic performance with high cruising speed, high efficiency and low
noise through the flapping motion of their caudal fins. Moreover, through
these oscillatory motions it is possible to extract energy from the incoming
vortices or unsteady flows. It has been numerically demonstrated that the
caudal fin of a fish can absorb energy from vortices shed from dorsal/ventral
fins to achieve higher propulsion efficiency [37].

Unlike conventional turbines, there are several prominent features of such
bio-inspired energy converters:

� they are environmentally friendly in terms of noise generation due to
their relatively low tip speed, thus reducing impact on the navigation
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of aquatic animals;

� without the centrifugal stress associated with rotating blades, the os-
cillatory devices are structurally robust;

� oscillating hydrofoil systems sweep a rectangular cross section of flow.
The swept area for a single device can thus be wide and shallow, al-
lowing large systems to be installed in shallow water. Subsequently,
multi-megawatt devices can be envisaged for a wider range of tidal
stream resource areas [8].

With the rapid development of such devices, the understanding of their
underlying physics, including the fluid dynamics, the fluid-structure inter-
actions, and the coupled dynamics of the non-linear system, is required in
order to improve the existing devices efficiency and pave the way for the
development of new systems that will be commercially profitable. In the
past few years, the research on the dynamics of oscillating energy extraction
devices based on flapping foils has attracted gradually more attention.

As shown by Ashraf et al. [2] by means of a numerical study, the com-
bined oscillation occurs in such a manner that there is a 90 deg phase angle
Φ between the pitch and the plunge (vertical) motion, then the aerodynamic
lift is always in the same direction as the motion of the airfoil, as shown in
Fig. 1.4a. In this case, the work is done by the the fluid on the airfoil
throughout the complete cycle. In other words, the airfoil is extracting en-
ergy out of the air flow. On the other hand, if the phasing between pitch
and plunge is zero, as shown in Fig. 1.4b, then during parts of the cycle the
aerodynamic lift opposes the motion and no net work is done on the airfoil.
The type of flutter shown in Fig. 1.4a can easily occur on airplane wings, for
certain values of the bending and torsional stiffnesses of the wing. Clearly,
this phenomenon can also be used for power generation.
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Figure 1.4: Trend of Lift force and body acceleration in a period varying
with phase angle (taken by [2]).
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Chapter 2

Object and aim of the work

2.1 Fluttering Energy Harvesting for Autonomous
Power

In this work we will deal with the FLEHAP device (Fluttering Energy Har-
vesting for Autonomous Power) [3, 4, 22, 23] originated from a joint project
on energy harvesting from fluid-structure interaction involving two depart-
ments of our University (DICCA and DIFI). The FLEHAP project concerns
a novel energy harvester under active development based on an elastically
bounded wing, exploiting the coupled-mode flutter aeroelastic instability.
This device is developed to work for low wind speed (2-6 m/s) and for low
Reynolds regime O(103).

The harvester is sketched in Fig. 2.1. The system is composed by a
wing W connected to a support S via 2 elastomers E. The wing can freely
rotate around a rigid (pivot) axis A. The elastomers are fixed at the ends
of the axis, they are parallel to the wind direction and movement is mainly
confined along y direction.

Figure 2.1: Sketch of energy harvester (taken by [3]).
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Figure 2.2: Wing motion regimes as a function of flow velocity and elastomer
equivalent stiffness. The images are acquired by a digital camera with long
time exposure (see Sec. 2.2.1) (taken by [22])

When a fluid in motion impinges on this elastic structure, an amount
of kinetic energy is transferred to the system, inducing large amplitude os-
cillations if few mechanical parameters are correctly set (Fig. 2.2). In this
situation, the system exhibits limit cycle oscillations (LCOs) whose charac-
teristics depend on many parameters such as the wind velocity, geometrical
and mechanical properties.

From the resulting self-sustained pitch and plunge movement, it is pos-
sible to extract energy using electromagnetic coupling (EMC) and/or elas-
tomeric capacitors replacing the standard elastomers. The principle beneath
the EMC is the Faraday-Neumann’s law, e.g. by placing two magnetic ele-
ments at the ends of the pivot axis, and two fixed coils on pylons. When the
foil flutters, the coils experience a variation of induced magnetic field, so it
is possible to extract electric power proportional to the variation frequency
of the magnetic field. At the present stage, the order of the generated power
is around mW.

The wing dynamics is given by the combination of gravity, aerodynamics
and elastic forces that influence the motion. The fluttering phenomenon
appears when the body can not contrast bend and torque by a fluid flow,
varying the wing angle of attack, thereby there is a variation of aerodynamic
force. So if the damping is not sufficiently high the body starts to oscillate
increasing the amplitude of motion. The fluttering condition depends on:
the centre of mass position, the mass of the wing, the wing dimensions,
elastomers stiffness and the value of resistive load.

Although the elastomeric elements do not follow the linear Hooke’s law,
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by measuring the natural frequency of the structure (e.g. imposing a per-
turbation in quiescent fluid) it is possible to derive an equivalent stiffness

along the vertical direction, i.e.: ωn =
√
Keff

(y)/m, where m is system trans-

lational mass and Keff
(y) is the effective elastomers stiffness along the vertical

direction. It is also possible to give an approximation of this quantity as [22]:

Keff
(y) = 12GA0

ε

l20
where G is the shear modulus, A0 is the initial elastomer cross section, ε is
the elastomer pre-stretching and l0 is the initial elastomer length.

Recalling Fig. 2.2, we show the trajectories of the pivot point (PP) and
trailing edge (TE), in a configuration without energy extraction, in function
of U and Keff

(y).
Some observations can be made:

� The aeroelastic instability occurs only for flow velocities sufficiently
high (U > 2.9 m/s) .

� Increasing U we reach pre-transition phase where the PP amplitude is
greater than TE amplitude for Keff

(y) ¿ 0.55 N/m.

� At speed of 4.8 and 5.4 m/s we have a substantial independence from
the stiffness, indeed the trajectories do not vary changing the Keff

(y)
value.

� For higher speed we are in post-transition phase where the TE am-
plitude is greater than the PP amplitude. In this case decreasing the
stiffness the wing stops to vibrate, aligning with the flow returning to
a stable condition. On the contrary increasing the stiffness we have
chaotic motion.

As an example, in Fig. 2.3 we report the trend of the flapping amplitude
and frequency as a function of the flow velocity, for different wing spans [3].
For this configuration the maximum oscillation is at 3 m/s, while the angle
it is around 50◦ at low velocity, reaches a maximum around 90◦ at velocity
of 3.5 m/s, then decreases at higher speed. It has been observed that for
U > 6m/s the movement stops and the wing assumes a horizontal position.

In order to maximize the energy extracted from an electromagnetic cou-
pling, the oscillation frequency needs to be maximized.

To calculate the power generated by the device we refer to Pplunge =
Lvpp (mechanical power extracted by the device) and Pbetz (maximum power
extractable from the fluid flow). The first term is the product between the
lift (L) force and vertical pivot point velocity(vpp):

Pplunge =
L

vpp
(2.1)
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(a) (b)

Figure 2.3: (a) Amplitude and (b) frequency of motion as a function of the
wind speed (taken by [3]).

while Pbetz is equal to:

PBetz =
1

2
ρfAU

3d

c
(2.2)

it is possible to define Betz efficiency, that means how much energy it is
possible to extract from the harvester compared to energy flow:

ηB =
P̄plunge
PBetz

(2.3)

where P̄plunge is the power average in the time. It is also possible define
other efficiency terms as the electro-mechanic efficiency (ηEM ):

ηEM =
P̄

PBetz
(2.4)

where P̄ is the average electrical power absorbed by the load:

P̄ =
1

T

∫ t+T

t
V Idt (2.5)

where T is the period of a cycle, V is the voltage and I is the current. We
can therefore the global efficiency (ηg) as:

ηg = ηBηEM =
P̄

PBetz
(2.6)

we can see from Fig. 2.4 that for each wind speed there is a best value of
resistance load to adopt in order to maximize the power extracted. For U
¿ 4.5, the electrical power extracted assumes the highest values, but works
for a limited range of resistance load. While for lower wind speed the power
extracted is less but the device can work in a wider range of resistance load.
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Figure 2.4: Power trend in function of resistive load. The wing has chord
equal to 35 mm and span equal to 85mm (taken by [22]).
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Figure 2.5: Sketch of device studied in this work (taken by [22]).

2.2 Object of the work

The device studied in this work is shown in the Fig. 2.5. The wing is com-
posed by polymeric material and it is anchored by four elastomers through
a cylindrical rod, perpendicular to the wind direction. The weight of the
wing is of 0.845 g, the dimensions are 20 mm × 70 mm × 0.1 mm. The
elastomers force exerted by elastomers follow this relation [27]:

Fel = −GA0

[
|L|
L0
−
(
L0

|L|

)2
]

L

|L|
(2.7)

where G, is the shear modulus (in this work equal to 0.534 MPa), A0 is the
cross section at rest, |L| is the elastomer present length, L0 is the initial
length and L/|L| is the dimensionless versor. The anchor points are at 0.05
mm from leading edge, this is an important parameter that influences the
auto-excited flapping motion of the wing [23].
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Figure 2.6: The employed wind tunnel where the real device is tested; (A)
nozzle, (B) test chamber, (C) diffuser (taken by [22]).

2.2.1 Wind tunnel configuration

The wind tunnel used for the experimental measurements is a subsonic as-
pirating open circuit tunnel built at the Department of Physics of the Uni-
versity of Genoa (Italy). With a total length of 3 m, its shape is designed
to obtain a stable and controlled laminar flow inside the test chamber, the
40 cm x 40 cm 70 cm middle part of tunnel (Fig. 2.6). By exploiting the
Venturi effect, the air is aspirated through a honeycomb grid into the nozzle
(A), conveyed to the test chamber (B) and through the diffuser (C), at the
end of which a three-phase motor of the aspirating fan is collocated.

The tunnel calibration was performed using a Cobra probe sampling at
1250 Hz. A free-stream turbulence level of around 0.6% is ensured thanks to
the use of the honeycomb grid, the appropriate curvature of the nozzle and
the slope of the diffuser. By varying the fan rotational speed, the operational
flow velocity in the test chamber ranges from 1.7 to 10.5 m/s with an absolute
error of 0.15 m/s. Moreover, visualizations of the free-stream flow and of
the flow-structure interaction have been possible using a home-made smoke
generator apparatus (Fig. 2.7). The use of a high definition camera (500 fps)
coupled to an appropriate illumination and video processing system allows
to obtain a precise acquisition of the wing motion: a light scatterer placed
on the rotational axis of the wing is illuminated by a line laser beam and a
numerical elaboration of the movie returns the main quantities in time such
as the pivot point position and the pitching angle.

2.3 Phenomenological model

It is also possible to give an analytical description of the system represent-
ing a complementary way to study the problem, based on quasi-steady phe-
nomenological model, originally developed for investigating falling plates [1].
The model consists of a system of first order ODEs written in the frame of
reference (x′, y′) co-rotating with the plate:
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Figure 2.7: Flow visualizations using smoke generation (taken by [22]).

(m+m11)v̇x′ = (m+m22)θ̇vy′ + F el
x′ − ρfΓṽy′ − F νx′ (2.8)

(m+m22)v̇y′ = −(m+m11)θ̇vx′ + F el
y′ + ρfΓṽx′ − F νy′ (2.9)

(IG + Ia)ω̇ = (m11 −m22)vx′vy′ − crF el
y′ − lτρfΓṽx′ − τν (2.10)

ẋ′G = vx′ + θ̇y′G (2.11)

ẏ′G = vy′ − θ̇x′G (2.12)

θ̇ = ω (2.13)

where vx′ and vy′ denote the center of mass velocities, ṽx′ = (vx′ − U cos θ)
and ṽy′ = (vy′ +U sin θ) are those relative to the unperturbed flow, m is the
plate mass, IG is the moment of inertia with respect to the center of mass,
r represents the distance between the center of mass and the pivot point
normalized with the chord, x′G and y′G are the coordinates of the plate center
of mass, θ is the pitching angle, Fel is the elastic force and lτ = c/4 cos θ is the
moment arm of the circulatory force. The added mass coefficients m11, m22

and Ia are expressed for the plate of rectangular cross-section following [15]:
m11 = (3π/8)ρfδ

2, m22 = (3π/8)ρfc
2, Ia = (5π/256)ρf(c

2 − δ2)2.
The circulation Γ, the viscous force Fν and the dissipative fluid torque τν

are expressed in a semi-empirical manner using several free parameters [1]:

Γ = −CT c
ṽx′ ṽy′√
ṽ2
x′ + ṽ2

y′

+
1

2
CRc

2θ̇ (2.14)

24



Fν =
1

2
ρfc
[
CD(0) ṽ2

x′ + CD(π/2) ṽ2
y′
] √ṽ2

x′ + ṽ2
y′

ṽ2
x′ + ṽ2

y′
(ṽx′ , ṽy′) (2.15)

τν = Cτρf θ̇

(
|ṽy′ |c3

24
+
|θ̇|c4

64

)
(2.16)

where CT and CR are the translational and rotational lift coefficients, re-
spectively, CD(0) and CD(π/2) are the drag coefficients while Cτ is the
dissipative torque coefficient.

