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ABSTRACT 

A  collection of results about diffusion of tracers and inertial particles in different fluid flows is proposed, 

by using both analytical and numerical approaches.  From a numerical point of view, it is explained how 

to generate numerical kinetic models of  turbulence. They are then exploited to prove  the presence of 

resummation terms in the perturbation expansion at small Stokes numbers for the eddy diffusivity of 

inertial particles. This evidence contradicts a conjecture about an anomalous diffusion effect published in 

literature.  Synthetic fields are also used to investigate the important issue of eddy diffusivity and its 

possible deterioration in the presence of a “non ideal” scale separation. Clear potential applications and 

implications might be in the realm of  Large Eddy Simulations (LES) for atmospheric sciences. Finally, 

diffusion of inertial particles is tackled from an analytical point of view. Results about that include the 

derivation of  explicit expressions for the eddy diffusivity tensor field in quasi-shear flows or at low 

Péclet number, as well as the generalisaton of  Taylor's formula for inertial particles. 
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Introduction

The problem of stochastic/chaotic diffusion is intimately related to the
problem of a particle following a random path or, equivalently, a random
walk. Although, as we will see, it appears in many research fields concerning
transport or dispersal problems, its origins were almost purely mathematical.
They can be traced back to K. Pearson (Nature, 1905)[1], who posed the
problem for the first time:

Can any of you readers refer me to a work wherein I should
find a solution of the following problem, or failing the knowledge
of any existing solution provide me with an original one? I should
be extremely grateful for the aid in the matter. A man starts
from the point 0 and walks L yards in a straight line; he then
turns through any angle whatever and walks another L yards in
a second straight line. He repeats this process n times. Inquire
the probability that after n stretches he is at a distance between
D and D +δD from his starting point 0.

A random walk turns out to be basically a mathematical object describing
a path which consists of a succession of random steps (Fig.1). The previous
model, despite its clear simplicity, has got anything but trivial properties.
For instance, the man (or, alternatively, the particle) will return at the start-
ing point 0 almost surely (i. e. with probability 1) in 1 and 2 dimensions,
whereas only with probability around 34% in three dimensions [2].

Examples of random walks are present in several context inlcuding Matter
Physics, Chemistry, Economics, Statistical Mechanics, Fluid Dynamics and
Biology: the path of a molecule travelling in a liquid or a gas, the search path
of a foraging animal, stock prices and the financial status of a gambler can all
be approximated by random walk models. These processes can be unbiased
- that is, the proabilities of any direction are the same - or biased in the
opposite situation. Bias corresponds spatially to the possibility of having an
anisotropic probability distribution of the particle positions. Random walks
explain the observed behaviors of those processes in those fields, providing
fundamental model for the recorded stochastic activity. Notwithstanding, it
is important to notice that such phenomena can actually not be stochastic
in reality. We will return on this fundamental point.
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Figure 1: An example of random walk with free path L and final distance
D. Image taken from www2.ess.ucla.edu

Figure 2: A Wiener process (Brownian motion) in the 2D plane. Image
taken from www.reddit.com.

Once we have a well-posed definition of random walk, the parameters of
the steps, such as their lengths or duration, can also be manipulated. In the
simplest context the walk is in discrete time, that is a sequence of random
variables (X1,X2, ...) indexed by the natural numbers. If we let random
walks take their steps at random times, the position Xt has to be defined for
all times t ∈ [0,+∞]. Specifically, these limits of random walks include the
Lévy flight and diffusion models like the Wiener process, which corresponds
to a random walk whose increments are a zero-mean Gaussian process with
variance proportional to the time step itself, and then the limit for a van-
ishing time step is considered. Wiener process represents the corresponding
mathematical model for Brownian motion (Fig. 2).

The latter will play a central role in the whole of this thesis. That
constitutes – under certain conditions – the random motion of very small
particles in a fluid, as a consequence of their collision with the fast-moving
atoms or molecules in it. It is a transport phenomenon the botanist Robert
Brown observed in 1827 for the first time. He looked through a microscope
at pollen grains in water, and noted that the particles moved continuously
in random directions (Fig.3).
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Figure 3: Sketch of the Brownian motion of a particle in a flow. Image taken
from http://web2.clarkson.edu.

A first important contribution to the comprehension of this phenomenon
was Albert Einstein’s credit. In 1905 he explained in an article the motion
that Brown had observed was ultimately a result of the collision of pollen
particles with water molecules. Thanks to his work, there had been pro-
vided a simple explanation connecting the microscopic mean free path of
the molecules to the macroscopic molecular diffusivity which enters into the
Fick law and in the diffusion equation. The solution of the latter is the
very distribution function of the Wiener process we have mentioned, that
is a Gaussian distribution whose variance grows linearly in time. The same
physical interpretation arises when we consider a large number - say, more
than Avogadro’s number - of particles in the fluid, in order to have a thermo-
dynamic limit. In this case, indeed, the probability distribution of particles
corresponds to their concentration. It is also important to notice that the
diffusion equation for particles is the same as Fourier’s equation, the simplest
model for heat conduction. This explains well how the mathematical models
for transport are ubiquitous in physics, engineering and applications.

As we have already said, the Wiener process is a model for a large
number of particles in a system which is not actually a stochastic one. The
importance of the stochastic models to mimick small-scale chaos statistics
has been stated in several other results though. By way of example, a rig-
orous result in climate models showed that if one has a slow system coupled
with a sufficiently fast chaotic system, then slow climate dynamic statistics
tends to converge in distribution to a process whose dynamics is governed
by a stochastic differential equation endowed with a white noise mimicking
the fast scales [4]. It turns out thus that Wiener process and Brownian mo-
tion can be used to model not only microscopic collisions, but in general the
statistics of many chaotic systems whose fast and slow dynamics are well
separated.

Einstein model for Brownian motion was however too simple, and many
other factors have to be taken into consideration in the majority of the
situations. First of all, one has to consider that the flow itself could be
not at rest on average with respect to the diffusing particles - at least, at

5



wavelengths comparable to the sizes of the particles. In such a situation, in
a sense one has to sum the Lagrangian dynamics of the flow particles and
the random contribution given by molecular collisions - or, in general, fast
dynamics. This implies one has to solve equations like dX (t) = v(X , t) +√
2D0dW (t), where X is the coordinate of the particle, v the diffusing flow

and the other term is the Brownian motion coupled to Einstein’s molecular
diffusivity. The corresponding equation for the probability density function is
the well-known advection-diffusion equation [57]. Once again, this equation,
which is called passive scalar equation too, is the same for dynamics in a
flow of pollutant concentration or temperature.

Another element to take into consideration is the inertia of the diffusing
particles. In principle, if one tries to interpret the above described equations
as second Newton’s law F = ma for a generic particle, one notices immedi-
ately no mass term appears. This is equivalent to consider a particle with
a vanishing Stokes number St. A more complete study of these phenom-
ena should then start off by the second Newton law, where one eventually
can insert the stochastic Brownian contribution from molecular collision or
small-scale fast dynamics. This complicates the topic a lot, and a complete
theory for the dynamical equation of a particle in a flow is still an open prob-
lem. Under strong assumptions, including small sizes in comparison to the
minimal wavelengths of the flow, Maxey-Riley equation [30] helps us towards
this direction. Many forces in this equation appear, and most of them de-
pend strongly on the density of the particle with respect to the fluid. Due to
their very complicated structure, further simplifing hypotheses can be con-
sidered. They allow one to handle them effectively and with a full control of
the physical interpretation of the interaction between the several terms.

The last hypothesis from initial Einstein theory one can loosen is the
Gaussian character of the dispersal process. Indeed, as we already men-
tioned, when the Central Limit Theorem applies, variance grows linearly in
time. This regime is called normal diffusion. However, many time in exper-
iments one finds a variance growing like tα, where α can be greater than 1
(superdiffusion), or lesser than 1 (subdiffusion). In those cases, diffusion is
said to be anomalous. Ultraslow scenarios with a behaviour of the position
variance like ∝ lnβ t are also possible. When diffusion becomes anomalous,
it can mean that the infintesimal increments for each time step are not inde-
pendent, which implicates a memory effect, their probability density being
time dependent. Another possibility can be that their distribution functions
have longer tales than a Gaussian distribution. An example in nature of this
behaviour would be the trajectories albatrosses follow during their flights
[5]. As to fluid dynamics, superdiffusion emerges when large-scale structures
(eddies, jets or convection rolls) are predominant in the transport [6]. Subd-
iffusive regimes of charge carriers in disordered solids under an electric field
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are also worthy to be mentioned [7].
All of the points we illustrated heretofore will be the subject of the study

in this PhD thesis. In Chapter 1 we will study the possibility of an effect
of inertia to have anomalous diffusion in flows where molecular diffusivity is
not negligible. To do that, we will exploit synthetic kinematic flow models
for statistic properties of tubulence. This choice is made to have a full
control on the energy spectrum shape, which is more difficult to have in
DNS data. In Chapter 2, we will utilise this synthetic flow to present a
model where small-scale chaos in turbulence can be statistically substituted
by suitable Wiener processes. This model represents a closure one could use
in LES for atmosphere physics or oceanography. In Chapter 3, finally, we will
present other quite general results of diffusion in flows with inertia, provided
that particles fullfill some hypotheses for simplified Maxey-Riley equation.
These results, again, could potentially have strong implications due to their
analytical character. After any chapter, appendices with mathematical tools
to understand the main text are provided.
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Chapter 1

Anomalous diffusion of inertial

particles in random parallel

flows: numerics vs

perturbation results

1.1 Introduction

The large-scale transport of inertial particles is a problem attracting
much attention in different situations, both practical and theoretical, in dif-
ferent fields of Sciences. For the sake of example, it is known that elemental
carbon (also known as black carbon) in the terrestrial atmosphere includes
strongly light-absorbing material and is thought to yield large positive ra-
diative forcing, thus potentially affecting Earth climate dynamics [3]. From
a theoretical point of view, a quantity of particular interest is the rate at
which particles are transported by an incompressible flow [14, 15, 16, 17]. For
inertialess particles (i.e. fluid particles), the large-scale dynamics is fully con-
trolled by enhanced (effective) diffusion coefficients [18], the so-called eddy
diffusivities. These latter include all the (often nontrivial) effects played by
the advecting velocity. Inertialess particles thus behave in this case as Brow-
nian particles but with an enhanced mean-free path.
Although the above scenario is the typical one, there exist situations where
the standard diffusion regime is replaced by anomalous diffusion [19]. It
is practically impossible to cite the huge literature on anomalous diffusion
of tracer particles in incompressible velocity fields. Here we only report
Majda and Avellaneda [20] for random shear flow, del Castillo Negrete for
non-Gaussian statistics of passive scalars in vortices in shear [21], the exper-
imental study of Solomon et al. [22] on superdiffusion in an annular tank,
and the study by Andersen et al. [23] on simple stochastic models able to
capture the very origin of strong anomalous diffusion.
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Anomalous diffusion of tracer particles is observed when at least one of the
two following conditions is not satisfied for the Lagrangian velocity auto-
correlation function: convergence of its integral for t → 0; fast enough decay
for t → ∞. The above conditions follow from simple considerations carried
out on the so-called Taylor relation [24] relating the eddy-diffusivity tensor,
Dij , to the velocity auto-correlation function1:

Dij = lim
t→∞

1

2

d

dt

∫ t

0
ds

∫ t

0
ds′ 〈Ẋi(t+ s)Ẋj(t+ s′)〉 . (1.1)

Here, Xi(t) is the i-th coordinate of tracer position obeying the evolution
equation Ẋi(t) = ui(X (t), t) and u is the prescribed carrier flow.
In the presence of non-negligible inertia with respect to the surrounding flow,
diffusivity is nomore just the integral of the Lagrangian correlation of the
flow velocity, and the problem of finding out the conditions at the origin of
anomalous diffusion becomes very challenging. A first attempt along this
direction has been done in [25] for the case of random shear flow. The strat-
egy in [25] exploited the results obtained by means of a formal multiple-scale
expansion [27, 26], through which an explicit expression for the eddy diffu-
sivity in parallel flows was obtained in [26] in the limit of small inertia. In
this limit, a possible source of anomalous diffusion was identified in [25] as
a consequence of long-range correlations in both the spatial and the tem-
poral domains. The emergence of anomalous diffusion was traced back to
the study of the behavior of the integral defining the eddy diffusivity in the
infra-red limit. The same method was successfully exploited in [14] to iden-
tify the infra-red properties of the flow spectrum at the origin of anomalous
diffusion for tracer particles. Although the method of analysis in [25] is thus
similar to that exploited in [14], the main difference is that the expression
for the eddy-diffusivity in [14] is exact, while the one in [25] is a first-order
small-inertia expansion. The subtle point to investigate is thus on whether or
not possible resummations occurring in the presence of secular terms might
invalidate the perturbative results and, consequently, the predictions for the
emergence of anomalous diffusion. The investigation of the present point is
the main concern of the present study.
This chapter is organized as follows. In Sec. 1.2 we recall the main pertur-
bative results obtained in [25] in relation to the conditions for the emergence
of anomalous diffusion of inertial particles in parallel flows. Consequently,
in Sec. 1.3 we present some first clues about a possible breakdown of the
perturbative techniques which have motivated the present work. In Sec. 1.4
we derive a generalization of Taylor’s formula valid for generic density ratio
(between particles and fluids). This formula, although formal, will help us to
formulate heuristic arguments in favor of the possible emergence of resum-
mations in the small-inertia perturbative approach. The numerical strategy

1For an introduction to the concept of eddy diffusivity, see the Appendix of this Chapter
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to search for possible resummations is introduced in Sec. 1.5, where it is also
tested against situations known to produce anomalous diffusion in the tracer
limit. In Sec. 1.6 the results of our numerical analysis are presented and
discussed. Conclusions are finally reserved to Sec. 1.7.

1.2 Known results for the anomalous diffusion of

inertial particles

Let us briefly recall known perturbative results on bounds for the pres-
ence or absence of anomalous diffusion of inertial particles recently obtained
in [25].
Let us start our analysis by recalling the equations ruling the evolution of in-
ertial particles in a given (random) carrier flow u(x, t). Taking into account
the added-mass effect in a simplified way — as in [29] — and neglecting
any feedback on the carrier fluid, the Lagrangian evolution of inertial parti-
cles obeys the following set of stochastic differential equations2 for particle
position, X (t), and co-velocity, V(t) [30, 31]:











Ẋ (t) = V(t) + βu(X (t), t)

V̇(t) = −V(t)− (1− β)u(X (t), t)

τ
+

√
2D0

τ
η(t) .

(1.2)

Here, the term η(t) is a white-noise process coupled with a constant Brown-
ian diffusivity D0 [32], and the dimensionless coefficient β ≡ 3ρf/(ρf + 2ρp)
is defined through the mass densities of the fluid ρf and of the particles ρp.
Non-vanishing values of this added-mass factor β, i.e. particles not much
heavier than the fluid, induce a discrepancy between the particle velocity,
Ẋ (t), and co-velocity, V(t) [33]. For small spherical inertial particles of ra-
dius R, the Stokes time τ (expressing the typical response delay of particles
to flow variations) is related to the kinematic viscosity ν of the carrier fluid
by τ = R2/(3νβ). For τ = 0 the tracer limit is obtained independently of β.
From [27, 26] it is known that the evolution of the physical-space probability
density function of inertial particles carried by an incompressible flow obeys a
diffusion equation, if the problem is investigated – by means of multiple-scale
techniques – in the frame of reference moving with the particle effective ter-
minal velocity, and at spatial/temporal scales much larger/longer than the
ones typical of the carrier flow, say � L and � T , respectively. In the
limit of vanishing Stokes number (St ≡ τ/T ) one obviously recovers the ex-
pression of the eddy diffusivity for tracer particles given in [14], where an
explicit formula was more specifically presented for the case of parallel flows.
The fact that an explicit formula for the eddy diffusivity can be obtained in

2For an exhaustive enough introduction for SDEs and equations of motion for inertial

particles, see the Appendix of this chapter.
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that case is due to vanishing convolutions in Fourier space as a result of the
specific geometry of the parallel flow. When considering particles endowed
with small but finite inertia in this class of bi-dimensional parallel flows,
uj(x, t) = δj1u(y, t), an expansion in St gives the following expressions for
the zeroth and first orders of the effective-diffusivity tensor3 [25]:

D
(0)
ij = D0

[

δij + δi1δj1

∫

dk

∫

dω E(k, ω) k2

ω2 +D2
0k

4

]

, (1.3)

D
(1)
ij = δi1δj1

L

U

∫

dk

∫

dω E(k, ω)(1 − β)ω2 + (3− β)D2
0k

4

2(ω2 +D2
0k

4)
, (1.4)

Dij = D
(0)
ij + StD

(1)
ij +O(St2) . (1.5)

Here E(k, ω) stands for the Fourier transform of the velocity correlation
function, in both time and the y direction perpendicular to the flow. (It is
worth noticing that in three-dimensional parallel flows the expressions (1.3)–
(1.4) change only for the presence of the Jacobian d2k instead of dk, and for
the fact that the Fourier transform must be performed in both the directions
orthogonal to the flow. However, in this chapter we are going to deal only
with two-dimensional flows.) Note that, although not explicitly stated, Eqs.
(1.3) and (1.4) naturally contain endpoints (ultra-violet and infra-red cutoffs)
in the integration interval.
These general results were applied in [25] to parallel flows having spectra
with power-law forms (while in [26] they were more specifically substantiated
for the Kolmogorov sinusoidal flow), in the spatial variable and possibly
also in the temporal one. The analysis of possible anomalies there relied
on the presence of a spatial velocity spectrum unbounded in the infra-red
region, i.e. with wave lengths extending to infinity. This poses two problems,
namely the impossibility of defining an observation length much larger than
any spatial scale possessed by the velocity field (a necessary condition for a
multi-scale approach), and the definite non-periodicity of the fluid flow under
investigation. The first point requires the use of a regularization procedure,
as explained in [14] and as implemented in the numerical procedure we are
going to introduce in next sections. The second difficulty can be overcome
by recalling that the results of [14, 26] also apply for random (stationary
and homogeneous) ergodic velocity fields, by appropriately reformulating
the space-time integrals as statistical averages.
With these provisos, and imposing a velocity spectrum of the type

E(k, ω) ∼ |k|α|ω|ζ , (1.6)

3According to the "big-O notation", f(x) ∼ O(g(x)) whenx → x0 iff ∃ε, A 3 x0 :
|f(x)| < ε|g(x)| ∀x ∈ A− {x0}. If g is non-zero in a punctured neighbourhood of x0, this

is equivalent to lim supx→x0
|f(x)/g(x)| < ∞.
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the role of the exponents α and ζ was investigated in [25]. Physically, the
possibility of having different exponents α and ζ is a consequence of the
well-known lack of universal behavior occurring in the infra-red region of
a turbulent flow. This region is indeed dominated by forcing mechanisms
which can be very different.
Intuitively, smaller and smaller values (i.e. more and more negative) of these
exponents are associated with the presence of long-range correlations, and
are thus more and more likely to induce anomalies. The effective diffusivity
of tracers is exactly given by the integral in (1.3), which converges for

α > −3 ∩ ζ > −1 ∩ α+ 2ζ > −1 . (1.7)

When inertial particles are investigated, this result might be modified by the
presence of additive contributions in (1.5), where the leading correction is
given by (1.4). If β 6= 1 and β 6= 3, the latter integral converges for

α > −1 ∩ ζ > −1 ∩ α+ 2ζ > −3 . (1.8)

In the plane case, four different regions can thus be identified. I) Zone
A: α > −1 ∩ ζ > −1 ∩ α + 2ζ > −1: diffusion is definitely normal
because both the tracer contribution and the leading correction converge.
II) Zone B: α > −1 ∩ ζ > −1 ∩ α + 2ζ < −1: anomaly is likely be-
cause the zeroth order diverges while the first one converges. III) Zone C:
−3 < α < −1 ∩ α + 2ζ > −1: anomaly is possible because the zeroth
order converges but the first one diverges. IV) Rest of the plane: both
the tracer contribution and the leading correction diverge, again anomaly is
likely. These four regions are represented in an overlap in Fig. 1.1.
What is remarkable in these considerations from a physical point of view, is
that inertia seems to be able to change the tracer regime, in particular to cre-
ate anomalous diffusion under certain conditions. This situation is the one
associated to the aforementioned region C. Different bounds emerge when
β = 1 or = 3, because the inertial contribution in the integrating function
in (1.4) changes. However, when β = 3, what varies is just the ζ bound,
that is the integral converges if ζ > −3. This means that in fact nothing
changes in the global situations represented in Fig. 1.1, because in the re-
gion −3 < ζ < −1 the tracer contribution is still divergent. On the other
hand, for β = 1, the first bound in (1.8) becomes α > −5. As a result of
this, the regime of zone C disappears and the situation remains unchanged
in comparison to the pure tracer.
The main limitation of these results lays in the fact that their perturbative
spirit makes it impossible to understand what happens when, in the small-
inertia expansion truncated at the first order, either or both integrals diverge.
Indeed, subleading terms may induce spurious divergences or renormalizing
summations which cannot be accounted for by a perturbative scheme, e.g.
in region C one cannot exclude the possibility that the sum of the neglected
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A

B

C

−3 −1 1

Figure 1.1: Sketch of diffusion anomaly for inertial particles and tracers [see
(1.7) coupled with (1.8)]. Diffusion is definitely normal only in the meshed
area A. In zone B only the inertial correction converges and anomaly is likely,
whereas in zone C only the tracer contribution converges and an inertia-
driven anomaly is possible. In the fourth zone, the white one, both the
tracer and the O(St) contributions diverge.
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orders (St2 and higher) may exactly cancel the divergence at O(St).
In order to investigate this subtle point one has to resort to numerical sim-
ulations. This is one of the main aim of the present chapter which will be
carried out in the next sections.

1.3 Subtle points: clues for the possible emergence

of resummations

Before carrying out a systematic numerical analysis to investigate the
genuine/spurious character of anomalous diffusion identified in [25], let us
first discuss some clues that seem to point towards the possible emergence of
resummations. These latter might invalidate the above-mentioned bounds
for the emergence of anomalous diffusion. In doing that, it is convenient to
recast (1.4) in the form

δi1δj1
L

U

∫

dk

∫

dω E(k, ω)
[

1− β

2
+

D2
0k

4

ω2 +D2
0k

4

]

. (1.9)

When β > 1, the first addend in (1.9) becomes negative, and if diverging it
can give rise to negative infinities which are hard to justify, the eddy diffusiv-
ity being a positive definite quantity. To be more specific, this can happen
for α = −5/3 and ζ = 1, with any ultra-violet cutoff (i.e. in the region C
where only the tracer contribution converges and an inertia-driven anomaly
is inferred by the perturbative strategy).
To gather more insights on the emergence of possible resummations, let us
evaluate explicitly the correction O(St) in the simple case ζ = 0, corre-
sponding to a white-in-time flow field. When doing that, assuming a flat
spectrum in frequencies (i.e. ζ = 0), an integration immediately leads to the
expression:

δi1δj1
L

U

∫

dk |k|α
[

(1− β)ωmax + 2D0k
2 arctan

ωmax

D0k2

]

. (1.10)

Here, ωmax is a possible ultra-violet cutoff frequency which goes to infinity
in the white-noise case, whereas the infra-red cutoff frequency is set to 0
because no divergence occurs in that region. Our remark is that when β 6= 1
and ωmax is sufficiently large, we have a O(St) correction having a magnitude
comparable with the one of the O(1) correction. This clearly signals a secular
behavior, to deal with which renormalized perturbative approaches have to
be exploited [28]. In the limit ωmax → ∞ the correction diverges, and then
one could state that δ-correlated flows are associated to anomalous diffusion.
Conversely, for β = 1 the correction is limited and nonzero. An explicit
dependence on β thus appears from the perturbative analysis. As we are
going to see in the next section, these conclusions are actually an artifact of
the perturbation strategy.
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1.4 Lagrangian view for the eddy-diffusivity of in-

ertial particles

For passive tracers, there are well-established results on the relation be-
tween diffusion phenomena and velocity correlation functions. The most
famous one is Taylor’s formula [24]. In this section we generalize such a for-
mula for the case of inertial particles of arbitrary inertia. For this purpose,
let us start from the dynamical equations (1.2).
Due to the presence of Brownian noise on the right-hand side of (1.2), our
flows are fully mixing (i.e. ergodic in statistical terms) and particles tend
to visit every point of the space as t → ∞. This means that the Eu-
lerian and Lagrangian averages coincide after a sufficiently long time, i.e.
〈u(x, t)〉 = 〈u(X (t), t)〉. It is thus convenient for the successive analysis to
choose as a reference frame the one such that 〈u(x, t)〉 = 〈u(X (t), t)〉 = 0
(and thus the mean co-velocity is equal to the mean velocity). Here, brackets
denote ensemble average over both u(x, t) and η.
By taking the average of both sides of (1.2) and integrating, one obtains:

{

〈X (t)〉 = X (0) + τV(0)[1 − e−t/τ ]

〈V(t)〉 = V(0)e−t/τ .
(1.11)

For t � τ a stationary state sets in, for which 〈X (t)〉 = X (0) + τV(0)
and 〈V(t)〉 = 0. Because of the fact that our attention in the following will
be paid on large-scale/long-time transport, without loss of generality we can
assume V(0) = 0 from the very beginning. To describe asymptotic transport,
the eddy diffusivity can be introduced according to the usual definition:

Dij ≡ lim
t→∞

1

2

d

dt
Rij(t) (1.12)

where Rij(t) ≡ 〈Xi(t)Xj(t)〉 − 〈Xi(t)〉〈Xj(t)〉. By simple integration, the
expression for the eddy diffusivity can be finally recast in the following form:

Dij = lim
t→∞

1

2

d

dt

∫ t

0
ds

∫ t

0
ds′ 〈Ẋi(t+ s)Ẋj(t+ s′)〉 . (1.13)