On the numerical side, the evolution of equations (2.8)–(2.13) is per-
formed using a third order Adams-Bashfort integration:

Xn+1 = Xn + cf1 Gn + cf2 Gn−1 + cf3 Gn−2 (2.17)

where X is a vector containing the six unknown quantities and G collects the
right-hand-side of the equations; the superscript denotes that the quantity
is evaluated at a certain discrete time tn = n∆t, while expressions of the
coefficients are: cf1 = 23

12∆t, cf2 = −4
3∆t and cf3 = 5

12∆t.

2.4 Scope of the work

The purpose of the present work is to investigate the problem numerically,
using the open source code OpenFOAM [10], written in C++. OpenFOAM
is a general purpose code created to resolve an extended variety of problems
and it is suitable for studying fluid-structure interactions problems.

We will set up 3D simulations corresponding to the configuration spec-
ified at the beginning of Sec. 2.2, aiming at characterizing the flapping dy-
namics within the design wind velocity range. Among the main results, we
will monitor the frequency, the vertical amplitude of pivot point motion and
the phase between the pitch and plunge motion degrees of freedom. Further-
more, we will compare the numerical findings with those from experimental
wind tunnel investigation and the phenomenological model prediction.
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Chapter 3

Fundamentals of
fluid-structure interactions
and turbulence modelling

In the introduction has not been deepened which are physical working prin-
ciples of energy harvester, limiting ourselves to explain its the general op-
eration. In this section will be shown physical principles that allow to get
sustained motion, as the fluttering and dynamic stall phenomenon. We will
refer to dynamic stall instead of static stall because the device deals with
unsteady condition and its incidence varies rapidly.

3.1 Aeroelasticity

Flutter is a dangerous phenomenon encountered in flexible structures sub-
jected to aerodynamic forces. This includes aircraft, buildings, telegraph
wires, stop signs, and bridges [6]. Flutter occurs as a result of interactions
between aerodynamics, stiffness, and inertial forces on a structure. In an
aircraft, as the speed of the wind increases, there may be a point at which
the structural damping is insufficient to damp out the motions which are
increasing due to aerodynamic energy being added to the structure. These
vibrations can cause structural failure and therefore considering flutter char-
acteristics is an essential part of designing an aircraft. The basic type of
flutter of aircraft wing is described here. Flutter may be initiated by a ro-
tation of the airfoil (see t=0 in Fig. 3.1 ). As the increased force causes the
airfoil to rise, the torsional stiffness of the structure returns the airfoil to
zero rotation (t=T/4). The bending stiffness of the structure tries to return
the airfoil to the neutral position, but now the airfoil rotates in a nose-down
position (t=T/2). Again the increased force causes the airfoil to plunge and
the torsional stiffness returns the airfoil to zero rotation (t=3T/4). The
cycle is completed when the airfoil returns to the neutral position with a
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Figure 3.1: Rotation and Plunge Motion for an Airfoil Exhibiting Flutter
(taken by [6]).

nose-up rotation. Notice that the maximum rotation leads the maximum
rise or plunge by 90 degrees (T/4). As time increases, the plunge motion
tends to damp out, but the rotation motion diverges. If the motion is al-
lowed to continue, the forces due to the rotation will cause the rupture of
the structure.

Anyway, in energy harvesting field fluttering can be viewed as a positive
phenomenon as it may generated self sustained body fluctuations.

The flutter is caused by the coalescence of two structural modes pitch
and plunge (or wing-bending) motion. We report the example of a wing
which has two basic degrees of freedom, where pitch mode is rotational and
the bending mode is a vertical up and down motion. As the airfoil flies at
increasing speed, the frequencies of these modes coalesce or come together
to create one mode at the flutter frequency and flutter condition. This is
the flutter resonance [26].

Now we will have a deeper look showing the interaction fluid-solid equa-
tion. In this kind of problem the fluid and the solid equations are coupled
through the boundary conditions. For the incompressible fluids the equa-
tions are: ∇ ·U = 0

ρ
DU

Dt
+ ρgez +∇p+ µ∆U = 0

(3.1)

with its relative boundary conditions, while for the solid we will refer to the
single mode approximation:

ξ(x, t) = q(t)φ(x) (3.2)

where ξ(x, t) is the displacement function for the solid, q(t) is the modal
displacement that is the solution of an ordinary differential equation and φ
is the modal shape, normally known, that depends by model type. In many
cases q(t) satisfies oscillator equation:
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m
d2q

dt
+ kq = f (3.3)

where m is the modal mass, k is the modal stiffness and f is the modal
force, all this parameters are known.

The Navier’s equation and the modal equations are coupled by the con-
tinuity equation at the interface: the kinematic condition (Eq.(3.4)) and the
dynamic condition (Eq. (3.5)). They represent there is no exchange of mass
at the interface and the force exerted by the fluid is equal and opposed by
the solid force.

U =
dξ

dt
(3.4)

∫
Interface

{[−pI + µ(∇U +∇tU) · n]}φ dS = f (3.5)

so Eq.(3.1)-(3.5) and the fluid and the solid boundary conditions, are the
equations used to model the flutter system. The coupling problem can be
simplified using a dimensionless form of the previous equations, depending
on the reduced velocity number value: UR = Uflow/Usolid.

UR =
Uflow
Usolid

=
U0

c
(3.6)

where U0 is the undisturbed flow velocity, and c is the speed wave propaga-
tion in the solid.

3.1.1 Flutter involving fast flow (high reduced velocity)

Here we show the theory for the cases that involves UR >> 1. A possible ex-
ample for viewing flutter instability is an airfoil immersed in a wind current
at a specified speed flow (Fig. 3.2) with only just torsion freedom degree.
The equation for this case is:

θ̈ +

[
1− CY

x

L

(
∂Cl
∂θ

)
0

]
θ = 0 (3.7)

the total stiffness vanished at a critical Cauchy number (CY ) that is simply
to compute, and so it is possible to obtain the critical velocity at which
instability occurs:

CCriticalY =
L

2πx
⇒ CY =

ρU2L2

2C
⇒ U critical =

√
C

ρπLx

remember that C is rotation stiffness. For U < UCritical the airfoil just only
oscillates without motion divergence, for U > UCritical the amplitude of
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Figure 3.2: Airfoil invested by a wind current with velocity U, that exerts
a lift force spaced x from centre of rotation. The system is bounded with a
rotational spring which stiffness is C.

motion increases exponentially with no oscillation. For avoiding this problem
it is necessary to adopt stiffer materials and move upward the point of axis
rotation.

We can develop a more sophisticated model, named the two-modes ap-
proximation. The displacement ξ is a combination of two contributes, like
as a two type of translation, or a translation and a rotation:

ξ = Dq1(t)φ1(x) +Dq2(t)φ2(x) (3.8)

m1q̈1 + k1q1 = f1
FS (3.9)

m2q̈2 + k1q2 = f2
FS (3.10)

the fluid loading fFS needs to be projected on the two modes q1 and q2 and
can be expanded as in terms of displacement number, that is assumed to be
small:

f iFS = CY F
0
i +DCY

(
∂Fi
∂q1

)
0

+DCY

(
∂Fi
∂q2

)
0

+ ... i = 1; 2 (3.11)

naming

Kij =

(
Fi
∂qj

)
0

the fluid stiffness, that depends by flow velocity. We have now a set of two
equations, coupled by the flow-induced stiffness term:
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{
m1q̈1 + k1q1 = CYK11q1 + CYK12q2

m2q̈2 + k2q2 = CYK21q1 + CYK22q2

(3.12)

the terms on the right vary with the velocity through the Cauchy number;
the off diagonal terms induces coupling of two modes, while diagonal terms
is referred to a single mode. For a certain U the two frequencies modes are
coincident, the critical flow velocity depends by flow induced stiffness. We
can consider two cases, the first when K12 and K21 are equal and the second
when they are opposite. In both cases the non diagonal terms are littler
than diagonal terms (ε << 1):{

q̈1 + q1 = εq2

q̈2 + q2 = εq1

(3.13)

{
q̈1 + q1 = εq2

q̈2 + q2 = −εq1

(3.14)

in case of the coupling is symmetric:

ω ≈ 1± ε

2
(3.15)

ωA = 1 +
ε

2(
q1

q2

)
A

=

(
1
−1

)

ωB = 1− ε

2(
q1

q2

)
B

=

(
1
−1

)
their motion is formed by the combination of the eigenvectors, while the
eigenvalues are the frequencies of two modes, neither of two are unstable
motion. The antisymmetric coupling has a big difference with the previous
case, indeed the frequency has a illusionary part, the solution is the following:

ωA = 1 + i
ε

2(
q1

q2

)
A

=

(
1
−i

)
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(a) Stable mode. (b) Unstable modde.

Figure 3.3: Plot of q1 and q2 trend depending on mode coupling (taken
by [30]).

ωB = 1− i ε
2(

q1

q2

)
B

=

(
1
i

)
these two modes have complex frequencies and complex eigenvectors; in
particular motion at frequency ωA gives to life to a damped mode (Eq.
(3.16)), while motion at frequency ωB to an unstable mode (3.17), the effect
are visible in Fig. 3.3.(

q1

q2

)
A

=

(
1
−i

)
=

(
cos(t)
sin(t)

)
e−εt/2 (3.16)

(
q1

q2

)
B

=

(
1
−i

)
=

(
cos(t)
−sin(t)

)
eεt/2 (3.17)

unlike the previous example of one degree of freedom, this time the in-
stability provides an exponential growth and at the same time an oscillation.
To sum up, when the coupling is symmetric we have two neutral modes, ei-
ther, when there is an antisymmetric coupling, we have a damped mode and
unstable mode. In Fig. 3.4 we can see the most important theory result:
the dynamic instability, also called mode-coupled flutter, occurs only when
the frequency are equal and the coupling is non symmetric.

Here we report a final analysis of a plunge and torsion movement for an
airfoil. Resolving the set of Eq.(3.12) we can compute and plot the real and
imaginary part of ω, as we can see in Fig. 3.5. Until the Cauchy number is
minor of 0.08, the instability does not occur, after this threshold, when the
two real frequencies merges, the imaginary part is not zero any more and
we can have a stable mode or flutter, if WFS =

∫
τ F ẏdt > 0.
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Figure 3.4: Flutter occurs when the two frequencies are merged and at the
same time there is a non symmetric coupling (taken by [30]).

Figure 3.5: Plot of ω trends vary with Cauchy number, in blue we represent
stable condition and in red unstable condition. Instability occurs only when
CY > 0.08 (taken by [30]).
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3.1.2 Flutter involving slow flow (low reduced velocity)

In this case the force induced by the fluid is different compared to the pre-
vious case, indeed if we develop the expansion of fluid force for low UR, we
obtain a stiffness force and a damping force. The solid body equation is:

q̈ + cF q̇ + (1 + kF )q = 0, cF = −CY
UR

(
∂F

∂q̇

)
0

, kF = −CY
(
∂F

∂q

)
0

(3.18)
If cF > 0 the flow is going to damp the oscillation, conversely if it is

negative every perturbation will be amplified in time. We have seen for fast
flow that increasing CY , the flow brings frequencies of two modes together,
and then, for slow flow, a combined mode, with negative damping, appears.
The substantial difference to remark is that, for slow flow, the mode could
be unstable itself as soon as the fluid force acts(Fig. 3.6). For the general
case, with an initial damping c0, we can predict the reduced velocity for
which the instability occurs:

q̈ + (c0 + cF )q̇ + (1 + kF )q = 0 UCR =
c0

M
(∂F
∂q̇

)
0

(3.19)

where M is the mass number. This mechanism is much more dangerous than
the before case, because it does not require the coincidence of two modes,
indeed every single mode could be unstable. We can make an example with
an airfoil with only plunge as degree of freedom, developing the equation of
motion for the system:

Mÿ +

[
1

2
ρUL

(
∂Cl
∂θ

)
θ0

]
ẏ +Ky = 0 (3.20)

we can understand that if lift slope is positive there is a positive damping,
so there is a stable condition, conversely for high angles of attack dynamic
instability occurs. It is also called stall flutter because the lift slope is
negative (fig. 3.7).

In stable case the airfoil moves upward, decreasing the apparent angle of
attack, reducing in turn the lift; so the variation of the force is opposed to
body’s velocity, then it acts as a damping force. Conversely for the negative
lift slope the variation of the force is in the same way of velocity, causing
instability, in the latter region the fluid transfers energy to the solid, causing
the stall flutter.

In conclusion, in fast flow, we can encounter the static instability in
torsion, with no oscillation for bodies with only one degree of freedom, and
dynamic instability, for bodies with two or more degree of freedom, also
called coupled mode flutter, where the airfoil combines torsion and plunge
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(a) Trend of frequency and damp-
ing for a high reduced velocity
case.

(b) Trend of damping term for low
reduced velocity case.

Figure 3.6: Trend of instability for high and low reduced velocity.

Figure 3.7: Lift slope for a NACA airfoil
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motion, that could diverge for specific conditions. For slow flow, we have
find out that an airfoil can be unstable in a pure plunge motion, called stall
flutter.

3.2 Dynamic stall

Aerodynamic bodies subjected to pitch and plunge motions exhibit a differ-
ent stalling behaviour from stalling phenomenon of fixed wing. In the case
of a dynamically pitching body, such as an airfoil, the shear layer near the
leading edge rolls up to form a leading-edge vortex (LEV) which provides
additional suction over the upper airfoil surface as it convects downstream.
This increases the suction region, leading to gain in lift and delaying the
stall, compared to a fixed wing. However the LEV quickly becomes unsta-
ble and detaches from the airfoil [34]. The LEV detachment is accompanied
by a dramatic decrease in lift and sudden increase in pitching moment. Dy-
namic stall is not a well-understood phenomenon despite its importance to
the performance and operational limits of helicopters, flapping wings, and
wind turbines. In fact, dynamic stall can lead to violent vibrations and dan-
gerously high loads in these aerodynamic applications, leading to fatigue
and structural failure. But, for energy harvesting’s world, dynamic stall is a
desirable process. Here we show a NASA report that treats about dynamic
stall phenomenon [19].

In Fig. 3.8 we can see the different phases of dynamic stall. In the
unseparated region, between points 1 and 2, the lift and pitching moment
follow approximately the trends of unsteady linear thin airfoil theory. After
point 2 it is found that is formed a vortex at leading edge (Leading Edge
Vortex) and starts to move downstream at the trailing edge. The presence
of this vortex distorts the pressure distribution and hence the overall lift,
indeed it is the LDV vortex the cause of the extra lift, which increases
until the vortex is attached to the body. After point 4 LDV is completely
detached, it is responsible of lift decreasing. At same time there is the
phenomenon of secondary vortices release, their effects can be seen at point
5. These vortex give a temporary increase of lift, but always less than of the
first leading edge contribution.

If we refer to pitching moment coefficient we can see in advance the
dynamic stall phenomenon, indeed Cm decrease rapidly after point 3.

The dynamic stall does not have a mirror trend and this brings to large
hysteresis zones. It is so possible defines an aerodynamic damping coeffi-
cient:

ζ =

∮
C
cmdα

where ζ expresses the work done by aerodynamic force every period. If ζ
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Figure 3.8: Graphs of lift, moment and drag coefficient varying with angle
of attack.
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Figure 3.9: The effect of mean angle on lift and moment coefficients, for
bigger average AOA ζ positive zone is larger.

is positive, the fluid receives energy from body motion, but if ζ is negative
the fluid transfers energy to body and fluctuations tends to growth. From
Fig. 3.9 we can note how the mean AOA influences damping coefficient on
airfoil with sinusoidal motion.

It is also possible defines four stall regimes for a oscillating body:

1. No stall : We are in the case in which the oscillations are such as
not cause separations. The profile behaviour is reproducible by linear
theories.

2. Stall onset : The oscillation amplitude is such as to generate a small
stall area. However it does not determine a lift fall.

3. Light stall : A portion of the cycle is in conditions of stalled flow. In the
remaining part of the cycle the flow is attached and profile operation
is linear.

4. Deep stall : The angular variation is such as to maintain the profile
always in a stalled condition.

In Fig. 3.10 we can appreciate the increasing of hysteresis cycle for
bigger body incidence. Some features of deep dynamical stall are intense
vortex detachment and the viscous region is order of magnitude of chord
length, while in light stall the viscous region is the order of profile’s thickness.
The geometry influences in particular the light stall, in fact thin leading
edge leads to greater adverse pressure gradient, while in case of deep stall
geometry does not affect the stall regime.
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Figure 3.10: Operating regimes by increasing the average incidence.

3.3 Turbulence

We will have a deeper look to turbulence model because in this work we will
face on it, modelling the features flow, because a Direct Numerical Simu-
lation has execution time unacceptable. The simulations have a Reynolds
regime not so low to allow to use a laminar model, so we will use first RANS
approach (Reynolds Average Navier–Stokes) with k − ω SST model, and
then LES approach (Large-Eddy Simulation). For turbulent fluid we mean
a flow which has features on many different length scales, which all interact
with each other, with no periodicity. The flow can be seen as a sum of av-
eraged quantity plus stochastic fluctuations, for RANS, or a sum of filtered
quantity plus high frequency modelled terms for LES.

3.3.1 RANS (Reynolds Averaged Navier–Stokes Equations)

The Reynolds-averaged Navier—Stokes equations (or RANS equations) are
time-averaged equations of motion for fluid flow. The idea behind the equa-
tions is Reynolds decomposition, whereby an instantaneous quantity is de-
composed into its time-averaged and fluctuating quantities, an idea first
proposed by Reynolds:

u = u′ + ū

p = p′ + p̄

these equations can be used with approximations based on knowledge of the
properties of flow turbulence to give approximate time-averaged solutions to
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the Navier—Stokes equations. For a stationary, incompressible Newtonian
fluid, these equations can be written in Einstein notation as:

ρūj
∂ūi
∂xj

= ρf̄i +
∂

∂xj

[
−p̄δij + µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j

]
(3.21)

the continuity equation is unchanged respect to average operation. The
fundamental nonlinear term to understand is u′iu

′
j named Reynolds stress,

which has to be modelled in order to resolve the NS equations.
The problem can be closed introducing the concept of eddy viscosity,

conceived by Boussinesq. He proposed relating turbulence stresses to the
gradient of mean flow to close the system with a new constant νt:

−u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi
− 2

3

∂ūk
∂xk

)
− 2

3
Kδij (3.22)

where K =
1

2
u′iu
′
j is the turbulence kinetic energy. In this model, the

additional turbulence stresses are given by augmenting the molecular vis-
cosity with an eddy viscosity. The Boussinesq hypothesis is employed in the
Spalart–Allmaras (S–A), k–ε (k–epsilon), and k–ω (k–omega) models and
offers a relatively low cost computation for the turbulence viscosity νt. The
S–A model uses only one additional equation to model turbulence viscosity
transport, while the k models use two.

Prandtl introduced the additional concept of the mixing length, along
with the idea of a boundary layer. For wall-bounded turbulent flows, the
eddy viscosity must vary with distance from the wall, hence the addition of
the concept of a ’mixing length’. In the simplest wall-bounded flow model,
the eddy viscosity is given by the equation:

νt =

∣∣∣∣∂u∂y
∣∣∣∣l2m (3.23)

where
∂u

∂y
is the velocity gradient on the wall and lm is the mixing length.

This simple model is the basis for the ”law of the wall”, which is a surpris-
ingly accurate model for wall-bounded, attached (not separated) flow fields
with small pressure gradients.

In final, Smagorinski, proposed a useful formula for the eddy viscosity
in numerical models, based on the local derivatives of the velocity field and
the local grid size:

νt = cs∆x∆y

√(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+
∂v

∂x

)2

(3.24)

where cs is an empirical value equal to 0.16.
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k-ω SST

Here we present the turbulence model for RANS simulations used in this
work.

k-ω SSTturbulence model combine the best of k-ω and SST (shear stress
transport). The use of k-ω formulation in the inner parts of the boundary
layer makes the model directly usable all the way down to the wall through
the viscous sub-layer, hence the SST k-ω model can be used as a Low-Re
turbulence model without any extra damping functions. The SST formula-
tion also switches to a k-ε behaviour, converting it in a k-ω model, in the
free-stream and thereby avoids the common k-ω problem that the model is
too sensitive to the inlet free-stream turbulence properties. Authors who
use the SST k-ω model often merit it for its good behaviour in adverse pres-
sure gradients and separating flow. The SST k-ω model does produce a bit
too large turbulence levels in regions with large normal strain, like stagna-
tion regions and regions with strong acceleration. This tendency is much
less pronounced than with a normal k-ε model though. There are necessary
requirement to satisfy to set a right formulation of k-ω SST:

1. The standard k- ω model and the transformed k- ε model are both
multiplied by a blending function and both models are added together.
The blending function is designed to be one in the near-wall region,
which activates the standard k- ω model, and zero away from the
surface, which activates the transformed k- ε model.

2. The SST model incorporates a damped cross-diffusion derivative term
in the ω equation.

3. The definition of the turbulent viscosity is modified to account for the
transport of the turbulent shear stress.

4. The modeling constants are different.

These features make the SST k- ω model more accurate and reliable for
a wider class of flows than the standard k- ω model. Other modifications in-
clude the addition of a cross-diffusion term in the ω equation and a blending
function to ensure that the model equations behave appropriately in both
the near-wall and far-field zones. The governing equations are:

∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(3.25)

∂ω

∂t
+ uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2(1− F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi
(3.26)
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where F1 is the blending function, which values 0 near the wall and 1 in the
free stream:

F1 = tanh{{min
[
max

( √k
β∗ωy

,
500ν

y2ω

)
,

4σω2k

CDkωy2

]
}4} (3.27)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(3.28)

eddy viscosity and second blending function are:

νt =
a1k

max(a1ω, SF2)
(3.29)

F2 = tanh

[
max

(
2
√
k

β∗ωy
,
500ν

y2ω

)]2

(3.30)

for avoiding excessive turbulent kinetic energy near stagnation point is in-
troduced production limiter Pk:

Pk = min

(
τij
∂Ui
∂xj

, 10β∗ωk
)

(3.31)

finally the boundary condition for a domain with scale length L are:

U∞
L

< ω < 10
U∞
L

(3.32)

10−5U2
∞

ReL
< k < 0.1

10−5U2
∞

ReL
(3.33)

3.3.2 LES (Large-Eddy Simulation)

Large-Eddy Simulation (LES) is a mathematical model for turbulence used
in computational fluid dynamics. It was initially proposed in 1963 by Joseph
Smagorinsky and is currently applied in a wide variety of engineering appli-
cations, including combustion, acoustics, and simulations of the atmospheric
boundary layer. The simulation of turbulent flows by numerically solving
the Navier–Stokes equations requires resolving a very wide range of time
and length scales, all of which affect the flow field. Such a resolution can
be achieved with direct numerical simulation (DNS), but DNS is computa-
tionally expensive, and its cost prohibits simulation of practical engineering
systems with complex geometry or flow configurations, such as turbulent
jets, pumps, vehicles, and landing gear. Large eddy simulation uses a an
implication of Kolmogorov’s (1941) theory of self similarity, that is that the
large eddies of the flow are dependant on the geometry while the smaller
scales more universal. This feature allows one to explicitly solve for the
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Figure 3.11: Difference between DNS simulation and LES simulation. LES
does not contain fluctuation because equation has been filtered with a kernel
filtering with a determined shape G and width ∆.

large eddies in a calculation and implicitly account for the small eddies by
using a subgrid-scale model (SGS model). Subgrid-scale modeling refers to
the representation of important small-scale physical processes that occur at
length-scales that cannot be adequately resolved on a computational mesh.
In Large-Eddy Simulation of turbulence, subgrid-scale modeling is used to
represent the effects of unresolved small-scale fluid motions (small eddies,
swirls, vortices) in the equations governing the large-scale motions that are
resolved in computer models. The formulation of physically realistic SGS
models requires understanding of the physics and the statistics of scale in-
teractions in hydrodynamic turbulence, and is an open research question
owing to the fact that turbulence remains an unsolved problem in classical
physics.