Exploiting the Green function method, we can convert (1.2) into a system of
integral equations. Namely, the solution of the equation for the co-velocity
reads:

V(t) =
1− β

τ

∫ t

0
ds e−(t−s)/τu(X (s), s) +

√
2D0

τ

∫ t

0
ds e−(t−s)/τη(s) ,

(1.14)
while the velocity turns out to be:

Ẋ (t) =
1− β

τ

∫ t

0
ds e−(t−s)/τu(X (s), s)

+

√
2D0

τ

∫ t

0
ds e−(t−s)/τη(s) + βu(X (t), t) . (1.15)
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Note that, if V(0) 6= 0, some constant terms and exponentially decaying
contributions do appear in the above expressions, without any effect in the
final form of the eddy diffusivity. This is because of the time derivative
involved in its definition, and also because of the long-time limit considered.
By plugging the previous expression for Ẋ (t) into (1.13), one obtains:

Dij = D0δij + lim
t→+∞

1

2

{

(1− β)2

τ2

∫ t

0
ds

∫ s

0
ds′
∫ t

0
ds′′ (1.16)

× e−(t+s−s′−s′′)/τ 〈ui(X (t+ s′), t+ s′)uj(X (t+ s′′), t+ s′′)〉

+
(1− β)β

τ

∫ t

0
ds

∫ t

0
ds′ e−(t−s)/τ 〈ui(X (t+ s), t+ s)uj(X (t+ s′), t+ s′)〉

+
(1− β)β

τ

∫ t

0
ds

∫ s

0
ds′ e−(s−s′)/τ 〈ui(X (t+ s′), t+ s′)uj(X (2t), 2t)〉

+ β2
∫ t

0
ds 〈ui(X (t+ s), t+ s)uj(X (2t), 2t)〉 + (i↔ j)

}

,

where the symbol +(i↔ j) means that the same expression has to be added
with interchanged indices (i.e. symmetrization). Note that the Lagrangian
correlation functions have to be computed in the stationary regime due to the
considered long-time limit and to the definition (1.12) of the eddy diffusivity.
This happens because the system is fully mixing, with the consequence that
the stationarity of the Eulerian correlations is inherited by the Lagrangian
ones as t→ ∞ [56].
We have also used the fact that 〈ηi(s)ηj(s′)〉 = δijδ(s−s′), the independence
of the two processes u(x, t) and η(t), i.e. 〈ui(X (t), t)ηj(t)〉 = 0, and:

lim
t→+∞

2D0

τ2

∫ t

0
dt′
∫ t′

0
ds e−(t+t′−2s)/τ = D0 . (1.17)

The explicit contribution of Brownian diffusivity to the effective diffusivity is
encoded in the term D0δij . We are saying “explicit” because, obviously, also
the other integrals depend uponD0, since they are implicitly evaluated on the
particle trajectories which, in turn, depend on the white-noise component.
The trajectories will statistically tend to the noiseless ones as D0 → 0.

1.4.1 Discussion of some relevant limits and heuristics

Very heavy particles Let us now focus on the limit of very heavy parti-
cles, i.e. β = 0. In this case (1.16) reduces to the white-noise contribution
plus the first triple integral in the curly brackets. This latter can be simplified
as done in [56]. The final expression is:

Dij = D0δij + lim
t→+∞

1

4τ

∫ t

0
ds

∫ +∞

−∞
ds′

× e−|s−s′|/τ [〈ui(X (t+ s′), t+ s′)uj(X (2t), 2t)〉 + (i↔ j)
]

.
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From this formula, it is immediately verified that for τ → 0 the usual Tay-
lor’s expression for tracer particles is obtained, by virtue of the fact that
exp(−|s− s′|/τ)/(2τ) approaches the Dirac delta as τ goes to zero.
Although the above expression is valid at a formal level (indeed, the particle
trajectories involved in the integration are unknown), some physical consid-
erations highlighting the role of inertia on the large-scale transport (possibly
anomalous) can be provided. To do that, let us define the time-weighted
average (on a windows of size τ) of the velocity field at time s as:

ui(X (s), s) =

∫ +∞

−∞
ds′

e−|s−s′|/τ

2τ
ui(X (s′), s′) , (1.18)

in terms of which expression (1.18) becomes:

Dij = D0δij + lim
t→+∞

1

2

∫ t

0
ds [〈ui(X (t+ s), t+ s)uj(X (2t), 2t)〉 + (i↔ j)] .

It thus has the form of a “standard” Taylor formula with two major differ-
ences: fluid velocities are evaluated along inertial-particle trajectories, and
the filtered velocity does appear instead of the punctual velocity. These two
points are likely to act in competition: the first indeed plays to reduce the
auto-correlation function (thus depleting large-scale transport), while the op-
posite is expected from the second. Even more interestingly, the second effect
might cause an exceptionally slow decrease of the auto-correlation function,
so slow as to render the integral divergent. This should be the fingerprint of
anomalous diffusion. It is however difficult to isolate the two contributions
in a way to control, a priori, who is the winner between the two competing
mechanisms.

Inertialess particles Let us now consider the limit τ → 0. From (1.16)
one recovers the tracer limit, regardless of β. Indeed, denoting by H(x) the
Heaviside function, Eq. (1.16) contains the following expressions:

1

τ
H(x)e−x/τ → δ(x) ,

1

τ
e−|x|/τ → 2δ(x) .

The Heaviside function indeed arises from the replacement of
∫ t
0 ds with

∫ +∞
0 ds H(t− s) (or of

∫ s
0 ds′ with

∫ +∞
0 ds′H(s− s′) when s′ ∈ [0, s]). After

the above substitutions, the tracer limit easily follows.

Delta-correlated flows Let us now pass to discuss the relevant limit of
homogeneous δ-correlated-in-time velocity field in (1.16). The analysis of this
limit will provide a further clue in favor of the emergence of resummation
in the perturbative expansion (1.5). A Gaussian, zero-mean, δ-correlated-in-
time random velocity is defined in terms of the two-point correlation function

〈ui(x, t)uj(x′, t′)〉 = 4πFij(x− x′)δ(t − t′) . (1.19)
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If we evaluate this function along the Lagrangian trajectories, i.e. on the
points X (s) and X (s′), it is easy to conclude that the flow is δ-correlated in
time also from a Lagrangian point of view. Let us plug 〈ui(X (s′), s′)uj(X (s), s)〉 =
4πFij(0)δ(s−s′) into (1.16), and proceed with simple manipulations exploit-
ing the symmetry of Fij(0). To obtain the final result, let us proceed with
a term-by-term analysis of the four integrals appearing in (1.16). The first
and second integrals are:

(1−β)2 2πFij(0)

2τ

∫ +∞

0
ds

∫ +∞

−∞
ds′ e−|s−s′|/τ δ(s′)+(i↔ j) = (1−β)22πFij(0)

and

lim
t→+∞

(1− β)β
2πFij(0)

τ

∫ t

0
ds

∫ t

0
ds′ e−(t−s)/τ δ(s − s′) + (i↔ j)

= 4π(1− β)βFij(0) .

(1.20)

As far as the third term is concerned, by exploiting the formal identity
∫ t′

t ds f(s)δ(t′ − s) = f(t′)/2, the inner integral yields a function whose
values are 2π(1 − β)βFij(0) if s = t and 0 elsewhere. When one integrates
that function in s, the result is obviously 0 because the function is zero
almost everywhere. Finally, the fourth integral is:

2πβ2Fij(0)

∫ t

0
ds δ(t− s) + (i↔ j) = 2πβ2Fij(0) .

Summing up all the contributions, one finds

Dij = D0δij + 2πFij(0) , (1.21)

that corresponds to the result for the tracer eddy diffusivity in δ-correlated
flows (see, e.g., [14]). Note that such an expression holds for all τ and
β. This remark casts in a bad light the perturbative result (1.5). This
latter contains indeed an explicit dependence on both τ and β and, as we
have already discussed, Eq. (1.4) is a divergent correction when ωmax → ∞,
because the integrating function does not vanish at infinity. This means that
resummations are surely present in the ultra-violet region of the spectrum.
It is quite hard to imagine a mechanism of resummation which acts on the
sole ultra-violet divergences and preserves the infra-red ones.

1.5 The numerical strategy

Our aim here is to carry out a systematic analysis to check the reliability
of the bounds reported in [25] on the emergence of anomalous diffusion for
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inertial particles. The flows we are going to consider are parallel, incom-
pressible, random (stationary and homogeneous), and are characterized by
different spectral power-law behaviors (see Eq. (1.6)). These parallel flows
will have a dependence on the sole coordinate, say, y: u(x, t) = (u(y, t), 0).
The definition of the one-dimensional Fourier transform we use here is of the
form

Ft[f(t)](ω) ≡
1

2π

∫

R

f(t)eiωtdt

and similarly for the y dependence (with t 7→ y and ω 7→ k).
The Fourier transform of velocity correlations is denoted by E(k, ω)

= Fy,t [〈u(y, t) · u(0, 0)〉].

1.5.1 The kinematic model

In order to build a parallel flow with the desired aforementioned prop-
erties, let us consider a superposition of N independent spatial sinusoidal
modes, with time-dependent amplitudes, and different wave numbers. Namely,

{

ux(x, y, t) =
∑N

i=1Ai(t) cos[ki(y + θ̃i)]
uy(x, y, t) = 0 ,

(1.22)

where x and y are the spatial coordinates of a tracer particle, Ai(t) is the
mode amplitude, ki is the wave number of the spatial mode i, N is the num-
ber of modes and θ̃i are static random phases uniformly distributed in the
interval [0, 2π[. These phases are fixed in each realization of the flow, but
they are in general different for each particle. This is an example of quenched
random process. The role of the random phases is simply to have a homo-
geneous process and to allow efficient particle mixing along x. Mixing along
the transverse direction y is guaranteed by the presence of the Brownian
contribution in (1.2).
We have distributed the spatial modes according to a given density factor,
here of the form ki+1 = %ki with % =

√
2. The amplitudes can be conve-

niently factorized as Ai(t) = CKiai(t), where Ki will give the sought spatial
spectrum, ai(t) will mimic the sought temporal statistical behavior, and C is
a constant having dimensions [L](α+3)/2[T ](ζ−1)/2, so that the field in (1.22)
is dimensionally a velocity.
The velocity field defined in (1.22) is a variation of a well-known strategy
to mimic unresolved small-scale motion, and its effect, on particle disper-
sion (both absolute and relative). For examples of applications see, e.g.,
[34, 35, 36] and references therein.
The next step is to create a stochastic process for velocity amplitudes able
to generate a zero-mean flow with the sought spectral behavior in frequency
and wave numbers. To do that, let us start from a Gaussian white-noise
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process for each component i:

ηi(t) ≡ lim
δt→0

Gi(0, 1)√
δt

where Gi(0, 1) is a Gaussian zero-mean (vector) process having unit variance
for each component. Here δt is the infinitesimal time step that we are going
to use in our numerical algorithm. It is easy to see that such a process
mimics a δ-correlated-in-time process (i.e. its temporal spectrum is flat).
Then, once this process is numerically generated, one can take its (discrete)
Fourier transform η̂i(ω) and define the following new quantity:

η̂i(ω) → η̂i(ω)
√

2πΩ(ω) .

In doing that, what we have now is a process in the frequency domain with
a generic (even) frequency spectrum Ω(ω) that, in the present study, will be
a power law |ω|ζ . The sought ai(t) can be immediately obtained by Fourier
anti-transform, and as a direct consequence

〈ai(t)aj(t′)〉 = δij

∫

dω eiω(t−t′)Ω(ω) ,

where the relation 〈ai(t)aj(t′)〉 ∝ δij has been used explicitly. It is easy to
see that the process is stationary (and thus, in particular, mean value and
variance are time independent).
As far as the behavior in the wave-number space is concerned, the following
relation is obtained from (1.22):

〈ux(y, t)ux(y, t)〉 = C2〈a2i 〉
N
∑

i=1

K2
i

2
, (1.23)

with 〈a2i 〉 independent of i by construction.
For the sake of example, a classical Kolmogorov spectrum can be obtained

by setting K2
i = k

−5/3
i δki (if the spectrum is approximated from above) or

k
−5/3
i+1 δki (from below), δki being ki+1 − ki.

1.5.2 Some benchmark cases

We are now going to perform three tests to check the behavior of the
proposed kinematic model. In this way one can gather information on its
precision to reproduce the sought flow field and the order of magnitude of the
statistical samples one needs to consider to achieve statistical convergence.
The first two tests are relative to tracer particles described by the equation

Ẋ (t) = u(X (t), t) +
√

2D0η(t) , (1.24)
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for which the mean velocity is zero if we choose the reference frame such
that 〈u(x, t)〉 = 0. Since our flow is fully mixing, particles tend to visit
every point of the space as t → ∞. As already observed, this means that
Eulerian and Lagrangian averages coincide after a sufficiently long time, i.e.
〈u(x, t)〉 = 〈u(X (t), t)〉 = 0.
The third example will concern a pure kinematic property of a flow with
a non-flat frequency spectrum. As it will be explained, simple dimensional
considerations (i.e. power-counting arguments) can be done in that case, and
will be used to check the correctness of our algorithm to properly generate
the sought dependence of spectrum on frequency.

Eddy diffusivity for δ-correlated velocity fields

In order to test the absolute dispersion of tracer particles in a velocity
field generated by our kinematic model, we have focused our attention on
a two-dimensional, parallel, δ-correlated velocity field given by (1.22). This
latter case is known to produce an exact expression for the eddy diffusivity
[14]. More specifically, here the velocity field is a Gaussian, zero-mean,
random process with auto-correlation function given by

〈ux(x, t)ux(x, t′)〉 = 4πWδ(t− t′) , (1.25)

with, in our case,

W =
1

2

∫

dk E(k, ω) ∝
∫

dk |k|α|ω|0 . (1.26)

In our discrete model, (1.26) becomesW =
∑N

i=1Wi, whereWi = C2|ki|αδki/4.
To achieve the desired velocity field, it is sufficient to consider (1.22) with
amplitudes Ai(t) given by:

Ai(t) =
√

8πWiηi(t) . (1.27)

(Note that here i is not a contracted index.) Once the velocity field is gen-
erated at each time step, we carried out numerical simulations of particle
dispersion by uniformly distributing N = 1600 particles in a square box,
whose side corresponds to the maximum wavelength (here 2048). The prob-
lem is made dimensionless by assuming as a characteristic length scale the
minimal wave length appearing in our kinematic model, i.e. Lmin = 2π/kmax

(for the sake of notation, kmax ≡ kN+1), and the bare molecular diffusivity
D0. The typical time scale follows accordingly.
The numerical integration of the particle equation (1.25) was performed by a
Runge–Kutta algorithm adapted to deal with additive white noises [37]. The
integration step was δt = 0.1 and the total number of integration steps was
8000. The measured observable is the mean-square particle displacement
(with respect to particle initial condition):

σ2(t) ≡ 〈|X (t)−X (0)|2〉 . (1.28)
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Figure 1.2: Absolute dispersion in a δ-correlated flow. The dashed line
represents the best-fit slope calculated on the whole time interval shown in
the figure. Here kmax = 2π, C2 = 10 and kmin = π/

√
2.

From [14] we know that such a quantity undergoes a diffusive behavior with
a diffusion coefficient given by 2(2+2πW ). In Fig. 1.2 we show the behavior
of σ2(t) as a function of time (α = −5/3). In the present case, 2πW = 9.01
and the expected diffusion coefficient is thus 22.02. The best fit slope from
Fig. 1.2 is ∼ 21.94 and thus agrees with the theory with a relative error of
about 0.4%.

Behavior of eddy diffusivities with different infra-red cutoffs

Our attention is now focused on the dependence of eddy diffusivities
with respect to an infra-red cutoff implicitly assumed inside the integral
(1.26). This is the main ingredient to access the emergence of possible
anomalous-diffusion behavior. The main aim here is to test our method
to assess anomaly in situations under control where the existence of anoma-
lous/normal diffusion is a well-established result.
For this purpose, let us suppose to have two flows δ-correlated in time
and having spectral power laws ∝ k−5/3 and ∝ k−1/3 respectively, with
|k| ∈ [kmin, kmax]. Here, C2 = 10 in the first case and C2 = 1 in the sec-
ond one. Keeping kmax = 2π fixed, both situations have an eddy diffusivity
with a dependence on the infra-red cutoff of the form akbmin + c, b being
−2/3 in the first case and 2/3 in the second one. This trivially follows from
(1.26). The first case with a −5/3 slope thus induces anomalous diffusion
since the eddy diffusivity diverges as kmin → 0. The resulting curves are
shown in Fig. 1.3, as functions of kmin. For each kmin, eddy diffusivities are
obtained as described in the previous section, by uniformly distributing one
million particles in a square box, the side of which corresponds to the max-
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Figure 1.3: Diffusion coefficient for different infra-red cutoffs kmin in two
δ-correlated flows having different spectral power-law behavior: ∝ k−5/3

(upper panel) and ∝ k−1/3 (lower panel). Squares indicate numerical results,
while continuous lines are the resulting best-fit curves (of the form akbmin+c).

imum wave length of the flow, and then averaging over particle positions.
The best fit, assuming the law akbmin + c, yields a = 63.0787 ± 5 · 10−4,
b = −0.666646 ± 7 · 10−6, c = −14.5347 ± 5 · 10−4 for the −5/3 spectrum,
and a = −5.00650± 4 · 10−5, b = 0.666664± 3 · 10−6, c = 21.03860± 3 · 10−5

for the −1/3 law. The meaning of the resulting error is statistical: it has
to be multiplied by a factor 3 to obtain the corresponding maximum error,
according to the 3σ criterion.
What clearly stands out is that the two exponents arising from best fit are
fully compatible with the theoretical results. One could also note in Fig. 1.3
that plotted data are closer to zero in the normal-diffusion case than in the
anomalous one. This is due to the fact that, in order to see a good diffusive
regime, it is necessary to wait longer and longer times as Lmax increases.
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Figure 1.4: Analytical (continuous line) vs. numerical (square) results for
the two-time velocity structure function S2(t) for a spectral law ω−5/3. The
continuous line has the slope 2/3, as expected by simple power-counting. It
has been sufficient to take averages over only 5 frames to obtain such a good
agreement with the theoretical slope.

A flow with a power-law frequency spectrum

We now aim at assessing the validity of our kinematic model in the time
domain. To do that, we build an energy spectrum E(k, ω) with a prescribed
behavior in ω (here of the form E(k, ω) ∝ ω−5/3), and numerically test
the corresponding expected form for the flow two-time correlation function
S2(t) ≡ 〈|u(x, t)− u(x, 0)|2〉 By simple power counting, the resulting time
behavior is t2/3. The validity of this behavior can be detected in Fig. 1.4,
where the S2(t) is reported as a function of t.

1.6 Infra-red resummation: numerical results and

analysis

Having verified the accuracy of our kinematic model to reproduce the de-
sired spectral properties of a given carrier flow, we are now ready to exploit it
to verify the perturbative predictions of [25] on the emergence of anomalous
diffusion of inertial particles in random parallel flows.
We thus need to solve (1.2), u(x, t) being a two-dimensional random par-
allel flow described by (1.22) with a given power-law spectrum (1.6) (|k| ∈
[kmin, kmax] and |ω| ∈ [ωmin, ωmax]). The two ultra-violet cutoffs provide,
respectively, a minimal spatial length L = 2π/kmax and time T = 2π/ωmax

through which we made our system dimensionless. Our velocity spectra will
thus always have ultra-violet cutoffs equal to 2π.
What we are going to do is to move the infra-red regularizing cutoffs closer
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Figure 1.5: An example of best fit of the form σ2(t) = at+b for the diffusion
coefficient. Here St = 20.

and closer to zero in every numerical simulation and measure the diffusion
coefficient. This is exactly the procedure we followed for the benchmark cases
discussed in the previous section. Note that, to obtain a diffusive regime,
one needs to wait longer and longer time (and/or a larger statistics) as the
cutoffs approach zero. By virtue of what stated in the previous sections, we
will set for every particle V(0) = 0. With respect to what we did in Sec.
1.5.2, best-fit curves are obtained with the fitting function σ2(t) = at+ b on
an interval t & 5St, in order to neglect any offset or other transient resid-
uals (see Fig. 1.5). Also, measures have been obtained by averaging the
results arising from a discrete spectrum approximating the continuous one
from above and below, respectively.

Defining the Péclet number as Pe ≡ L2/(D0T ) (with L = 2π/kmax and
T = 2π/ωmax), we set it equal to 1. The parallel flow we consider is flowing
along the x axis, and only two components (xx and yy) of the eddy diffu-
sivity are non-zero. Moreover, we consider the limit β = 0, which means
diffusing particles much heavier than fluid particles.
As a representative sampling point of the zone C in Fig. 1.1, we choose the
point corresponding to α = −5/3, ζ = 1. In this case, we can set ωmin = 0
because no divergence is present in the frequency part of the spectrum, and
we only have to move the spatial infra-red cutoff towards zero. For such a
flow, we can exploit (1.3) and integrate over the frequencies to obtain an
analytical expression for the zeroth-order contribution (i.e. the tracer case).

By setting 〈A2
i 〉 ∝ k

−5/3
i (or k

−5/3
i+1 with an approximation from below) in

(1.22), one obtains:

Dij = δij + δi1δj1

∫ 2π

kmin

dk
k1/3

2
ln

[

1 +
(2π)2

k4

]

. (1.29)
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From our Lagrangian simulations we can compute the mean-square parti-
cle displacement, σ2(t), given by (1.28), from which the trace of the eddy-
diffusivity tensor is easily obtained via best fit. The resulting value has to
be compared with the double of the trace of (1.29), which reads:

4 +

∫ 2π

kmin

dk k1/3 ln

[

1 +
(2π)2

k4

]

. (1.30)

In Fig. 1.6 the continuous line represents the above integral function, whilst
the squares are our numerical results. The integration step was δt = 0.0625,
the number of particles was 40000 (uniformly distributed on the entire box)
and the integration was carried out for 8192 time steps. As expected, this
case shows convergence as the infra-red cutoff goes to zero. Moreover, we can
observe a change of concavity when kmin . 0.5. There, the graph of (1.30)
tends to a straight line and in the neighborhood of zero it has a sort of knee.
This did not happen in the benchmark cases with the white noise, because
no ultra-violet frequency cutoff was present and the eddy diffusivity had a
pure power-law expression with respect to kmin. Here, on the contrary, the
integrating function in (1.30) has a logarithm, whose argument depends on
the ratio between the ultra-violet cutoff frequency (2π in the present case)
and k2. The loss of self-similarity is thus a consequence of finite-size effects
(i.e. a non zero ultra-violet cutoff).
A similar feature is present in Fig. 1.7. It corresponds to the same case
analyzed in Fig. 1.6, but now the Stokes number is St = 0.5, a representa-
tive value sufficiently small for the perturbative results to hold and, at the
same time, to guarantee a sufficiently large effect of inertia on the diffusion
process. In this figure, the change of concavity tells us that the diffusion coef-
ficient definitely crosses the vertical axis. Consequently, the eddy diffusivity
tends to a finite value even though kmin → 0. This contrasts the divergence
predicted by the first-order perturbative correction given in (1.4). Infra-red
resummations at higher orders in St are thus very likely to appear in the
low-inertia perturbative expansion.

The fact that the behavior of the eddy diffusivity vs. the infra-red cutoff
crosses the vertical axis is not peculiar of the chosen small Stokes number,
the same behavior being observed for larger Stokes numbers as well, also far
away from the perturbative region. To be more specific, we have fixed the
infra-red cutoff kmin to the smallest value of Figs. 1.6–1.7, kmin ∼ 0.098, and
computed the resulting eddy diffusivity for different Stokes numbers. The
resulting curve is reported in Fig. 1.8. As one can see, a decreasing behavior
clearly emerges from the simulations. Again, this seems to contradict the
perturbative results: a diverging first-order correction in St for kmin → 0
should be associated (at least in the perturbative region of small St) to eddy
diffusivities increasing with the Stokes number. This fact is clearly ruled out
by our numerical results.
To conclude this section, it is worth observing that the monotonic character
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Figure 1.6: Diffusion coefficient as a function of the infra-red cutoff, kmin, for
St = 0 (tracer case). The continuous line is the analytical result from (1.30),
while the numerical results are denoted by squares. The velocity spectrum
is a power law with exponents α = −5/3, ζ = 1. The inset is a zoom in the
interval kmin ∈ [0, 0.5], showing the change of concavity and a knee close to
0.
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Figure 1.7: The measured eddy diffusivity as a function of the infra-red
cutoff, kmin, for St = 0.5 (case with inertia). The curve clearly crosses
the vertical axis, a fingerprint of standard diffusion, and shows a change of
curvature similar to the one in the tracer case reported in Fig. 1.6 when the
infra-red cutoff is . 0.5.
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Figure 1.8: Diffusion coefficient for different Stokes numbers. The velocity
spectrum is a power law with exponents α = −5/3, ζ = 1. The infra-red
cutoffs are fixed to the values kmin ∼ 0.098 and ωmin = 0.

of the eddy diffusivity in St tells us that, among the two possible mecha-
nisms discussed in relation to (1.18), the winner here is the one associated
to decorrelation due to the mismatch between inertial and fluid trajectories.