In Large-Eddy Simulation of turbulence, the time and space dependence
of the fluid motions are resolved down to some prescribed length-scale ∆, the
motion is separated into small and large scales, often by spatially filtering
the velocity field with a kernel G∆(x). The convolution kernel eliminates
scales smaller than ∆ . The eliminated scales are called subfilter or subgrid-
scale motions (Fig. 3.11). The spectrally sharp filter, the Gaussian filter,
and the box or top-hat filter are often used. The filtered velocity (denoted
by a tilda), is thus obtained by convolution:

ũi(x) =

∫
G(x− ξ)u(ξ)dξ (3.34)

so velocity can be seen has a filtered part plus subgrid-scale part: ui = ũi+u
′
i.

The most common filter used are Box filter and Gaussian filter, we report
the physical filter kernel (G(x)) and filtering kernel in Fourier-wavenumber

space (Ĝ(k)):
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G(x)box =
1

∆
H

(
1

2
∆− |x|

)
(3.35)

G(x)Gauss =

(
6

π∆2

)1/2

e

−6x2

∆2 (3.36)

Ĝ(k)box =
sin(

k∆

2
)

k∆

2

(3.37)

Ĝ(k)Gauss = e

−k2∆2

24 (3.38)

the filtered Navier–Stokes equations become:

∂ũ

∂t
+ ũ · ∇ũ = −1

ρ
∇p̃+ ν∇2ũ−∇ · τ, ∇ · ũ (3.39)

the SGS stress tensor τ is defined according to: τij = ũiuj − ũiũj . The LES
equations can be discretized numerically by employing a spatial resolution
that is on the order of ∆, when ∆ is chosen to be much larger than the
Kolmogorov scale ηK , LES is typically far less expensive than Direct Nu-
merical Simulation which requires resolutions near ηK . However the filtered
equation are still unclosed for the presence of stress tensor, we need again
additional equation. Physically, the SGS stress determines the dynamical
coupling between large and small scales in turbulence. Dimensionally, it
scales quadratically with turbulent velocity differences at scales of order ∆,
Unlike Reynolds stresses, the SGS stress is a fluctuating turbulence quantity,
i.e. a complicated time-dependent field τ(x, t). Traditionally, the effects of
SGS motions upon resolved scales are modeled in analogy with molecular
degrees of freedom in kinetic theory of gases, in which the momentum fluxes
are linearly dependent upon the rate of strain of the large scales. This is
written as an eddy-viscosity closure according to:

τij = −2νsgsŜij (3.40)

the issue is model the eddy viscosity νsgs for every type of problem. A
closure equation can be given by Smagorinski model:

τ evij = −2(cs∆)2|S̃|S̃ij (3.41)

where |S̃| represents a Galilean invariant estimation of velocity differences
over length-scales of order ∆, cs is Smagorinski coefficient and S̃ij is filtered
shear stress tensor. The Smagorinsky model is the oldest of LES SGS mod-
els, but because of its simplicity it is still widely used. It is not a particularly
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good choice for wall-bounded shear flows, but for flows far from solid bound-
aries it can be quite adequate. Using the requirement that modeled rate of
energy transfer from large to small scales, < τijŜij > is equal to overall rate
dissipation of turbulent kinetic energy < ε >, exploiting the insight provided
by Kolmogorov theory to evaluate the moment of strain < ŜijŜij > and cs
derived empirically equal to 0.16, it is possible to find out the SGS stress
tensor contributes. The Smagorinsky model assumes that an equilibrium
exists between kinetic energy flux across scale and the large scales of tur-
bulence. In many applications, such as free stream turbulence impinging
on the leading edge of an airplane wing, turbulent water flow through a
pipe with changing cross section, or turbulence with strong buoyancy, such
equilibrium conditions are not established.

For that, in order to model the time development of the small-scale
turbulence, which affects the eddy viscosity, so-called kinetic energy models
use an eddy viscosity of the form νsgs = ce∆

√
e(x, t), where e(x, t) is the

SGS kinetic energy. It is defined in terms of the trace of the SGS stress
tensor according to e(x, t) = τkk/2, and is used to quantify the local velocity
scale. In order to determine e(x, t), an additional scalar transport equation,
derived from the trace of the transport equation for the SGS stress tensor, is
solved. In this equation, diffusion and dissipation terms must be modeled:

∂e

∂t
+ ûj

∂e

∂xj
= ce∆

√
eŜijŜij − Cε

e3/2

∆
− ∂

∂xj

[(
ν +

ce
σe

∆
√
e

)
∂e

∂xj

]
(3.42)

with the two additional empirical coefficients, the SGS Prandtl number σe
and the dissipation parameter Cε . This approach incorporates memory
effects and has seen extensive applications especially in simulations of at-
mospheric flows [21].

All the above expressions are based on the basic eddy-viscosity clo-
sure assumption in Eq.(3.40). This expression can also be (partly) justi-
fied from the linearized evolution equation for the SGS fluctuating velocity
∂u′i/∂t = −u′k∂ûi/∂xk , which includes several strong assumptions such as
neglect of pressure and nonlinear effects. Coupled with further assumptions
of separation of time-scales, the solution can be written in terms of matrix
exponentials and short-time expansion to first order yields the eddy-viscosity
closure for the deviatoric part of the SGS stress tensor. The need for the
various assumptions illustrates the limitations of the eddy-viscosity closure
from a fundamental viewpoint. Still, in practical applications of LES, the
eddy-viscosity approach is very popular due to its robustness, general ease
of implementation, and low computational cost.
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Germano identity and dynamic model

The limitations of the Smagorinsky model have led to the formulation of
more general subgrid-scale models. Perhaps the best known of these newer
models is the dynamic subgrid-scale (DSGS) model of Germano [9]. The
DSGS model may be viewed as a modification of the Smagorinsky model,
as the dynamic model allows the Smagorinsky constant cs to vary in space
and time and is calculated locally in each timestep based upon two filterings
of the flow variables, which we will denote by a t̃hat is grid filter, with ∆
width, used by now and with a superscript t to indicate the test filter, which
its width is assumed to be larger than grid filter (α∆, α > 1 ).

Remembering that the SGS stress tensor is:

τij = ũiuj − ũiũj (3.43)

now we filter again the latter equation with test filter:

Tij = (ũiuj)
t − (ũiũj)

t (3.44)

the two subgrid-scale stress terms are related by Germano identity:

L = Tij − τ rij = (ũiũj)
t − ũitũjt (3.45)

that is the resolved turbulent stress. The Germano identity is used to cal-
culate dynamic local values for Cs by applying the Smagorinsky model to
both Tij and τij .

Remarkably, all the terms in the latter equations are computable from
the resolved field. L represents the ‘band-pass filtered’ contribution to the
nonlinear term in the scale range between the grid and the test filter levels
(fig. 3.12).
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Figure 3.12: Plot of energy spectrum of turbulence. If we do not use dynamic
model we do not resolve non linear term in the inertial scale. If we use
dynamic model in the region L we can resolve non linear terms. We can
compute more non linear effect if the test filter width is greater.
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Chapter 4

Mathematical model and
numerical method

Here we will show the mathematical model adopted and the numerical
method used to resolve the Navier-Stokes equation. OpenFOAM[10] is the
leading free, open source software for computational fluid dynamics, owned
by the OpenFOAM Foundation and distributed exclusively under the Gen-
eral Public Licence (GPL). The GPL gives users the freedom to modify and
redistribute the software and a guarantee of continued free use, within the
terms of licence.

4.1 Equation used in this work

4.1.1 Incompressible Navier-Stokes equation

We will deal with incompressible Navier-Stokes equation, because Mach
number effect are negligible for our problem. The equation set is:∇ · u = 0

∂u

∂t
+ u · ∇u + ∇p

ρ − ν∇
2u− f = 0

(4.1)

where f is volumetric force. These equations are used for resolving fluid
field.

4.1.2 Rigid body equation

The wing presented in this thesis, assumed as a rigid body, has a pitch
and plunge motion because of fluid-structure interaction, or rather through
forces and torques exercised by the flow on the wing, and it is constrained
to four elastomer. An important step of the work concerns the development
of the dynamicMeshDict, in which it has been specified the solver used for
rigid body motion (sixDofRigidBodyMotion), the body’s properties (mass,
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moment of inertia,...) and type of constraint (four non-linear spring). The
parameters for rigid body equations are:

mb mass of rigid body

xcm(t) position of center of mass

vcm(t) velocity of the center of mass

acm(t) acceleration of the center of mass

F(t) force on the body

G(t) torque on the body

h(t) angular momentum

ei(t) principal axes of inertia, i = 1, 2, 3

ω(t) angular velocity

E(t) ∈ R3×3 matrix with columns ei

R(t) ∈ R3×3 rotation matrix

A(t) ∈ R3×3 moment of inertial tensor

Ii moments of inertia

the rigid body motion equation in a cartesian reference are:

ẋcm = vcm (4.2)

mb ˙vcm = F (4.3)

ḣ = G (4.4)

where:

F =

∫
∂Ω

fsds+ fb (fs = surface force, fb = body force) (4.5)

G =

∫
∂Ω

(x− xcm)× fsds+ gb (gb = body torque) (4.6)

where ∂Ω is the surface of rigid body. The angular momentum h is given
by:

h = A(t)ω (4.7)

and A(t) is defined by:

A(t) =

∫
Ω
ρ(x)[yTyI− yTy]dx, y = x− xcm (4.8)

with I identity matrix.
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The eigenvalue of A(t) are principal inertia moment Ii and eigenvectors
are ei the principal inertia axes.

Aei = Iiei (4.9)

Λ = diag(I1, I2, I3) (4.10)

ei · ej = δij (4.11)

E = [e1, e2, e3] (4.12)

A = EΛET (4.13)

E−1 = ET (4.14)

from the definition of h as h = A(t)ω it follows that the evolution for the
angular velocity ω is:

Aω̇ = −ΩAω + G (4.15)

where Ω is the rotation matrix that is unknown.
So we have to solve the following set of ODEs to resolve a rigid body

motion problem: 
ẋcm = vcm

mbvcm = F

Aω̇ = −ΩAω + G

ėi = ω × ei

(4.16)

4.2 OpenFOAM structure

OpenFOAM is a C++ library used primarily to create executables, known
as applications, and to start a large set of precompiled applications has
distributed to users, who have the freedom to create their own or modify
existing ones. Applications are split into two main categories:

� Solvers: that are each designed to solve a specific problem in compu-
tational continuum mechanics;

� Utilities: that perform simple pre-and post-processing tasks, mainly
involving data manipulation and algebraic calculations.

The fluid dynamic problem is developed through object orientation lan-
guage, so that it is possible to declare classes,as well as to implement types
and associated operations, furthermore from a general class it is possible to
create a more specific class without re-writing all the code. In OpenFOAM
a certain structure of the input files is expected. A case has to be set up
in a predestined manner which contains a minimum of three directories.
A constant folder and a system folder are needed. Also a time folder is
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Figure 4.1: Case structure in OpenFOAM.

needed, which is usually named 0, but can be named differently if 0 is not
the starting time. There are also subfolders and files that are contained in
the mentioned folders, a few options are reviewed here. The structure of an
OpenFOAM case can be seen in figure 4.1.

4.2.1 0 folder

This folder contains files with the initial conditions of the used variables.
For laminar incompressible Navier-Stokes equation only files containing the
initial conditions of U and p are needed. For turbulence models or compress-
ible flow other variables will need to be added as well. Three entries have
to be done for each variable file. The dimension of the variable is assigned
through dimensions in the file (for instance m/s for the velocity). The inter-
nal field is assigned through internal Field and the boundary field is given
through boundary Field.