1.7 Conclusions

In this chapter we have investigated the transport of inertial particles in
the limit of large scales, where the diffusive limit sets in. The main aim of
the present chapter was the investigation of anomalous diffusion for random
parallel flows. In the presence of inertia, and the problem of identifying
which properties of the carrier flow may cause anomalous diffusion becomes
very challenging.
A first attempt to try to provide an answer in this direction was proposed in
[25] for the case of random shear flow, using the same strategy exploited in
[14] for inertialess particles in parallel flows. In this latter case the expres-
sion for the eddy diffusivity follows from a formal multiple-scale expansion.
The same asymptotic method led to differential equations for the eddy dif-
fusivity of inertial particles in the same parallel flow. An explicit expression
follows after a second (regular) perturbative expansion in the Stokes number.
Exploiting such an explicit expression, statistical properties of the infra-red
part of the velocity spectrum were identified as a possible cause of anomalous
diffusion.
By means of accurate Lagrangian simulations, we have verified that the
small-Stokes expansion is affected by higher-order resummations that invali-
date the conclusions based on the analysis of the sole first-order contribution.
The mechanisms for the resummation of higher-order terms however remain
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elusive, and call for a deep theoretical analysis on the complete structure of
the perturbative expansion in the limit of small inertia. This will be indeed
the aim of the chapter 3, where we will show that an explicit espression for
eddy diffusivity in parallel flows is possible for inertial particle. However, the
numerical approach adopted here it is instructive for the numerical method
on a kinematic flow model we are going to use in the next chapter. That
will be basically a sort of evolution of the model we presented here.
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Appendix

In this Appendix we will treat the basic theory of the stochastic differen-
tial equations, in order to give a sense to expressions such as Eq.(1.2). Also,
we will understand the origin of that very equation, which derives from the
Maxey-Riley equation after many simplifications. These are however very
reasonable in the majority of the applications for small particles, especially
for the ones being much denser than the fluid. Eventually, we will introduce
the concept of eddy diffusivity, and why the multiple-scale approach ought
to be a good approach to deal with large-scale diffusion.

1.A Stochastic differential equations

Let us consider for simplicity a function f : R → R. Generalization to
the case R → R

n is trivial and well stated in [11].

Definition 1.A.1. Let us consider a function f : R → R. Let Π be the set of
all finite subdivision π of an interval [0, T ], with 0 = t0 < t1 < · · · < tn = T .
Its total variation is:

Vf (T ) = sup
π∈Π

n−1
∑

i=0

|f(ti+1)− f(ti)| (1.31)

If Vf (T ) < +∞∀T , the function f is of finite (total) variation.

We recall that f ∈ C1[a, b] if f ∈ C[a, b], f is differentiable on (a, b) and
there exists another function g ∈ C[a, b] which is equal to f ′ over the whole
(a, b). For continuous functions, the supremum in Eq. (1.31) is obtained
when the mesh size |π| ≡ supi |ti+1 − ti| → 0 and n → ∞. For f ∈ C1[a, b],

the total variation is finite and equal to
∫ b
a |f ′(t)|dt [12]. Finite variation

functions which are also right continuous are a category of càdlàg functions
– i. e., functions being continuous on the right side and with a limit on the
left side at any point [11].

Definition 1.A.2. The quadratic variation of f is:

V 2
f (T ) = lim

n→∞
|π|→0

n−1
∑

i=0

(f(ti+1)− f(ti))
2 (1.32)
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A finite variation function has a quadratic variation equal to zero. Be-
sides, when the total variation is bounded, the usual Lebesgue-Stjeltjes in-
tegrals is well-defined and independent of the mesh.

There can exist functions with infinite total variation and finite non-
zero quadratic variations. An example is the paths of the Brownian motion.
Stochastic calculus focuses on this kind of functions, especially by means of
Ito and Stratonovich analysis. Extensions to locally jumping càdlàg functions
having non-continuous quadratic variations are possible [11], although they
are not of interest for us.

Theorem 1.A.1 (Ito’s formula in R). If X : [0,∞) → R is a continuous
function with continuous quadratic variation, and F ∈ C2(R) a twice con-
tinuously differentiable real function, then for T ≥ 0:

F (X(T )) = F (X(0)) +

∫ T

0
F ′(X)|X(s)dX(s) +

1

2

∫ t

0
F ′′(X)|X(s)dV

2
X(s)

(1.33)
where dV 2

X(s) is the measure induced by the quadratic variation, which is
an isotone function, and the Ito integral of F’ with respect to X is defined:

∫ T

0
F ′(X)|X(s)dX(s) := lim

n→∞
|π|→0

n−1
∑

n=0

F ′(X)|X(ti)(X(ti+1)−X(ti))

Proof. By Taylor’s theorem with Lagrange’s remainder:

F (X(ti+1))− F (X(ti)) = F ′(X)|X(ti)∆Xi +
1

2
F ′′(X)|X(t̃i)

(∆Xi)
2 (1.34)

where ∆Xi = X(ti+1) − X(ti) and t̃i ∈ (ti, ti+1). Eq. (1.34) can also be
written as:

F (X(ti+1))− F (X(ti)) = F ′(X)|X(ti)∆Xi +
1

2
F ′′(X)|X(ti)(∆Xi)

2 +R(ti)

(1.35)

where R(ti) =
1
2

[

F ′′(X)|X(t̃i)
− F ′′(X)|X(ti)

]

(∆Xi)
2. It follows that:

|R(ti)| ≤
1

2
(∆Xi)

2 max
0≤i≤n−1

max
xi,yi∈∆Xi

∣

∣F ′′(X)|xi
− F ′′(X)|yi

∣

∣

We recall that ∀i ∃maxxi,yi∈∆Xi
|F ′′(X)|xi

− F ′′(X)|yi | due to Weierstrass
theorem applied to the continuous second derivative F ′′(X) on the sub-
intervals [ti, ti+1]. By taking the biggest one of all of these n values, we
will obtain a certain επ, and as a consequence:

|R(ti)| ≤ επ(∆Xi)
2
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If we now sum every term of Eq. (1.35) from i = 0 to n − 1 and take the
limit of the mesh size to 0:

lim
n→∞
|π|→0

∣

∣

∣

∣

∣

n−1
∑

i=0

R(ti)

∣

∣

∣

∣

∣

≤ lim
n→∞
|π|→0

επ

n−1
∑

i=0

(∆Xi)
2 = 0 (1.36)

since
∑n−1

i=0 (∆Xi)
2 is bounded by the finite quadratic variation, whereas

επ → 0 as |π| → 0 because maxxi,yi∈∆Xi
|F ′′(X)|xi

− F ′′(X)|yi | → 0 due to
the continuity of F”(X) in every sub-interval. Thus we end up with:

F (X(T ))−F (X(0)) = lim
n→∞
|π|→0

n−1
∑

i=0

F ′(X)|X(ti)∆Xi+
1

2
lim
n→∞
|π|→0

n−1
∑

i=0

F ′′(X)|X(ti)(∆Xi)
2

(1.37)
whence the claim.

The Ito formula is often written in differential form, that is, as a Stochas-
tic Differential Equation, that is a relationship between (Ito) differentials:

dF (X(t)) = F ′(X)|X(t)dX(t) +
1

2
F ′′(X)|X(t)dV

2
X(t)

This must be meant as:

F (X(ti+1))− F (X(ti)) → F ′(X)|X(ti)∆Xi +
1

2
F ′′(X)|X(ti)(∆Xi)

2

up to other terms which tend to 0 when the sum and the mesh zero-size
limit are taken. SDEs indeed are not differential equations proper, but rela-
tionships between differentials which constitute the infinitesimal limit of the
increments of integral equations.

Another often used discretization is:

Theorem 1.A.2 (Stratonovich’s formula in R). If X : [0,∞) → R is a
continuous function with continuous quadratic variation, and F ∈ C2(R) a
twice continuously differentiable real function, then for T ≥ 0:

F (X(T )) = F (X(0)) +

∫ T

0
F ′(X)|X(s) ◦ dX(s) (1.38)

where the Stratonovich integral of F’ with respect to X is defined:

∫ T

0
F ′(X)|X(s)◦dX(s) := lim

n→∞
|π|→0

n−1
∑

n=0

F ′(X)|X(ti+1) + F ′(X)|X(ti)

2
(X(ti+1)−X(ti))
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Proof. We start from Eq. (1.35), where we can plug the Taylor-Peano for-
mula4:

F ′(X)|X(ti+1) = F ′(X)|X(ti) + F ′′(X)|X(ti)(∆Xi) + o(∆Xi)

If we substitute the second derivative in Eq. (1.35) from the previous one,
it takes this form:

F (X(ti+1))−F (X(ti)) =
F ′(X)|X(ti+1) + F ′(X)|X(ti)

2
∆Xi−o(∆Xi)

2+R(ti)

(1.39)
bearing in mind that we could write o(∆Xi) = oi(1)∆Xi, where oi(1) is a
generic quantity tending to 0 when ∆Xi → 0. If we now sum every term of
Eq. (1.39) from i = 0 to n−1 and take the limit of the mesh size to 0, again
R(ti) → 0. Moreover,

lim
n→∞
|π|→0

∣

∣

∣

∣

∣

n−1
∑

n=0

oi(1)(∆Xi)
2

∣

∣

∣

∣

∣

≤ lim
n→∞
|π|→0

∣

∣

∣

∣

max
0≤i≤n−1

oi(1)

∣

∣

∣

∣

n−1
∑

n=0

(∆Xi)
2 = 0

due to the boundedness of the quadratic variation. We conclude then:

F (X(T )) − F (X(0)) = lim
n→∞
|π|→0

n−1
∑

i=0

F ′(X)|X(ti+1) + F ′(X)|X(ti)

2
∆Xi (1.40)

whence the claim.

Stratonovich formula is more convenient owing to its formally equivalent
form to the classical Torricelli-Barrow fundamental integral formula. This
makes it useful for stochastic differential geometry, because the usual differ-
entiation rules still hold true [13]. Stratonovich formula is often written in
differential form:

dF (X(t)) = F ′(X)|X(t) ◦ dX(t)

which must be meant:

F (X(ti+1))− F (X(ti)) →
F ′(X)|X(ti+1) + F ′(X)|X(ti)

2
∆Xi

Sometimes it is useful to pass from Ito to Stratonovich differential to
apply ordinary calculus rules to SDEs, namely when there are multiplicative
noises.

4According to the "little-o notation", f(x) ∼ o(g(x)) whenx → x0 iff ∀ε∃A 3 x0 :
|f(x)| < ε|g(x)| ∀x ∈ A− {x0}. If g is non-zero in a punctured neighbourhood of x0, this

is equivalent to limx→x0
f(x)/g(x) = 0.
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Example 1.A.1. Consider the Ito SDE:

dξ(t) = 2W (t)dW (t) + dt

In order to solve it, we will convert it in a Stratonovich representation:

∆ξ(ti) = 2W (ti)∆W (ti) + ∆ti =

2

[

W (ti) +W (ti+1)

2
− ∆W (ti)

2

]

∆W (ti) + ∆ti

(1.41)

If we now sum all of the terms from i = 0 to n− 1 and take the limit of the
mesh size to 0:

lim
n→∞
|π|→0

n−1
∑

n=0

[

(W (ti) +W (ti+1))∆W (ti)− (∆W (ti))
2 +∆ti

]

Remembering that limn→∞
|π|→0

∑n−1
n=0(∆W (ti))

2 = T , we obtain:

ξ(T )− ξ(0) =

∫ T

0
W (t) ◦ dW (t)−�T +�T (1.42)

or, in differential form:

dξ(t) =W (t) ◦ dW (t)

Eq. (1.42) can be promptly solved in the "usual" manner to arrive at:

ξ(t) = ξ(0) +
1

2
[W (t)]2

Example 1.A.2. We want to compute:

∫ t

0
W (t′)dW (t′)

We can write in differential form:

dx =W (t)dW (t)

∆x(ti) =W (ti)∆W (ti) =W (ti)
W (ti) +W (ti+1) +W (ti)−W (ti+1)

2
∆Wi

=W (ti)
W (ti) +W (ti+1)

2
− 1

2
(∆Wi)

2

(1.43)
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After we take the sum and the zero-size limit of the mesh:

x(t) =

∫ t

0
W (t′) ◦ dW (t′)− 1

2

∫ t

0
dt′

and, by integrating both members, we finally achieve the strange result:
∫ t

0
W (t′)dW (t′) =

W 2(t)

2
− t

2

We now consider the following Ito SDE:

dX(t) = b(X(t), t)dt +A(X(t), t)dW (t) (1.44)

For F (X, t) ∈ C2(R) with respect to X and C1(R) with respect to t, we have:

F (X(t), t) − F (X(0), 0)

=

n−1
∑

n=0

[

∂F

∂X
|X(ti),ti∆Xi +

1

2

∂2F

∂X2
|X(ti),ti(∆Xi)

2 +
∂F

∂t
|X(ti),ti∆ti

+ o(∆ti) + o(∆Xi)
2

]

=

n−1
∑

n=0

[(

∂F

∂X
|X(ti),tib(X(ti), ti) +

∂F

∂t
|X(ti),ti

)

∆ti

+
∂F

∂X
|X(ti),tiA(X(ti), ti)∆Wi

+
1

2

∂2F

∂X2
|X(ti),tiA

2(X(ti), ti)(∆Wi)
2

]

+

n−1
∑

n=0

[

o(∆ti) + o(∆Wi∆ti)

]

(1.45)

Now, o(∆Wi∆ti) ∼ o(∆ti) due to the boundedness of the Wiener process,
which is a continuous function, over the closed interval [0,T]. Once again:

• lim
n→∞
|π|→0

∣

∣

∣

∣

∣

n−1
∑

n=0

[

o(∆ti) + o(∆Wi∆ti)

]

∣

∣

∣

∣

∣

≤ lim
n→∞
|π|→0

∣

∣

∣

∣

max
i
oi(1)

∣

∣

∣

∣

T = 0;

• lim
n→∞
|π|→0

n−1
∑

n=0

1

2

∂2F

∂X2
|X(ti),tiA

2(X(ti), ti)(∆Wi)
2

=

∫ T

0

1

2

∂2F

∂X2
|X(t),tA

2(X(t), t)dV 2
W (t) =

∫ T

0

1

2

∂2F

∂X2
|X(t),tA

2(X(t), t)dt

by having used the well-known properties of the quadratic variation of
the Wiener process. Thus we obtain the following relationship between Ito
differentials:
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Theorem 1.A.3.

dF (X(t), t)

=

(

∂F

∂X
|X(t),tb(X(t), t) +

∂F

∂t
|X(t),t +

1

2

∂2F

∂X2
|X(t),tA

2(X(t), t)

)

dt

+
∂F

∂X
|X(t),tA(X(t), t)dW (t) (1.46)

Likewise, by means of Taylor-Peano expansions plugged into Eq. (1.46),
one could prove Stratonovich’s version:

Theorem 1.A.4.

dF (X(t), t)

=

[(

b(X(t), t) − 1

2
A(X(t), t)

∂A

∂X
|X(t),t

)

∂F

∂X
|X(t),t +

∂F

∂t
|X(t),t

]

dt

+

[

∂F

∂X
|X(t),tA(X(t), t)

]

◦ dW (t) (1.47)

Corollary 1.A.1.

dX(t) = b(X(t), t)dt +A(X(t), t)dW (t)

=

[

b(X(t), t) − 1

2
A(X(t), t)

∂A

∂X
|X(t),t

]

dt+A(X(t), t) ◦ dW (t)

Proof. Apply the theorems 1.46-1.47 with F(X)=X.

Analogous results are attainable for vector stochastic fields X(t).

Example 1.A.3. To solve Ito’s SDE:

dx = x dW (t) ,

we apply the previous corollary with A = x, b = 0:

dx = −1

2
xdt+ x ◦ dW (t)

We now devide both members by x and integrate both of the members with
the standard integral theorem:

ln
x(t)

x(0)
=

−t
2

+W (t)

whence the general integral follows:

x(t) = x(0)e−
t
2
+W (t)
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1.B Small particles in a flow: Maxey-Riley equa-

tion an its simplified versions

The study of the dispersed phase is done through a Lagrangian descrip-
tion. We are going to start with the Maxey-Riley model [30] which is valid
for point-like particles. The trajectory of each particle in the flow is tracked
by evaluating its position at a certain time, X (t), from:

dX

dt
= V(t) (1.48)

The particle velocity obeys the following equation:

mp

dV

dt
= 6πrpµ[u(X (t), t)−V(t)+

1

6
r2p∇2u|X (t)]+mf

Du

Dt

∣

∣

∣

∣

X (t)

+(mp−mf)g+

+
1

2
mf

[

Du

Dt

∣

∣

∣

∣

X (t)

− dV

dt
+

1

10
r2p

d

dt
(∇2u)

∣

∣

∣

∣

X (t)

]

+

+ 6r2pρf

√
πν

∫ t

0

1√
t− τ

d

dτ
[u(X (t), t)−V(t) +

1

6
r2p∇2u|X (t)] dτ , (1.49)

where, u(X (t), t) is the flow velocity evaluated at the particle position, ρf

is the fluid density, ρp is the particle density, rp is the particle radius, µ
and ν are respectively the dynamic and kinematic viscosities of the fluid,
mp = 4

3πr
3
pρp is the particle mass, mf = 4

3πr
3
pρf is the mass of the fluid

element of same volume and g is the gravitational acceleration vector.

Maxey-Riley equation comes from handling the equation for the flow
around the sphere perturbatively. Indeed, in [30] the authors firstly intro-
duced the flow including the feedback given by the sphere, v(x, t), and the
undisturbed flow field u(x, t). Then, they started by writing the Navier
Stokes equation for the flow in the frame reference of the sphere, by intro-
ducing w(x, t) = v(x, t) −V(t):

dw

dt
+w · ∇w = g − dV

dt
− 1

ρ
∇p+ ν∇2w

∇ ·w = 0

(1.50)

with the limt condition that w → u − V as |x| → ∞. They supposed the
particle radius rp is very small in comparison to the minimal undisturbed
flow length L, thus they could split w in w(0) = u−V and the perturbation
w(1) = w −w(0) and solve the Navier-Stokes equation perturbatively. The
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equation for the perturbation is:

dw(1)

dt
+w(1) · ∇w(0) +w(0) · ∇w(1) +w(1) · ∇w(1) = −1

ρ
∇p(1) + ν∇2w(0)

∇ ·w(1) = 0

(1.51)

We now consider the typical values W (0), W (1), T (1), P (1), rp and L to eval-
uate the order of magnitude of all of the addends as to have any element
of the equation order O(1). We recall that ∇w(0)=∇u = U/L , and that
W (0) �W (1).

W (1)

T

dŵ(1)

dt
+
W (1)U

L
ŵ(1) · ∇w(0) +

W (1)W (0)

rp
w(0) · ∇ŵ(1)

+
W (1) 2

rp
ŵ(1) · ∇ŵ(1) = −P

(1)

rpρ
∇p̂(1) + νW (1)

r2p
∇2w(1)

(1.52)

∇ ·w(1) = 0

or, equivalently:

r2p
νT

dŵ(1)

dt
+
r2pU

νL
ŵ(1) · ∇w(0) +

rpW
(0)

ν
w(0) · ∇ŵ(1)

+
rpW

(1)

ν
ŵ(1) · ∇ŵ(1) = − rpP

(1)

νρW (1)
∇p̂(1) +∇2ŵ(1)

(1.53)

∇ ·w(1) = 0

We now require
rpW (0)

ν � 1 - and, as a consequence,
rpW (1)

ν -, which means
that the Reynolds number of the relative velocity with respect to the radius

of the particle is very small. We also require that
r2pU

νL � 1. Thus, Eqs.
(1.51) simplify as follows:

dw(1)

dt
= −1

ρ
∇p(1) + ν∇2w(1)

∇ ·w(1) = 0

(1.54)

that is, the advective terms are ruled out. This is preparatory for neglecting
advective terms in Eq.(1.49), which allows us to substitute:

mf
Du

Dt
mf =

∂u

∂t
+mfu · ∇u =⇒ mf

du

dt
= mf

∂u

∂t
+mfV · ∇u
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Indeed, their difference mfw · ∇u is of order ∼ O(W (0)r3pρfU/L). The
Stokes viscous friction term in Eq. (1.49), which is the one proportional
to the relative velocity of the particle with respect to the flow, is instead of

order ∼ O(rpνρW
(0)). Their ration thus is ∼ O(

r2pU

νL ), which was supposed to
be � 1 in Maxey-Riley hypothesis. This two kinds of derivative in the terms
proportional to the flow mass can be interchanged freely, since their difference
is not appreciable due to the presence of the viscous Stokes term. Numerical
simulations in Gollub oscillating cell flows at high frequency have shown that

the two derivative are indistinguishable until
r2pU

νL is of order ∼ 10−3, which
therefore defines a range of validity of the Maxey-Riley model. Maxey-Riley
equation assumes now the following aspect:

mp

dV

dt
= 6πrpµ[u(X (t), t)−V(t)+

1

6
r2p∇2u|X (t)]+mf

du

dt

∣

∣

∣

∣

X (t)

+(mp−mf)g+

+
1

2
mf

(

d

dt

[

u+
1

10
r2p(∇2u)

) ∣

∣

∣

∣

X (t)

− dV

dt

∣

∣

∣

∣

X (t)

]

+

+ 6r2pρf

√
πν

∫ t

0

1√
t− τ

d

dτ
[u(X (t), t)−V(t) +

1

6
r2p∇2u|X (t)] dτ , (1.55)

Similarly, the Faxen corrections ∝ r2p∇2u are in ratio of O(r2p/L
2) with

respect to the velocity u and thus can be always neglected in the square
brackets of Eq. (1.55) by virtue of the limit of very small particles.

Henceforth we will suppose gravity is not present, even though it does
not complicate the diffusion problem that much in general . By introducting
the parameter β =

3ρf
2ρp+ρf

and the Stokes time τ = r2p/(3νβ) ( the previous

condition
r2pU

νL � 1 becomes τβU/L � 1), we can rearrange Eq. (1.55) in
the following form (without gravity):

dV (t)

dt
= −V (t)− u(X (t), t)

τ
+ β

du(X (t), t)

dt

+

√

27

π

3β

(3− β)2τ

∫ t

0

dt′√
t− t′

d

dt′
[u(X (t′), t′)− V (t′)]

(1.56)

The last term, Basset term, is always negligible for heavy particles (i.e.
β → 0, such as metal particles in air for which it is of order 104). Very of-
ten, Basset term is neglected in any case, due to the difficulty of evaluating
it computationally, owing to the history dependence. Besides, its correct-
ness has been questioned by more efficient model for not-too-small Reynolds
numbers with respect to the particle radius [8]. However, in point-like par-
ticles microscopical molecular collisions might become important, and then
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a Wiener noise contribution ought to be added to the forces. This is what
we are going to do in the next chapters.

It is worth to point out that original Maxey-Riley equation – i. e. Eq.

(1.49) with the original term 1
2mf

[

du
dt

∣

∣

∣

∣

X (t)

− dV
dt

]

instead of Auton’s term

1
2mf

[

Du
Dt

∣

∣

∣

∣

X (t)

− dV
dt

]

– had been derived by splitting the force in the undis-

turbed flow contribution plus that from the disturbance. Namely:

mp
dV

dt
= (mp −mf )g +

Du

Dt

∣

∣

∣

∣

X (t)

+F(1)

where F (1) is obtained by applying a reciprocity theorem on the disturbance
for Stokes flows and expressions for particles in a time-dependent flow where
a spatial distribution of forces is assigned [9]. The Laplace transform of F (1)

Maxey and Riley arrived at is:

F̂
(1)
i (s) = −Âi[6πrpµ(1+λrp)+

1

2
mfs]−r2p[(Ĉ1jj+2Ĉjj1)πµrp(1+λrp)+

1

20
sĈ1jj]

where

λ2 = ρfs/µ, Ai(t) = Vi(t)− ui(X (t), t), Cijk = − ∂2ui
∂xj∂xk

Then, by means of Laplace antitransform, we obtain Maxey-Riley equation
provided that u(X (0), 0)−V(0) = 0. The latter represents then a condition of
validity for Maxey-Riley equation. However, when one neglects Basset term
and studies diffusion problems, numerical evidences show that asymptotic
diffusion statistics on a large amount of particles is independent of the initial
velocity, and this initial condition can be ignored. Sometimes analitical
proofs, such as the one will see in Chapter 3, allow to see the independence
of the initial velocity of particles too.

1.C Taylor formula and Central Limit Theorem

We consider the process:

x(t) =

∫ t

0
v(s)ds (1.57)

where the field has a Lagrangian second-order stationary statistics and a
given probability density function. This means that:

〈x(t)〉 = 〈
∫ t

0
v(s)ds〉 = 〈

∫ t+t′

t′
v(s)ds〉 = 〈v〉t

41



As to the variance,

σ(t) ≡ 〈
∫ t

0
ds

∫ t

0
ds′v(s)⊗v(s′)〉 =

∫ t

0
ds

∫ t

0
C(|s−s′|)ds′ =

∫ t

0
ds

∫ t−s

−s
C(|s′|)ds′

Its long-time asymptotics is:

σ(t) ∼t→∞

∫ t

0
ds

∫ t

−s
C(|s′|)ds′ =

∫ t

0
C(|s′|)ds′

∫ t

0
ds+

∫ 0

−t
C(|s′|)ds′

∫ t

−s′
ds

=

∫ t

0
dsC(|s|)(2t− s)

after a variable change s→ −s in the last passage. If we evaluate:

lim
t→∞

d

dt
σ = 2

∫ ∞

0
C(s)ds ≡ 2D(ef) ≡ 2〈v2〉Tc

provided that tC(t) → 0 as t → ∞, where Tc is the integrated correlation
time (tensor) and 〈v2〉 is the root-mean-square velocity. The displacement
variance then:

σ ∼t→∞ 2D(ef)t

having indicated with D(ef) the eddy (or effective) diffusivity. As t→ ∞, if
the correlation function decays sufficiently fast as we supposed, the Central
Limit Theorem applies to the position process x(t). In that case indeed,
after a time t ∼ Tc, the random variables:

∫ Tc

0
v(t)dt, . . . ,

∫ (n+1)Tc

nTc

v(t)dt, . . . (1.58)

can be considered independent, and they will have the same probability
density function owing to the second order stationarity, with the mean value:

∫ Tc

0
〈v(t)〉dt = · · · =

∫ (n+1)Tc

nTc

〈v(t)〉 = · · · = 〈v〉Tc

thanks to the stationarity of the average of the velocity. Besides, its variance
tensor will be:

∫ Tc

0
dt

∫ Tc

0
dt′〈v(t)⊗v(t′)〉 = · · · =

∫ (n+1)Tc

nTc

dt

∫ (n+1)Tc

nTc

dt′〈v(t)⊗v(t′)〉 = . . .

where we have exploited the substitutions t+ nTc → t, t′ + nTc → t′and the
stationarity of the correlation tensor 〈v(t) ⊗ v(t′)〉 = C(|t − t′|). It follows
that the Central Limit theorem applies to the random variables (1.58), and
after a large number of n steps, the process can be considered as a sum over
independent Gaussian processes. This is exactly the same as having a white
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noise – the distributional derivative of Wiener process, which is δ-correlated
in time – whose single time step would play the role of n � 1 time steps
as long as Tc of the process in Eq. (1.57). In particular, if we heuristically
define a large scale T = m∆t = mnTc, with n � 1, the system (1.57) is
equivalent to a white noise in the sense that:

x(T ) =

∫ T

0
v(s)ds →n→∞

√

2D(ef)

∫ T

0
η(s)ds =

√

2D(ef)

∫ T

0
dω(s)

This heuristically justifies the use of multiple scale analysis for chaotic and
stochastic systems we also will perform in the next chapters.

However, if the correlation function does not satisfy tC(t) → 0, or if
the process is not stationary, previous arguments fail and anomalous diffu-
sion can arise. The latter is nomore a Gaussian process, the Central Limit
Theorem not being applicable any longer and σ not being anymore defined .
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Chapter 2

Explicit closure for

eddy-diffusivity fields and

effective large-scale advection

in turbulent transport

2.1 Introduction

Turbulent transport of passive particles and heat is a problem of paramount
importance in a variety of situations ranging from environmental sciences
and engineering to biophysics. Heat-transfer problems in heat exchangers,
gas turbines, and nuclear reactors, pollution dispersal in urban atmospheres
and spore dispersal are a few examples.
It is also important as a playground where analytical methods borrowed
from the realm of statistical mechanics can be successfully exploited in re-
lation to many long-standing issues related, e.g., to closure problems [43],
intermittency [38, 44, 45, 46] and strong anomalous diffusion [16, 19].

In many relevant situations one is not interested to study the dispersion
phenomenon in detail but, rather, to focus the attention on a sub-set of active
degrees of freedom. In fully developed turbulence, for a Prandtl number of
order one, their number diverges as Pe9/4 when the Péclet number, Pe, goes
to infinity. The situation is similar to the well-known Re9/4 divergence of
the number of active degrees of freedom by increasing the Reynolds number,
Re, in hydrodynamic turbulence [58]. Because of the fact that the Péclet
number is often very large (e.g., in the atmosphere it is of the order of 106 or
even larger) the need to focus the attention on the sole large-scale features
of the dispersion phenomenon has, de facto, a practical motivation related
to the prohibitive cost of direct numerical simulations. A similar situation
also happens for the large-scale Navier–Stokes dynamics and it is intimately
related to the old concept of eddy-viscosity [39, 40].
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The focus on the sole large-scale scalar transport must be accompanied by
a proper statistical description of the interactions between scalar field and
velocity in the range of (small) scales not explicitly resolved. These dy-
namical interactions, appearing in the form of beat interactions originated
by the advective term in the advection-diffusion equation [14, 15], are the
physical mechanism at the origin of the well-know eddy-diffusivity concept
[57, 58]. The crucial point is that the eddy-diffusivity idea is intimately re-
lated to the concept of scale separation between advecting velocity and scalar
field. As a matter of fact, this latter property is however absent in many
circumstances where an inertial range of scales continuously extends from
the largest to the smallest scales. This fact poses the natural question on
whether an eddy-diffusivity description may still work with acceptable errors
for the large-scale scalar dynamics even in the absence of scale separation.
Answering this question is one of the concerns of the present chapter.

The requirement of scale-separation was relaxed by [15, 17, 50] where the
advecting velocity was assumed in the form v(x, t) = U (x, t)+u(x, t), with
U being the velocity large-scale component and u are small-scale turbulent
fluctuations. Under this hypothesis, the scalar dynamics was investigated
on the scales of variations of U (but still much larger than those of u). In
the absence of scale separation between U and u, the identification of large
scales and small scales is clearly arbitrary. On the contrary, the situation
becomes clear when the two velocity components, thought in Fourier space,
are separated by a spectral gap. In that ideal case, exact results have been
obtained for the large-scale transport by [15] (on scales comparable to those
which characterize U) on the basis of a perturbative multiple-scale expansion
[48, 53, 47]. [17] and [50] have considered approximate, explicit, expressions
for the renormalized transport coefficients (actually tensor fields, the so-
called eddy-diffusivity tensor) under different limits: U � u by [17] and
U � u by [50].

Our main purpose here is to consider again the general formulation from
[15] with the main aim of quantifying the expected deterioration of the eddy-
diffusivity description in the absence of spectral gap separating the two com-
ponents U and u. The idea is to mimic small-scale turbulent fluctuations
via random, statistically isotropic, homogeneous, stationary and scaling in-
variant fields such that the space/time-dependent eddy-diffusivity field can
be obtained analytically. Scaling invariance is the reminiscence of the well-
known scaling-law behavior of multipoint statistical observables in turbu-
lence [58]. With such an expression for the eddy-diffusivity field we will
address the question related to the quantification of the deterioration of the
eddy-diffusivity description by reducing to zero the spectral gap separating
U and u. Also, we will quantify the importance of the nontrivial correction
to the large-scale advection component identified by [15] and never analyzed
before. Finally, we will compare the accuracy of our closure against other
simple options.
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The chapter is organized as follows. In Sec. 2.2 we recall known results
on the large-scale transport obtained by means of multiple-scale expansions.
These results are the basis on which the present chapter is founded. In
Sec. 2.4 a simple model for the small-scale advection is presented through
which the eddy-diffusivity field and the large-scale effective advection can be
computed analytically. These explicit expressions are presented in Sec. 2.5.
Section 2.6 is devoted to the verification of the accuracy of our expressions
for the eddy-diffusivity field and the large-scale effective advection by vary-
ing the extension of the spectral gap of the carrier flow. Comparison of
the performance of our strategy against other strategies are also presented.
Concluding remarks are presented in Sec. 2.7.

2.2 Known results for the eddy-diffusivity field

In this section we formulate the large-scale problem of a passive scalar
field and report known results obtained by [15] exploiting the multiple-scale
expansion. These results are the foundation of the present chapter. Let us
start our analysis from the equation ruling the evolution of a passive scalar
field, θ(x, t), in an incompressible velocity field v:

∂tθ(x, t) + v · ∂θ(x, t) = D0∂
2θ(x, t) , (2.1)

where D0 is the molecular diffusivity.
The corresponding Lagrangian point of view is:

dx

dt
= v(x(t), t) +

√

2D0 η(t) (2.2)

where x(t) is the particle position at time t and η is a Gaussian white noise.
Let us now recast the velocity field as a superposition of its large-scale

component, denoted by U , and its small-scale counterpart, u. This latter
mimics small-scale turbulent fluctuations. The two components are assumed
to be well-separated in scale, i.e., if one Fourier-transforms both components
and looks at the corresponding energy spectra, the two sets of associated
wavenumbers do not overlap (see Fig. 2.1 for a sketch). The scale separation
is controlled by the dimensionless parameter ε = qL/ql. Large gaps thus
correspond to small ε. A vanishing extension of the gap corresponds to
ε = 1. Our claim is that the scale separation in the velocity domain
is also the scale separation one needs in the scalar dynamics for an eddy-
diffusivity field to emerge. This claim was actually the main result of [15]:
by formal multiple-scale expansion, it has been shown that when the scalar
dynamics reaches temporal/spatial scales of the order of those of U , an
effective transport equation arises with a tensor eddy diffusivity. Note that
we have introduced the concept of scale separation both in term of spatial
scales and in term of temporal scales. This turns out to be possible in view
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logE(q)

log q

∝ q−5/3

large-scale velocity

small-scale velocity

U(X,T)

u(x, t)

qL ql

spectral gap

Figure 2.1: Schematic representation of energy containing eddies in the pres-
ence of spectral gap separating the large-scale velocity component from the
small-scale component. A Kolmogorov q−5/3 spectral behavior is assumed
for the sake of example. Capital letters for spatial coordinates are used
following the multiple-scale expansion jargon where they denote large scales.

of the fact that turbulence decay-times are indeed related to spatial scales
via sweeping effects [67].

In the multiple-scale expansion spirit, the large-scale character of U is
encoded in its dependence on a new set of ‘slow’ variables X and T . These
latter are related to the usual set of ‘fast’ variables by X = εx and T = ε2t
[14] with the prescription to be treated as independent. The main aim is
to determine the large-scale dynamics of θ on spatial/temporal scales com-
parable to those of U . We will denote by Θ this coarser scalar field and,
following [17], we define its dynamics as ‘pre-asymptotic’ to distinguish it
from the asymptotic transport which corresponds to the large-scale dynam-
ics of θ on spatial/temporal scales much larger than those of U . This latter
regime is diffusive and fully controlled by an eddy-diffusivity tensor [14].

For the pre-asymptotic case, the main focus of the present chapter, naive
arguments would suggest a simple (wrong) conclusion: U gives the advection
contribution in the large-scale equation for θ while (eddy) diffusion emerges
from small-scale interactions between θ and u. A detailed analysis [15] actu-
ally shows that such a conclusion is doubly wrong : the large-scale velocity,
U , is indeed not responsible for the sole large-scale advection, but it also
enters into the renormalized diffusivity; the interaction between small scales
gives rise not only to the expected eddy-diffusivity transport but also to an
additional large-scale advection contribution.
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2.3 Multiple-scale analysis

The starting point of our analysis is the equation ruling the evolution of
a passive scalar field, θ(x, t), in an incompressible velocity field v:

∂tθ(x, t) + v · ∂θ(x, t) = D0∂
2θ(x, t) . (2.3)

In many situations of interest (e.g., in geophysics), v is active in a contin-
uous of scales from the largest to the smallest where, soon or later, viscous
effects will dissipate all fluctuations. Frequently, in real applications, one is
interested to study the scalar dynamics on large scales where the advecting
velocity is however still relevant (i.e., on such wave-numbers the velocity is
appreciably non-zero). Following Refs. [15, 17], the simplest way to treat a
similar situation is to decompose v as the sum of u(x, t) and U(x, t). The
former is assumed to vary on what we call “small scales” (i.e. wave-numbers
of O(ql)) while the latter evolves on “large scales” having wave-numbers of
O(qL), the same at which we aim at investigating the scalar dynamics, and
ε = qL/ql.
Naive arguments would suggest a simple (wrong) conclusion: U(x, t) gives
the advection contribution in the large-scale equation for θ while the renor-
malized diffusion coefficient emerges from small-scale interactions between
θ and u. A detailed analysis actually shows that such conclusion is wrong:
the large-scale velocity, U(x, t), is not responsible for the sole large scale
advection, but it also enters in the renormalized diffusivity.
An heuristic argument in favor of such a mechanism is provided in Ref. [17].
Let us now recall the formal analysis presented in [15, 17] and decompose
v as v(x, t) ≡ U(x, t) + u(x, t) where U(x, t) and u(x, t) are assumed to
be periodic in boxes of sides O(ε−1) and O(1) (remember that ε = qL/ql),
respectively. The technique we are going to describe can be extended with
some modifications to handle the case of a random, homogeneous and sta-
tionary velocity field. We will exploit this fact when we will extend our
results to deal with turbulent velocity fields.
Our focus is on the large-scale dynamics of the field θ(x, t) on spatial scales
of O(ε−1).
In the spirit of multiple-scale analysis, we introduce a set of slow variables
X = εx, T = ε2t and τ = εt in addition to the fast variables (x, t). The
scaling of the times T and τ are suggested by physical reasons: we are search-
ing for diffusive behavior on large time scales of O(ε−2) taking into account
the effects played by the advection contribution occurring on time scales of
O(ε−1).
The prescription of the technique is to treat the variables as independent. It
then follows that

∂i 7→ ∂i + ε∇i ; ∂t 7→ ∂t + ε∂τ + ε2∂T , (2.4)

u 7→ u(x, t) ; U 7→ U (X, T ) (2.5)

49



where ∂ and ∇ denote the derivatives with respect to fast and slow space
variables, respectively. The solution is sought as a perturbative serie

θ(x, t;X , T ; τ) = θ(0) + εθ(1) + ε2θ(2) + . . . , (2.6)

where the functions θ(n) depend, a priori, on both fast and slow variables. By
inserting (2.6) and (2.4) into (2.1) and equating terms having equal powers
in ε, we obtain a hierarchy of equations in which both fast and slow variables
appear. The solutions of interest to us are those having the same periodicities
as the velocity field, u(x, t).