4.2.2 Constant folder

This folder contains specifications for turbulence and fluid properties. De-
pending on the solver chosen, different files need to be specified. For all
solvers which calculate the RANS equations, the file RAS Properties deter-
mines the turbulence model used, the same goes for LES equation. The type
of turbulence model applied is determined in turbulenceProperties where ei-
ther LES, RAS or laminar model can be chosen. For incompressible solvers
the file transportProperties determines the behaviour of the kinematic viscos-
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ity ν. For the compressible solver rhoCentralFoam temperature dependency
is determined in the files thermodynamicProperties and thermophysicalProp-
erties. For dynamic mesh operations, the file dynamicMeshDict prescribes
the conditions of constraints and restraints. To use dynamic mesh operations
specific solvers have to be used such as pimpleDyMFoam.

PolyMesh folder

OpenFOAM uses a cell-centered control volume for its calculations. In the
polyMesh folder files are contained describing the mesh. These files include
points, which contain the points of the mesh. Faces, which contain the faces
of the cells. Owner, that contains what faces belong to a cell and neighbour
which contains the information about the connectivity between cells. Also
the boundaries are given in the file boundary, where the boundaries are
assigned names and also of what type they are, such as empty, wall or patch
for instance. The mesh can build up with blockMesh or imported from
another mesh software.

BlockMesh utility

The principle behind blockMesh is to decompose the domain geometry into
a set of 1 or more three dimensional, hexahedral blocks. Edges of the blocks
can be straight lines, arcs or splines. The mesh is ostensibly specified as
a number of cells in each direction of the block, sufficient information for
blockMesh to generate the mesh data. Each block of the geometry is defined
by 8 vertices, one at each corner of a hexahedron. The vertices are written in
a list so that each vertex can be accessed using its label, remembering that
OpenFOAM always uses the C++ convention that the first element of the
list has label 0. An example block is shown in figure 4.2 with each vertex
numbered according to the list. The edge connecting vertices 1 and 5 is
curved to remind the reader that curved edges can be specified in blockMesh.

To create a grid with blockMesh the steps are:

� Define position of every vertex.

� Define which vertex define each block.

� Define the type of edge of each edge (line, arc,...).

� Define faces to set up boundary conditions (wall, inlet, outlet,...).

4.2.3 System folder

This folder contains the specifications for the simulation. In the decom-
poseParDict file the mesh is decomposed into an assigned number of parts
for parallel simulations. The topoSetDict creates sets in the mesh, which
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Figure 4.2: Sketch of single block, the face are oriented and edge can be arc.

can be used to define areas with extra source terms. For the fvOptions file
extra source terms can be assigned to sets. In controlDict the frequency of
solution file outputs, run time, time steps and Courant number are assigned.

4.3 Numerical Schemes and algorithm control

4.3.1 FvSchemes

We will take a deeper look to fvschemes, which sets the numerical schemes
for terms, such as derivatives that are calculated during a simulation. The
set of terms, for which numerical schemes must be specified, are subdivided
within the fvschemes dictionary into the categories below:

� timeScheme: first and second time derivatives (∂/∂t, ∂2/∂t2)

� gradSchemes: gradient ∇

� divSchemes: divergence ∇·

� laplacianSchemes: Laplacian ∇2

� interpolationSchemes: cell to face interpolations of values.

� snGradSchemes: component of gradient normal to a cell face.

� wallDist: distance to wall calculation, where required.

Each keyword in represents the name of a sub-dictionary which contains
terms of a particular type, such as ∇p, and must be specified how the terms
have to be discretized like this:
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18 ddtSchemes

19 {

20 default Euler;

21 }

22

23 gradSchemes

24 {

25 default Gauss linear;

26 }

27

28 divSchemes

29 {

30 default none;

31 div(phi,U) bounded Gauss linearUpwind grad(U);

32 div(phi,k) bounded Gauss upwind;

33 div(phi,epsilon) bounded Gauss upwind;

34 div(phi,R) bounded Gauss upwind;

35 div(R) Gauss linear;

36 div(phi,nuTilda) bounded Gauss upwind;

37 div((nuEff*dev2(T(grad(U))))) Gauss linear;

38 }

39

40 laplacianSchemes

41 {

42 default Gauss linear corrected;

43 }

44

45 interpolationSchemes

46 {

47 default linear;

48 }

49

50 snGradSchemes

51 {

52 default corrected;

53 }

The schemes that we are interested in are: time schemes ∂/∂t), gra-
dient schemes (∇), divergence schemes (∇·) and Laplacian schemes (∆).
The user can specify through subdictionary of the previous dictionary, the
right discretization which is needed. Starting from time schemes, we can
choose between: steady state, which set time derivatives to zero. Euler
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resolves transient problem bounded, with first order precision. Backward
resolves transient problem potentially unbounded, with second order pre-
cision. Crank-Nicolson for transient bounded problem with second order
precision, and least one local Euler for pseudo transient for accelerating a
solution to steady state.

Gradient schemes sub-dictionary contains gradient terms, the default
discretization scheme is Gauss linear. The Gauss entry specifies the stan-
dard finite volume discretization of Gaussian integration which requires the
interpolation of values from cell centres to face centres. The interpolation
scheme is then given by the linear entry, meaning linear interpolation or
central differencing. Another important scheme is cell limited Gauss linear
1, which limits the gradient such that when cell values are extrapolated to
faces using the calculated gradient, the face values do not fall outside the
bounds of values in surrounding cells. A limiting coefficient is specified after
the underlying scheme for which 1 guarantees boundedness and 0 applies no
limiting; 1 is invariably used.

Divergence schemes sub-dictionary contains only divergence terms, ex-
cluding Laplacian terms. The schemes are all based on Gauss integration,
using the flux φ (volumetric flux of velocity on the cell faces for constant-
density flows and the mass flux for compressible flows) and the advected
field being interpolated to the cell faces by one of a selection of schemes, e.g.
linear, linearUpwind, etc. There is a bounded variant of the discretization,
discussed later. The interpolation schemes can be: linear for unbounded
problem and second order precision, linear upwind for much less unbounded
problem, Lust for 75% linear and 25% linear upwind, it requires a coefficient
to tend towards to linear or linear upwind.

Laplacian schemes are useful to discretize diffusion term in momentum
equation, the Gauss scheme is the only choice of discretization and requires
a selection of both an interpolation scheme for the diffusion coefficient

4.3.2 fvSolution

The equation solvers, tolerances and algorithms are controlled from the fv-
Solution dictionary in the system directory. The first sub-dictionary in
our example is solvers. It specifies each linear-solver that is used for each
discretized equation; here, the term linear-solver refers to the method of
number-crunching to solve a matrix equation, as opposed to an application
solver, such as simpleFoam which describes the entire set of equations and
algorithms to solve a particular problem. The term ‘linear-solver’ is ab-
breviated to ‘solver’ in much of what follows; hopefully the context of the
term avoids any ambiguity. The syntax for each entry within solvers starts
with a keyword that is of the variable being solved in the particular equa-
tion. For example, icoFoam solves equations for velocity U and pressure
p, hence the entries for U and p. The keyword relates to a sub-dictionary
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containing the type of solver and the parameters that the solver uses. The
solver is selected through the solver keyword: PCB/PBiCG p reconditioned
(bi-)conjugate gradient, with PCG for symmetric matrices, PBiCG for asym-
metric matrices, smoothSolver solver that uses a smoother, GAMG gener-
alised geometric-algebraic multi-grid, diagonal: diagonal solver for explicit
systems. The matrices are generally sparse, consequently the solvers are it-
erative, i.e. they are based on reducing the equation residual over successive
solutions. The residual is ostensibly a measure of the error in the solution
so that the smaller it is, the more accurate the solution. More precisely, the
residual is evaluated by substituting the current solution into the equation
and taking the magnitude of the difference between the left and right hand
sides; it is also normalised to make it independent of the scale of the problem
being analysed. Before solving an equation for a particular field, the initial
residual is evaluated based on the current values of the field. After each
solver iteration the residual is re-evaluated. The solver stops if any one of
the following conditions are reached: the residual falls below the solver tol-
erance, the ratio of current to initial residuals falls below the solver relative
tolerance, the number of iterations exceeds a maximum number of itera-
tions. The solver tolerance should represent the level at which the residual
is small enough that the solution can be deemed sufficiently accurate. The
solver relative tolerance limits the relative improvement from the initial to
the final solution. In transient simulations, it is usual to set the solver rela-
tive tolerance to 0 to force the solution to converge to the solver tolerance in
each time step. Most fluid dynamics solver applications in OpenFOAM use
either the pressure-implicit split-operator (PISO), the semi-implicit method
for pressure-linked equations (SIMPLE) algorithms, or a combined PIM-
PLE algorithm, this latter will be used in this work. These algorithms are
iterative procedures for coupling equations for momentum and mass conser-
vation, PISO and PIMPLE being used for transient problems and SIMPLE
for steady-state. Within time, or solution, step, both algorithms solve a
pressure equation, to enforce mass conservation, with an explicit correction
to velocity to satisfy momentum conservation. They optionally begin each
step by solving the momentum equation — the so-called momentum predic-
tor. While all the algorithms solve the same governing equations (albeit in
different forms), the algorithms principally differ in how they loop over the
equations. The looping is controlled by input parameters. They are set in a
dictionary named after the algorithm. Ncorrectors used by PISO, and PIM-
PLE, sets the number of times the algorithm solves the pressure equation
and momentum corrector in each step; typically set to 2 or 3. NNonOrthog-
onalCorrectors used by all algorithms, specifies repeated solutions of the
pressure equation, used to update the explicit non-orthogonal correction, of
the Laplacian term. nOuterCorrectors used by PIMPLE, it enables looping
over the entire system of equations within the time step, representing the
total number of times the system is solved. MomentumPredictor switch that
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controls solving of the momentum predictor.
The PIMPLE algorithm plans to calculate in order: momentum, pres-

sure, recalculate momentum from new pressure and recalculate pressure
from a new momentum. In formulas:

�

∂U

∂t
+∇ · (UU) +∇ ·R = −∇p

� ∇2p = f(U,∇p)

� ⇒ pnew

� Correct Ucorrected with pnew ⇒ Ucorrected

� Now you use the Ucorrected and pnew for the second loop

�

∂U

∂t
+∇ · (UU) +∇ ·R = −∇p

� ∇2p = f(U,∇p)

� ⇒ pnew

� Correct Ucorrected with pnew ⇒ Ucorrected

4.4 Mesh generator used in this work

In this work has been chosen to create the grid with an external program
but fully compatible with OpenFOAM, named cfMesh [16].

4.4.1 cfMesh

For OpenFOAM cases the grid are created using cfMesh, which is a cross-
platform library for automatic mesh generation that is built on top of Open-
FOAM. It is licensed under GPL, and compatible with all recent versions
of OpenFOAM and foam-extend. It supports various 3D and 2D workflows,
built by using components from the main library, which are extensible and
can be combined into various meshing workflows. The core library utilises
the concept of mesh modifiers, which allows for efficient parallelisation using
both shared memory parallelisation (SMP) and distributed memory paral-
lelisation using MPI. In addition, special care has been taken on memory
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Figure 4.3: Example of box refinement.

usage, which is kept low by implementing data containers (lists, graphs, etc.)
that do not require many dynamic memory allocation operations during the
meshing process. The meshing process is steered by the settings provided
in a meshDict dictionary located in the system directory of the case, the
resulting volume mesh is written in the polyMesh directory inside the con-
stant directory. The settings available in meshDict will be handled in the
remainder of this section.

meshDict

cfMesh requires only two mandatory settings to start a meshing process:
surfaceFile points to a geometry file, and maxCellSize that represent the
default cell size used for the meshing job. It is the maximum cell size gen-
erated in the domain.

If uniform cell size is not satisfactory, refinement setting must be speci-
fied. there are many options for local refinement sources in cfMesh. Bound-
aryCellSize option is used for refinement of cells at the boundary. It is a
global option and the requested cell size is applied everywhere at the bound-
ary. BoundaryCellSizeRefinementThickness specifies the distance from the
boundary at which the boundaryCellSize is still applied. MinCellSize is a
global option which activates automatic refinement of the mesh template.
This option performs refinement in regions where the cells are larger than
the estimated feature size. The scalar value provided with this setting, spec-
ifies the smallest cell size allowed by this procedure. This option is useful
for quick simulation because it can generate meshes in complex geometry
with low user effort.

LocalRefinement allows for local refinement regions at the boundary. It
is a dictionary of dictionaries and each dictionary inside the main LocalRe-
finement dictionary is named by a patch or facet subset in the geometry that
is used for refinement. The requested cell size for an entity is controlled by
the cellSize keyword and a scalar value, or by specifying additionalRefine-
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Figure 4.4: Example of boundary layer subdictionary.

mentLevels keyword and the desired number of refinements relative to the
maximum cell size. It is possible to specify patches via regular expressions.
The thickness of the refinement zone can be specified by the refinement-
Thickness option.

Boundary layers in cfMesh are extruded from the boundary faces of the
volume mesh towards the interior, and cannot be extruded prior to the
meshing process. In addition, their thickness is controlled by the cell size
specified at the boundary and the mesher tends to produce layers of similar
thickness to the cell size. Layers in cfMesh can span over multiple patches
if they share concave edges or corners with valence greater than three. All
boundary layer settings are provided inside a boundaryLayers dictionary,
shown in figure 4.4. The options are: nLayers specifies the number of layers
which will be generated in the mesh, thicknessRatio o is a ratio between the
thickness of the two successive layer, maxFirstLayerThickness ensures that
the thickness of the first boundary layer never exceeds the specified value.

4.5 Numerical schemes used in this work

Here we explain which are the numerical schemes used in this work. In
particularly, Crank-Nicolson for time derivative and finite volume method
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for spatial derviatives.

4.5.1 Crank-Nicolson method

Crank-Nicolson is a finite difference method second order implicit in time,
so unconditionally stable, allowing significantly larger steps. This method
uses the average of values at timestep n and n+1, for example, for a variable
u resolved by a differential equation:

un+1
i − un1

∆t
=

1

2

[
Fn+1
i

(
x, t, u,

∂u

∂x
, ...

)
+ Fni

(
x, t, u,

∂u

∂x
, ...

)]
(4.17)

this scheme requires very little more computational effort per step than
the first order implicit Euler scheme. Von Neumann stability analysis shows
that the scheme is unconditionally stable, but oscillatory solutions (and even
instability) are possible for large time steps.

4.5.2 Spatial derivative discretization

OpenFOAM is a code that uses Finite Volume Method (FVM) [7, 32]. The
FVM is a method for representing and evaluating partial differential equa-
tions in the form of algebraic equations. Similar to finite difference or finite
element method, values are calculated at discrete places on a meshed geom-
etry. In this method, spatial derivatives terms are first integrated over a cell
volume V and then converted to integrals over the cell surface bounding the
volume using Gauss’s theorem:∫

V
∇ · ψdV =

∫
S
ψ · dS =

∑
f

ψf (4.18)

where V is volume cell, S is surface cell, ψf is the quantity value at face
center and f inn number of faces. It is important to remark that ψf depends
on values of adjacent cell and on type of function f will be chosen:

ψf = f(ψP , ψN ) (4.19)

One of the most important aspects of finite volume method is that is a
conservative method, or rather the fluxes of quantity which cross a finite
volume must be the same of the quantity generated in the same volume.

In base of function f the scheme will be upwind, linear upwind linear,
limited linear or other (fig 4.5) So the approximations to the integrals require
the values of variables at locations other than computational nodes (CV
centers). The quantity ψ involves the product of several variables and/or
variable gradients at those locations (ψ = ρφU · n, for the convective flux
or ψ = Γ∇φ · n, for diffusive flux). If we assume that the fluid properties
are known at all locations, to calculate the convective and diffusive flux, the
value of φ and its gradient normal to the cell face are needed.
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Figure 4.5: In base of function f the value of ψf can be ψP , ψN or an average
between these two.

Upwind interpolation

One method is the upwind interpolation. Approximating φf by its value
at the node upstream of f is equivalent to using a backward- or forward-
difference approximation for the first derivative (depending on the flow di-
rection), hence the name upwind differencing scheme (UDS) for this approx-
imation. In UDS φf is approximated as:

φf =

{
φO if (U · n)f > 0

φN if (U · n)f > 0
(4.20)

using this method, oscillation in solution are not present, but the defect is
that, if the cell are not aligned with the flux, will be generated an extra
numerical diffusive flux. The numerical diffusion is magnified in multidi-
mensional problems if the flow is oblique to the grid; the truncation error
then produces diffusion in the direction normal to the flow as well as in the
streamwise direction, a particularly serious type of error. Peaks or rapid
variations in the variables will be smeared out and, since the rate of error
reduction is only first order, very fine grids are required to obtain accurate
solutions [7].

Linear interpolation

Another straightforward method is linear interpolation between the two
nearest nodes. At location f on a Cartesian grid we have:

φf = φNλ+ φO(1− λ) (4.21)

where the linear interpolation factor λ is defined as:

λ =
xf − xO
xN − xO

(4.22)
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Equation 4.21 is second-order accurate as can be shown by using the Taylor
series expansion of φN about point xO to eliminate the first derivative:

φf = φNλ+ φO(1− λ)−
(xf − xO)(xN − xf )

2

(
∂2φ

∂x2

)
+H (4.23)

where H denotes higher order terms. The leading truncation error term is
proportional to the square of the grid spacing, on uniform or non-uniform
grids. As with all approximations of order higher than one, this scheme may
produce oscillatory solutions. This is the simplest second-order scheme and
is the one most widely used. The assumption of a linear profile between
the O and N nodes also offers the simplest approximation of the gradient,
which is needed for the evaluation of diffusive fluxes:(

∂φ

∂x

)
≈ φN − φO
xN − xO

(4.24)

By using Taylor series expansion around φN , one can show that truncation
error of the above approximation is:

εr =
(xf − xO)2 − (xN − xf )2

2(xN − xO)

(
∂2φ

∂x2

)
−

(xf − xO)3 + (xN − xf )3

6(xN − xO)

(
∂3φ

∂x3

)
+H

(4.25)
When the location f is midway between O and N (for example on a uni-
form grid), the approximation is of second-order accuracy, since the first
term on the right-hand side vanishes and the leading error term is then pro-
portional to (∆x)2. When the grid is non-uniform, the leading error term
is proportional to the product of ∆x and the grid expansion factor minus
unity.

4.6 Numerical linear solver used in this work

After we have discrezitized the partial differential equations in space and
time, we have to solve an algebraic system. Here we present the linear
solvers used in this work. In particularly, we have used GAMG (Geomet-
ric Agglomerated Algebraic Multigrid Solver) for the pressure and smooth
solver using Gauss-Seidel method for velocity, k and ω.

GAMG (Geometric Agglomerated Algebraic Multigrid Solver)

The basic idea behind multi-grid solvers is to use a coarse grid with fast
solution times to smoothen out high frequency errors to generate a starting
solution for the finer grid. This can either be done be a geometric coarsening
of the grid (geometric multi-grid), or by applying the same principles dirctly
to the matrix, regardless of the geometry (algebraic multi-grid). Inside
GAMG the mesh is coarsed in steps and the coarsening or agglomeration
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Figure 4.6: Example of geometric agglomeration process.

algorithm can be faceAreaPair (geometric) or algebraic pair. The loop for
the solution is:

1. Get the finest level interfaces from the mesh.

2. Start agglomeration from the given faceWeights:

� a) For each cell calculate faces, afterwards go through the faces
and create groups or cluseters.

– Check faces to find ungrouped neighbour with largest face
weight

– Check if current cell is face owner or neighbour

– When a match is found, pick up all the necessary data and
generate a new group or cluster, elas find the best neighn-
bouring cluster and add the cell to it

� b) Check that all cells are part of clusters, not create a single cell
cluster for each

� c) Reverse the map ordering to potentially improve the next level
of agglomeration

3. Agglomerate the faceWeights field for the next level and continue un-
less the user specified approximate mesh size at the most coarse levelor
maximum of grid levels is reached.

In figure 4.6 a simple geometric example for this process is shown. Start-
ing with the black grid, consisting of six cells, the coarser mesh (blue) is built
by joining two cells for each new cell. For the coarsest level (red) first cells
1 and 3 are joined. Cell 2 cannot find an ungrouped partner and will be
joined with the neighbouring group.
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4.6.1 Gauss-Seidel method

In numerical linear algebra, the Gauss–Seidel method [36], also known as the
Liebmann method or the method of successive displacement, is an iterative
method used to solve a linear system of equations. It can be applied to
any matrix with non-zero elements on the diagonals, convergence is only
guaranteed if the matrix is either diagonally dominant, or symmetric and
positive definite. The Gauss–Seidel method is an iterative technique for
solving a square system of n linear equations with unknown x:

Ax = b (4.26)

where:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


and x and b are vector of n dimension. It is defined by the iteration:

L∗xk+1 = b− Uxk (4.27)

where A is decomposed in A∗ in a lower triangular component (L∗) and in
a upper triangular component (U). The Gauss–Seidel method now solves
the left hand side of this expression for x, using previous value for x on the
right hand side. Analytically, this may be written as:

xk+1 = L−1
∗ (b− Uxk) (4.28)

Taking advantage of the triangular form of L∗, the elements of xk+1 can be
computed sequentially using forward substitution:

xk+1
i =

1

aii

bi − i−1∑
j=1

aijx
k+1
j −

n∑
j=1+1

aijx
k
j

 , i = 1, 2, ..., n (4.29)

the procedure is generally continued until the changes made by an iteration
are below some tolerance, such as a sufficiently small residual.

4.7 Algorithm of mesh morphing

OpenFOAM uses SLERP (Spherical Linerar intERPolation) algorithm for
the purpose of moving mesh. It refers to constant-speed motion along a unit
radius circle arc, given the ends and an interpolation parameter between 0
and 1. SLERP has a geometric formula independent of the dimension of the

63



space in which the arc is embedded. This formula is based on the fact that
any point on the curve must be a linear combination of the ends:

Slerp(p0, p1, t) =
sin[(1− t)Ω]

sin Ω
p0 +

sin(tΩ)

sin Ω
p1 (4.30)

let p0 and p1 be the first and last points of the arc, and let t the parameter
from 0 to 1 and Ω is the angle subtended by the arc. We can see that in
the limit of Ω tending to zero the formula corresponds to a linear interpola-
tion. SLERP is a non-commutative method, or rather the order of how the
vectors/matrices are passed will affect the result.

4.8 Q-criterion

In flapping energy harvester, it is very important to visualize the vortex
released by the device, so using Paraview [31] tools it is possible to show
Q-criterion [11]. Q-criterion proposes to not create dis-ambiguity in the
definition of vortex, because this method exploit theory independent by
reference system. Indeed, in this way vortex it is not intended as a region
where vorticity is not zero or where streamlines are closed, which are affected
by reference system, but a region where a determined quantity named Q is
major of zero:

Q =
1

2
[||Ω||2 − ||S||2] (4.31)

where S =
1

2
[∇U+(∇U)T ], is the rate of strain tensor, and Ω =

1

2
[∇U−

(∇U)T ] is the vorticity tensor. So we have a vortex when the vorticity
magnitude dominates the magnitude of rate of strain.
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Chapter 5

Benchmark

In this chapter we will deal with the validation process of OpenFOAM, to
verify its reliability. We have chosen first to simulate a bi-dimensional vor-
tex induced vibration case. We have compared our results with referenced
articles [29, 28], where a discrete vortex method is used, and with the Over-
ture CFD code [12], that has been another candidate for studying FLEHAP
device, on which preliminary studies have been performed. This code uses
a fourth order difference method on overlapping grids [14].

On the other hand, a test has been performed regarding the main 3D
simulation case when the fluid is at rest, in order to evaluate the natural
frequency of the device, compared to the experiment carried out in wind
tunnel.

5.1 Vortex Induced Vibration

The case that has been chosen to verify the reliability of the code is about
the vortex induced vibration (VIV) phenomenon on a cylinder [24]. The
flow induced vibration of an elastically constrained two-dimensional circular
cylinder has become a canonical problem in the efforts to understand more
general situations of fluid structure interactions. The situation in which
vibrations are permitted only transversely to the freestream has received
particular attention as a fundamental case. Relevant structural parameters
are the system mass m (and associated density ρb), spring constant k and
diameter D. Important fluid parameters include the fluid density ρ, kine-
matic viscosity ν, and constant freestream velocity U∞. The cylinder is
constrained to move only normal to the freestream; its transverse motion is
determined by the lift generated from the flow. The vibrations occur when
the body’s natural frequency is close to the vortex shedding frequency. It
is a phenomenon that does not verify for all flow conditions, but only for
a given set of dimensionless parameters, this state termed ”lock-in”. It has
been observed that there is VIV for a limited range of reduced velocity
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UR = 0.6 ÷ 2 (UR = U0/c, where U0 is the undisturbed flow velocity and c
is the propagation wave speed in the solid) and then disappears. The main
dimensionless parameter for this study is the Strouhal number:

St =
Tfluid
Tvortex

,

where

TFluid =
L

U0
, Tvortex =

Λ

U0
(5.1)

where L is the length scale and Λ is the vortex wave length. We can define
Strouhal’s number starting from definition of solid time scale and reduced
velocity:

TSolid
Tvortex

= StUR, if StUR = 1 ⇒ TSolid = Tvortex, TSolid =
1

2π

√
M

k

where TSolid is the ratio between the solid length scale and c (speed of
wave propagation in the solid). It is important to remark that VIV occurs
when StUR ≈ 1 ÷ 2. This latter relation is always valid for a fixed body,
instead for a moving solid there will be a deviation from this linear law. The
phenomenon can be explained easily: we have oscillations of the flow at the
period Tvortex, these cause an oscillating force acting on surface cylinder at
the same period, if the flow fluctuations are equal to natural frequencies of
the solid, we have a resonance state; here is a simple relation of this effect
for a body having length L:

Fvortex(t) =
1

2
ρU2LClsin

(
2π

t

Tvortex

)
(5.2)

If the cylinder is a mass spring system allowed to move only in vertical
direction, we can write down a forced oscillator equation:

mÿ + ky =
1

2
ρU2LCl sin

(
2π

t

Tvortex

)
(5.3)

The response of Eq.(5.3) is analytically known and is equal to:

Y =
MCl
2π3

U2
R

(1− St2U2)
, Y =

y

L
, M =

ρfπL
2

4m
(5.4)

Fig. 5.1 shows that the amplitude does not go to zero after the resonance,
but stays on a plateau, because increasing the speed also the frequency and
magnitude of the forces are increased.

In case of cylinder which is free to move the frequency of vortex shedding
deviates from linear law of Strouhal’s number, as we can see in Fig. 5.2.

if we increase flow velocity above the point where there is resonance,
the frequency of shedding is said to lock on the frequency of oscillation of
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Figure 5.1: Dynamic response of a forced oscillator equation in dimensionless
form.

Figure 5.2: Lock in phenomenon and Strouhal law for cylinder free to move.

cylinder. It strongly deviates from Strouhal’s law, being locked to cylinder
fluctuations. Even for higher reduced velocity fvortex jumps back to the
Strouhal’s law. The lock in phenomenon is like an extended resonance, the
wake continues to excite the cylinder at its own frequency even at higher
reduced velocity, so we have VIV for a wide range of UR, even after the
condition of pure resonance between the fluid motion and the solid.

5.2 Benchmark VIV case

The performed simulations aim to reproduce the VIV phenomena of a cylin-
der, comparing first the result obtained by Overture [5] with other two well
referenced work of Shiels [29] and Shen [28]. Then we will compare Open-
FOAM results with Overture and Shiels. For OpenFOAM case, the grid has
been built up with blockMesh, and with Ogen [13], for Overture. The cell
dimension has been built in agreement with the articles, mentioned above.
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Figure 5.3: The plot shows that amplitude still increase after resonance
condition.

We have tested coarser grids but did not give acceptable results. In Fig. 5.5
is shown the computational domain with its relative boundary conditions.

Figure 5.4: Model used to simulate VIV phenomenon on a cylinder, bonded
with two springs of equal stiffness [28].

Transverse oscillation of a dynamically supported circular cylinder in a
flow at Re = 100 has been numerically simulated using a direct numerical
simulations, for two values of reduced velocity (UR = 0.71 and UR = 1).
The dimensionless quantities used for this analysis are:

A∗ =
y

D
, m∗ =

2m

ρD2
, k∗ =

2k

ρU2∞
, St =

fD

U∞

where A∗ is dimensionless amplitude, m∗ dimensionless mass, k∗ dimension-
less stiffness ad St is Strouhal number.

We will report results for Strouhal number (St), the ratio between the
vortex shedding frequency (f) and natural frequency of the system fn and
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Figure 5.5: Computational domain for the flow around a circular cylinder
together with the associated parameters and boundary conditions (taken
by [29]).

UR St f/fn A∗

Present work (Overture) 0.71 0.192 0.856 0.57

Shiels et al. [29] 0.71 0.196 0.874 0.58

Shen et al. [28] 0.71 0.19 0.847 0.57

Table 5.1: Table for Overture validation. Comparison of VIV results for
Re = 100 at Ur = 0.71 k∗ = 4.96 and m∗ = 2.5

.

dimensionless transversal amplitude of motion (A∗). In Tab. 5.1 we have
reported results for the same value of UR = 0.71 for checking Overture
reliability.

For concluding bi-dimensional benchmark analysis, we have conducted a
final simulation at UR = 1 and m∗ = 20 to test OpenFOAM reliability. We
know from theory that for reduced velocity equal to 1 the natural frequency
is the same of vortex shedding frequency. From Tab. 5.2 we can see that
all the quantities differ less than 4% of OpenFOAM values. In Fig. 5.6 we
have reported Shiels and OpenFOAM result.
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Figure 5.6: Benchmark between OpenFOAM and Shiels results of vortex
shedding frequency on natural frequency (f∗n) and dimensionless amplitude
for Ur = 1(adapted by [29]).

UR St f/fn A∗

Present work (OpenFOAM) 1 0.159 1.002 0.44

Present work (Overture) 1 0.161 1.01 0.46

Table 5.2: Comparison between OpenFOAM and Overture. VIV result for
Ur = 1, k∗ = 20 and m∗ = 20 at Re = 100.
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Figure 5.7: Benchmark between OpenFOAM dimensionless amplitude of
motion and Overture. In blue line OpenFOAM and in orange line Overture.

fn [Hz ]

Present work (OpenFOAM) 13.51

Experimental data 13.2

Table 5.3: Benchmark between values of natural frequency computed by
OpenFOAM and experiment.

5.3 3D test

After this 2D validation, we will set up a 3D simulation with OpenFOAM.
The test consist of simulating the wing used in this work, anchored by
elastomers, oscillating in stationary flow, under initial vertical velocity per-
turbation of 1 m/s towards down and with only the vertical displacement as
allowed degree of freedom. We will compare the experiment with numerical
result, in particular we will investigate the natural frequency of the device.
The elastomer damping is set equal to 0.2 Ns/m The natural frequency is

fn = 1/2π
√
Keff

(y)/m where Keff
(y) is equivalent elastomer stiffness and m is

wing mass. In the Tab. 5.3 we report the frequency evaluated by experi-
ment and our numerical result. As we can see, the difference between the
two frequency is 2%. In Fig. 5.8 we have reported the vertical coordinate
of pivot point during the numerical simulation, which is damped in time.
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Figure 5.8: Trend of vertical coordinate of pivot point. After initial per-
turbation the wing start to oscillate at natural frequency. The amplitude is
damped in time.
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Chapter 6

Results

In this chapter we will show the numerical results obtained by OpenFOAM
on flapping wing. First of all we have done preliminary simulations for
wind velocities from 2.5 m/s to 5.5 m/s, proceeding to step of 0.5 m/s. We
will analyse only the case for 4 m/s, for the which a numerical damping
analysis and a grid dependency have been made, through RANS k−ω SST
simulation. Then we have done a force analysis on the wing, which has been
set up with LES simulation, using Smagorinski model.

6.1 Parametric study on the wind speed

In order to characterize the device operation, it has been investigated several
wind velocities, monitoring the trajectory of pivot point (PP) and trailing
edge (TE), the frequency and the phase between pitch and plunge motion.
We have compared the numerical results with experimental data and phe-
nomenological model solution. From the results obtained (Fig. 6.1 and 6.2),
we can identify three distinct operational phase. The first is named the
pre-transition phase, where the PP amplitude is greater than the TE ampli-
tude. The second is named the transition phase where the two amplitudes
are comparable and third one is named the post-transition phase where the
TE amplitude is bigger than the PP amplitude. The operational phase can
be identified looking at phase diagram, in particular if φ is under 20◦ the
system is in the pre-transition, if φ is about 20◦ the system is in the transi-
tion, and if the phase is near to 90◦ the system is in post-transition. We can
also noting that the phase increases abruptly after 4 m/s. The results show
that the CFD simulations are in trouble in the transition region, indeed all
the quantities monitored are far from experimental data, while for high and
low wind speed velocity there is a substantial agreement. On the contrary
the phenomenological model seems to be in agreement with experimental
data, despite of its simplicity. A final remark can be made on trajectories.
CFD and phenomenological model give results quite similar to experiment,
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however we can notice that CFD anticipates the transition phase, indeed
the TE amplitude is bigger than the PP amplitude already at 4 m/s.

The most critical case is that for U = 4 m/s, indeed the frequency,
the dimensionless amplitude and the phase between pitch and plunge differ
most from experimental data. On the basis of these result, we have chosen to
improve the numerical set up for the case U = 4 m/s, checking the influence
of the elastomer damping and the grid.
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Figure 6.1: Flapping frequency (a), dimensionless amplitude (b) and phase
between pitch and plunge (c), from experiments (squares filled line), simu-
lations (circles dashed line) and phenomenological model (triangles dotted
line), for wind speed U=(2.5,3.0,3.5,4.0,4.5,5.0,5.5) m/s.
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Figure 6.2: Pivot point and trailing edge trajectories in the x−y plane from
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f [Hz] A∗ φ [◦]
ζ = 0.2 17.96 0.61 78.68

ζ = 0.3 16.32 0.57 78.12

ζ = 0.5 16.24 0.52 77.52

Table 6.1: Numerical results for frequency, dimensionless amplitude and
phase for each grid.

6.2 Focus on U=4 m/s

6.2.1 Sensitivity on numerical damping

We have done this analysis because it is emerged that resolving the equa-
tions using only the elastic force showed in Sec. 2.2, we did not obtain a
physical solution, or rather something that does not present a limit cycle of
oscillation. From Fig. 6.3a we can see the vertical pivot point coordinate
trend in time, where damping term (ζ [Ns/m]) was set equal to zero and
in Fig. 6.3b a case for ζ = 0.2. The first one is a trend that has never
been observed in the wind tunnel and the second one present a limit cycle
of oscillation. From experiments, we know that after a period of transitory
we have a sustained flapping regime, with constant amplitude for this pa-
rameters set, so if we do not get it the numerical result is unrealistic. The
issue is find out the damping threshold value, which allows to obtain a limit
cycle of oscillation. The ζ threshold has been found equals to 0.2. Therefore
the damping setting needs a careful tuning to set up in the best way the
simulation, and the value which has been chosen will not represent the real
physical damping (evaluated around at 1.4 × 10−3 Ns/m ) but will assume
the meaning of numerical gimmick. We have tested three values of ζ equals
to 0.2, 0.3, 0.5, to verify how the solution varies changing the damping value.
We have done all these simulations on c1 grid (see Sec. 6.2.2 for furthermore
information on it) because it is the coarser mesh and guarantees the fastest
time of simulation, without loss of accuracy. We will show how the ampli-
tude motion, the phase between pitch and plunge, and the frequency vary as
a function of damping value. We have reported the analysis results in Tab.
6.1, showing how the frequency, dimensionless plunge amplitude and phase
between pitch and plunge movement vary with ζ. We can see that the fre-
quency and the dimensionless amplitude decrease increasing damping, while
the phase remains substantially unchanged.

6.2.2 Grid dependency

We have conducted a grid dependency analysis, as usual in CFD. We have
tested three meshes with a progressive refinement level from the coarser
(c1) to the finest (c4). The grid topology is composed by a big rectangu-
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Figure 6.3: Plot of dimensionless vertical displacement of pivot point.
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∆max ∆box1 ∆box2 ∆box3 ∆box4 N◦cells

c1 2c c 0.5c 0.25c 0.125c 57 680

c2 c 0.5c 0.25c 0.125c 0.0625c 409 575

c4 0.5c 0.25c 0.125c 0.0625c 0.03125c 2 994 635

Table 6.2: Refinement of the meshes used for grid dependency. The cell
dimension is referred to chord length c.

f [Hz] A∗ φ [◦]
c1 17.09 0.61 78.68

c2 17.21 0.57 70.44

c4 17.06 0.59 68.18

Experimental data 19.42 1.54 19.8

Table 6.3: Numerical results for frequency, dimensionless amplitude and
phase for each grid.

lar box, with coarser refinement, that represents wind tunnel of dimension
0.7m×0.4m×0.4m, the device is positioned at 0.3m×0.2m×0.2m. The com-
putational domain is composed by a coarse base mesh, which has the dimen-
sion of wind tunnel, and refinement boxes which have following dimensions:
box1 has dimension 0.45×0.25×0.15, centred in (0.125, 0, 0) and half cell size
of base mesh, box2 has dimension 0.25 × 0.15 × 0.12, centred in (0.06, 0, 0)
and half cell size of box1, box3 has dimension 0.15 × 0.12 × 0.10, centred in
(0.02, 0, 0) and half cell size of box2, box4 has dimension 0.1 × 0.05 × 0.08,
centred in (0.02, 0, 0) and half cell size of box3. In tab 6.2 are summarized
all mesh parameters and figure is shown the coarser grid.

The grid dependency analysis has been led out checking the frequency,
the dimensionless plunge amplitude of pivot point and phase between pitch
and plunge for each grid, for a fixed value of elastomer damping (ζ = 0.2).

In Tab. 6.3 we can see the values carried out by the simulations, while
in Fig. 6.5 we can appreciate the quantities trend as a function of the grid.
The dimensionless amplitude has not a monotonous trend, but the value
tends to stabilize increasing mesh refinement, indeed the difference between
c1 and c2 is of 7%, while for c2 and c4 is 3.5%. The phase has a trend that
decreases with the mesh refinement. The frequency is virtually the same
for the c1 and c4 grid, while c2 differs of 4% compared to the other two.
However, neither setting the threshold value of nor adopting a finer mesh,
we cannot reach the experimental data values. We can conclude that, for
studying the case of 4 m/s, it is not sufficient set the threshold damping
value and adopt a finer mesh, but it will necessary make changes in physical
model. We will choose the c4 grid to make a force and vortex analysis on
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(a) x− y plane at z = 0.

(b) x− z plane at y = 0.

Figure 6.4: Representation of c1 grid.

the wing, so as to better display the flow.

6.2.3 Aerodynamic coeffiecients

In this section we will analyse the force acting on the wing, using the lift,
drag and pitching moment coefficient trend in a limit cycle oscillation (Fig.
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Figure 6.5: Graphs of dimensionless amplitude, phase between pitch and
plunge motion and frequency as a function of the grid used.

6.6). We will also show the correlation between vortex dynamics computed
by OpenFOAM, through z component of vorticity and pressure snapshot,
with the frames flow, taken by a digital camera in wind tunnel. The images
from experiment are referred to a previous wing configuration, with the
chord equal to 15 mm instead of 20 mm. For set up problems, it has not
been possible reproduce correctly the wind tunnel experiments with the
wing chord equal to 20 mm. The comparison between the experiment and
numerical simulation (Fig. 6.7 to Fig. 6.16) shows that the vortex movement
are similar while the pitch angle is not the same in every frame, because of
the different wing geometry. Qualitatively we can conclude that the flow
captured by numerical simulation is in agreement with experimental results.
The force analysis will be explained using Fig. 6.6, which represents a limit
oscillation cycle, and Fig. 6.7 to 6.16, starting from pitch angle (α) equal
to zero. Starting to analyse the lift coefficient (Fig. 6.6 purple line), we
can see that the lift increases until t/T=0.1 (Fig. 6.7) because there is the
leading edge counter clockwise vortex which is growing, creating a region of
increasingly large suction. After this time the lift goes down due to vortex
shedding, doing stalling the wing (Fig. 6.9). The lift has a little plateau
at t/T=0.3 because of there is the presence of a secondary leading edge
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Figure 6.7: Snapshot from t/T=0.1
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(a) (b) (c)

Figure 6.8: Snapshot from t/T=0.2

(a) (b) (c)

Figure 6.9: Snapshot from t/T=0.3
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(a) (b) (c)

Figure 6.10: Snapshot from t/T=0.4

(a) (b) (c)

Figure 6.11: Snapshot from t/T=0.5
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(a) (b) (c)

Figure 6.12: Snapshot from t/T=0.6

(a) (b) (c)

Figure 6.13: Snapshot from t/T=0.7
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(a) (b) (c)

Figure 6.14: Snapshot from t/T=0.8

(a) (b) (c)

Figure 6.15: Snapshot from t/T=0.9
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(a) (b) (c)

Figure 6.16: Snapshot from t/T=1.0

vortex, smaller than previous, which retards the lift fall (Fig. 6.10), but
however the suction region created by this vortex is not powerful enough to
move up the wing. Indeed as we can see from Fig. 6.11 (t/T=0.5) there
is a pressure imbalance between trailing and leading edge that tends to
rotate the wing. This imbalance is caused by first vortex which interacts
still with the structure. Once the pitch angle has become negative, the lift
force becomes negative in turn (Fig. 6.12). The pitch angle continues to
decrease, and another leading edge vortex is growing at intradox, but this
time is clockwise (Fig. 6.13). At t/T=0.7 the vortex sheds from the wing,
decreasing the downforce. We have then the same mechanism described
before (Fig. 6.14). At t/T=0.8 we have a stop decreasing of downforce, due
to secondary vortex (Fig. 6.15). When the angle of attack is near to 0 there
is a strong pressure imbalance between the trailing and leading edge, which
tends to rotate the wing, bringing it to positive pitch angle again.

In the Fig. 6.6 is also reported the drag trend as a function of dimension-
less time (green line) The drag is a sum of three component principally: the
skin friction, the pressure drag and the wave drag. The first one is caused
by the friction of the fluid against the ”skin” of the body and it is related
to wetted surface. The second one arises because of the shape of the object,
bodies with larger cross section will have a higher drag than thinner bodies.
The latter one arises only in case the Mach number is sufficiently high to
create shock wave, which are regions where a lot of energy is dissipated.

We can note that the drag coefficient has not a specular trend in a period,
because of the different pitch angle reached in upward and downward move-
ment. Indeed, for positive pitch angle, the pitch amplitude it is greater of 7◦

than negative pitch angle amplitude. From the flat plate theory, we know
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that pressure drag is proportional to angle of attack, so there is agreement
between the theory and numerical simulations.

We have also found that when the angle of attack is changing of sign
(Fig. 6.12), there is still a strong interaction between the detached vortex
and the wing, causing a low pressure region at trailing edge. The fluid
therefore exerts a force in opposition to flow velocity, generating a little
propulsion. When the low pressure vanishes at the trailing edge, the drag
becomes positive again.

The pitching moment coefficient computed at pivot point (0.01c far from
leading edge), has the trend reported in Fig. 6.6 in light blue. The pitching
moment is an index of how much the wing is loaded in torsion. The two
extreme values of pitching moment are positioned halfway between the two
peaks of lift and drag coefficient. The pitching moment coefficient has been
used to find out the centre of pressure (xCP , yCP , zCP ) during the time the
vortex is being forming. The centre of pressure is the point on the body
where the aerodynamic force are applied. We will not compute the zCP
coordinate because the thickness it is negligible compared to the chord and
the span. To obtain the centre of pressure position we have to resolve this
equation:

MPP = L(xCP − xPP ) +D(yCP − yPP ) (6.1)

where MPP is the moment computed at pivot point, xPP and yPP are the
coordinates of pivot point, L is the lift and D is the drag. These are all
quantities computed by the code, the only unknown is the centre of pressure
coordinates. Knowing that:

CM =
MPP

1

2
ρU2Sc

, CL =
L

1

2
ρU2S

, CD =
D

1

2
ρU2S

(6.2)

and writing down the centre of pressure coordinates as a function of the
pitch angle (α) and the distance from pivot point (d), we can compute the
dimensionless distance of centre of pressure from pivot point (d∗ = d/c):

d∗ =
CM

CLcos(α) + CDsin(α)
(6.3)

We have reported in figure 6.17 the trend of dimensionless distance d
in the period from the vortex is growing until it sheds from the wing. We
can see clearly that the centre of pressure moves to pivot point during the
increasing of suction region, because the vortex moves downward the wing.

6.2.4 Comparison between LES and RANS results

In Tab. 6.4 we can see the difference of the values between the LES and
RANS simulation. The frequency does not practically change, the dimen-
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Figure 6.17: Trend of dimensionless distance between xCP and xPP .

f [Hz] A∗ φ [◦]
LES simulation 17.04 0.56 73.33

RANS simulation 17.06 0.59 68.18

Table 6.4: Numerical results for frequency, dimensionless amplitude and
phase for LES and RANS simulation for grid c4.

sionless plunge amplitude differs of 5%, while the phase between pitch and
plunge differs of 6%. We can see from Fig. 6.18 that the leading edge vortex
is resolved in the same way by the LES and RANS approach. There are
marked differences in vorticity field behind the wing, indeed the swirling
structures are more detailed for LES simulation because of the turbulence
method allows to resolve in a direct way all the vortex structures bigger
than the grid scale. However the turbulence modelling has no effect on the
solution near the wing for this kind of problem. We can also see a front
3D image of the wing (Fig. 6.19) showing the iso-surface of Q (Sec. 4.8).
We can appreciate that the vortex structures are similar and the surfaces
resolved by LES are more detailed and less smooth than the surfaces of
RANS simulation.
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(a) LES simulation (b) RANS simulation

Figure 6.18: Snapshot of z component of vorticity field for LES simulation
(a) and RANS (b) simulation for the same time.

(a) LES simulation (b) RANS simulation

Figure 6.19: Snapshot of iso-surfaces of Q for LES simulation (a) and RANS
(b) simulation for the same time.
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Chapter 7

Conclusions

This work was aimed to give a contribution to improve the FLEHAP device,
a novel energy harvester exploiting the fluid structure interaction which is
under active development.

The campaign has been made varying the wind velocity showing that
numerical simulation are in agreement with the experimental data for the
pre-transition condition (U < 3.5 m/s) and for the post-transition condition
(U > 4.5 m/s).

The main focus has been on to resolve the critical issue of mismatch be-
tween numerical simulations and experimental data at U = 4 m/s. This case
has been revealed hard to reproduce because it is a condition of transition,
so the dependence by parameters it is much more sensitive compared to pre
and post-transition phase. The major issue is that CFD tends to anticipates
the post-transition phase.

The first result is that is necessary adopting a numerical damping value
above 0.2 Ns/m in order to obtain a limit cycle of oscillation.

We have led a grid dependency analysis, which has showed that for this
kind of problem the grid resolution does not influence the solution.

We have compared the vortex dynamics between the CFD simulations
and the experiment, showing that the process of vortex growth and vortex
shedding are in agreement. A force analysis has been led, correlating the
aerodynamic coefficient trend with the vortex dynamics in a limit cycle of
oscillation.

The lift coefficient reaches the maximum value when the leading edge
vortex is still attached to the wing and it is at its maximum extension.
When the vortex sheds the lift falls but not in a constant way because of
the presence of a secondary vortex at leading edge.

The drag coefficient is proportional to the angle of attack of the wing and
at nearly 0◦ the drag is negative. This can be explained looking at pressure
field, indeed at trailing edge there is still an interaction between the vortex
and the wing, creating a powerful suction region. This pressure imbalance
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leads to generate a little propulsion.
The pitching moment has been used to compute the centre of pressure

of the wing. We have found that during the growth of the vortex the centre
of pressure moves to pivot point because of the fluid is going to detach on
the wing extradox.

Eventually the LES simulation does not give a marked difference solu-
tion compared to the RANS simulation, with the same grid and the same
elastomer damping. The display of Q-criterion has showed that the RANS
simulations tend to smooth much the vortex intensity at downstream the
wing compared to LES simulations. Futures works plan to study the tandem
configuration. Seen these latter results, a LES approach is recommended for
studying a tandem configuration, because the LES does not smooth the vor-
ticity field far from the wing, thus simulating a better incoming turbulence
for the trailing devices.

For future activities, it will be more important working on the modelling
of the wing, adding the cylindrical rod at leading edge where the coils are
fixed. The adding of this rod can be crucial because the flow is changed
and, for the transition conditions, we could obtain very different solutions.
We have also to change the physical model: it can be decisive adding a
torsional spring in addition to the elastomers, and also adopting a flexible
model instead of a rigid body model.
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