By averaging such equations over the small-scale periodicity (here de-
noted by 〈·〉), a set of equations involving the sole large-scale fields (i.e.
depending on X, T and τ) are easily obtained. Obviously, such equations
must be solved recursively, because of the fact that solutions of a given order
appear as coefficients in the equations at the higher orders. Let us show in
detail this point.

It is not difficult to verify that the equations at order ε and ε2 read
[15, 17]:

O(ε) :
∂tθ

(1) + (v · ∂) θ(1) −D0 ∂
2θ(1) =

−(v ·∇)θ(0) − ∂τθ
(0) (2.7)

O(ε2) :

∂tθ
(2) + (v · ∂) θ(2) −D0 ∂

2θ(2) =

−∂T θ(0) − (v ·∇)θ(1) +D0∇2θ(0)

+2D0(∂ ·∇)θ(1) − ∂τθ
(1) .

(2.8)

The linearity of (2.7) permits to search for a solution in the form

θ(1)(x, t;X , T ; τ) = 〈θ(1)〉(X , T ; τ)

+ χ(x, t;X , T ) ·∇θ(0)(X, T ; τ) , (2.9)

where θ(0) depends on the sole large-scale variables as in Ref. [14]. Plugging
(2.9) into the solvability condition for (2.8), one obtains the equation

∂T θ
(0) + (U ·∇)〈θ(1)〉+ ∂τ 〈θ(1)〉 = ∇i

(

Dij∇jθ
(0)
)

(2.10)

where
Dij(X , T ) = δijD0 − 〈uiχj〉 (2.11)

is a second-order tensorial field and χ(x, t;X, T ) has a vanishing average
over the periodicities and satisfies the following equation:

∂tχj + [(u+U) · ∂]χj −D0 ∂
2χj = −uj . (2.12)

Note that, when U is not a pure mean flow but depends on X and T ,
the equation (2.12) must be solved for each value of X (and eventually T ).
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From Eq. (2.10) and from the solvability condition of Eq. (2.7),

∂τ 〈θ(0)〉+ (U ·∇) 〈θ(0)〉 = 0, (2.13)

one obtains the equation for the large-scale field Θ defined as: Θ ≡ 〈θ(0)〉+
ε〈θ(1)〉:

∂tΘ+ (U · ∂)Θ = ∂i (Dij∂jΘ) (2.14)

where the usual variables x, t are used.

The important point to note is that Dij is in general neither symmetric
nor positive defined. On the contrary, it is easy to show [15], that DE

ij ≡
(Dij +Dji)/2 is (obviously) symmetric and positive defined. Its expression
can immediately be obtained from (2.12) in term of the sole auxiliary field :

DE
ij = D0 [δij + 〈(∂pχi)(∂pχj)〉] . (2.15)

In terms of DE
ij and DA

ij ≡ (Dij −Dji)/2, the pre-asymptotic equation (2.14)
takes the form

∂tΘ+ ∂ · (UEΘ) = ∂i∂j
(

DE
ijΘ
)

. (2.16)

where

UE
i (x, t) ≡

[

Ui(x, t) + ∂jD
E
ij(x, t) + ∂jD

A
ij(x, t)

]

(2.17)

is an effective compressible advecting velocity [53]. Advection by compress-
ible velocities have been investigated, e.g., in Refs. [41] and [49].

In plain terms, the pre-asymptotic regime is fully described by the fol-
lowing equations:

∂tΘ+U · ∂Θ = ∂i (Dij∂jΘ) (2.18)

or, in the equivalent form,

∂tΘ(x, t) + ∂ ·
(

UEΘ
)

= ∂i∂j
(

DE
ijΘ
)

(2.19)

where Θ denotes the scalar field varying on pre-asymptotic scales and

UE
i ≡ Ui + ∂jDij (2.20)

DE
ij ≡

Dij +Dji

2
. (2.21)

The eddy-diffusivity, Dij(x, t), is a tensor field in general neither symmet-
ric nor positive definite. Its symmetric part (which is also positive definite)
contributes to the diffusion process while both the symmetric and the anti-
symmetric parts enter, in general, into the effective advection velocity UE

which turns out to be compressible [49, 41]. The eddy-diffusivity, often
associated to the sole small-scale activity, here explicitly depends on the
large-scale advection U . This fact causes the space/time dependence in the
eddy-diffusivity.
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The Eulerian view for the large-scale dynamics given by (2.19) is equiv-
alent to the Lagrangian description:

dx(t)

dt
= UE(x(t), t) + σ(x(t), t)η(t) , (2.22)

where σ is the unique positive-definite solution of the matrix equationDE
ij(x, t) =

1
2 (σip(x, t)σjp(x, t)). No explicit expression for Dij(x, t) is available in gen-
eral. A perturbative strategy has been carried out by [17] to obtain an ap-
proximate explicit expression for Dij(x, t) in the limit of strong large-scale
advection. The opposite limit has been analyzed by [50].

The complexity of the problem is hidden inside the auxiliary equation
through which DE

ij(x, t) can be determined. The equation for the auxiliary
field, χ, reads:

∂tχj +
(

u+U(X, T )
)

·∂χj −D0 ∂
2χj = −uj , (2.23)

from which the expression for the eddy-diffusivity tensor follows:

Dij(X, T ) = δijD0 − 〈uiχj〉 . (2.24)

In Eqs. (2.23)–(2.24), brackets denote averages on the small-scale statistics.
An explicit, parametric, dependence on slow variables does appear in the
eddy-diffusivity which becomes a large-scale varying field. To obtain the
eddy-diffusivity tensor field, Eq. (2.23) must be solved for each value of the
slow variables thus making the problem highly complex and costly.

2.4 A simple model for the small-scale velocity fluc-

tuations

As we have already emphasized in the last section, the exact results from
the multiple-scale expansion leading to the expression for the eddy-diffusivity
tensor field (2.24) are intrinsically formal. To obtain the eddy-diffusivity one
has indeed to know the small-scale velocity. Moreover, the space/time de-
pendence of the eddy-diffusivity tensor implies that one has to numerically
solve the auxiliary differential problem for all space and time collocation
points. This is clearly a daunting task especially in relation to applications,
e.g. related to the study of pollutant dispersion in the atmospheric environ-
ment.
To overcome these problems, our idea here is to build a stochastic model for
small-scale velocity fluctuations mimicking relevant features of small-scale
turbulence which, at the same time, allows one to obtain an explicit expres-
sion for the eddy-diffusivity tensor field. The statistical properties we require
for our small-scale velocity field are: isotropy, stationarity, homogeneity and
scale-invariance of two-point statistics. This latter property is equivalent to
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imposing a power-law behavior for the kinetic energy spectrum, e.g., à la
Kolmogorov.
There are of course infinitely many possibilities to generate a stochastic field
with the required statistical properties. Conversely, the requirement of hav-
ing an explicit expression for the eddy-diffusivity tensor field leads to the
exploitation of a specific class of velocity fields: the so-called parallel flows.
Indeed, for parallel flows, in the auxiliary problem (2.23) the advective term
disappears and explicit solutions can be obtained. In way of example, this
class of flows was exploited by [64] to investigate interference phenomena in
scalar transport.

Focusing henceforth on two dimensions, the stream function of our small-
scale velocity field is sought as a superposition of N independent randomly
oriented parallel flows (here referred to as spatial modes) as:

Ψ(x, t;x(0)) =
N
∑

i=1

Ai(x(0), t)

qi
sin[qin(x(0)) · x+ θi(x(0))] (2.25)

where x is the spatial coordinate, x(0) is meant to stress that we choose
independent random processes for each space location (in the following x(0)
will be the initial conditions of Lagrangian particles through which we will
investigate the transport problem; each x(0) will correspond to a given real-
ization of the random process), Ai(x(0), t) and qi are the velocity amplitude
and wavenumber modulus associated to the spatial mode i. Finally, n(x(0))
is the direction angle associated to the initial condition x(0) and θi(x(0)) is
the phase of the i-th mode. Direction angles and phases are random variables
kept constant along each realization and uniformly distributed in [0, 2π).

Following [35], where relative dispersion properties were analyzed via
multiscale kinematic velocity field, we distribute spatial modes according to
a given density factor (here

√
2): qi+1 =

√
2qi. Wavelengths follow from

the usual definition λi = 2π/qi. It has been shown in the previous chapter
[65] that such a distribution guarantees a good description of the continuous
limit qi+1 − qi → 0.

To ensure a nontrivial temporal decay of two-point velocity statistics,
velocity amplitudes can be generated via the Ornstein-–Uhlenbeck process

dAi

dt
= −Ai

τi
+

√

2Bi

τi
ηi (2.26)

where η is a zero-mean Gaussian white noise process with 〈ηi(t)ηj(t′)〉 =
δijδ(t− t′).

It is easy to verify from (2.26) that the following properties hold:

〈Ai(x(0), t)〉 = 0

〈A2
i (x(0), t)〉 = Bi (2.27)

〈Ai(x(0), t)Ai(x(0), t
′)〉 = Bie

− |t−t′|
τi ,
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showing that the above process is thus stationary. From the numerical ev-
idences reported by [67], decorrelation times τi can be related to the large-
scale sweeping via the simple relation τi = α/(Urmsqi) where α is a free
parameter (set equal to unity in the present study), and Urms is the root
mean square velocity.

From the stream-function (2.25) the expression for the velocity field be-
comes a superposition of independent normal modes u =

∑N
i=1 ui. Namely,

u1 =

N
∑

i=1

Ai(x(0), t) sin[φ(x(0))]

× cos{qi cos[φ(x(0))]x + qi sin[φ(x(0))]y + θi(x(0))}
(2.28)

u2 = −
N
∑

i=1

Ai(x(0), t) cos[φ(x(0))]

× cos{qi cos[φ(x(0))]x + qi sin[φ(x(0))]y + θi(x(0))}

where φ(x(0)) is the angle between the x-direction and the wavenumber
direction. This latter is the same for each mode, i, and only changes for
different realizations. Note that because of the fact that the velocity field
is generated along each particle path, there is thus for each value of the
wavenumber modulus qi just one mode direction. However, because of the
fact that each particle experiences independent random processes (in partic-
ular, different random angles, φ), the fact that we follow many particles to
study the dispersion phenomenon actually implies that many directions for
each value of qi are actually present, as in real turbulence.
Let us now show that our flow field is indeed homogeneous, isotropic and
stationary. To do that, let us expand the velocity correlation function and
exploit independence of random processes associated to different modes:

〈u(x, t) · u(x′, t′)〉 =
N
∑

i=1

〈Ai(x(0), t)Ai(x(0), t
′)〉 ×

〈cos[qin(x(0)) · x+ θi(x(0))] cos[qin(x(0)) · x′ + θi(x(0))]〉 .
(2.29)

By means of well-known trigonometric identities, the above expression can
be recast in the form:

〈u(x, t) · u(x′, t′)〉 =
N
∑

i=1

1

2
〈Ai(x(0), t)Ai(x(0), t

′)〉 ×
{

〈cos[qin(x(0)) · (x+ x′) + 2θi(x(0))]〉 + 〈cos[qin(x(0)) · (x− x′)]〉
}

.

(2.30)
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The phase average can be computed explicitly because phases are uniformly
distributed:

〈cos[qin(x(0)) · (x+ x′) + 2θi(x(0))]〉 =
(2.31)

=
1

2π

∫ 2π

0
dθi cos[qin(x(0)) · (x+ x′) + 2θi] = 0 .

Taking into account Eq. (2.27), we arrive to the final result:

〈u(x, t) · u(x′, t′)〉 =
N
∑

i=1

Bi

2
e
− |t−t′|

τi 〈cos[qin(x(0)) · (x− x′)]〉 , (2.32)

from which the stationarity and homogeneity clearly follow. Finally, the
flow in Eq. (2.28) is also isotropic, due to our choice to consider randomly
oriented uniformly distributed wavenumbers.

It now remains to choose Bi in a way to obtain the desired kinetic energy
spectrum. To do that, we recall the well-known definition of isotropic kinetic
energy spectrum:

Ekin ≡ 1

2
〈|u(x, t)|2〉 =

∫ ∞

0
dq E(q) ∼

N
∑

i=1

E(qi)δqi (2.33)

where δqi = qi+1−qi and the left-hand-side of this relationship easily follows
from Eq. (2.28):

1

2
〈|u(x, t)|2〉 =

N
∑

i=1

〈A2
i 〉
4

=
N
∑

i=1

Bi

4
. (2.34)

By simple identification one ends up with:

E(qi)δqi =
1

4
Bi Ekin =

1

4

N
∑

i=1

Bi . (2.35)

In the specific case of a two-dimensional velocity field obeying, in way of
example, the equivalent of the Kolmogorov 1941 theory, E(q) = Cε2/3q−5/3

(valid for two-dimensional turbulence in the inverse energy cascade [42]),
where C is the Kolmogorov constant and ε denotes the energy dissipation

rate, one has Bi = 4Cε2/3q
−5/3
i δqi. Different relationships can be trivially

obtained starting from different assumptions for the spectrum.
Assuming, as in Fig. 2.1, that small-scale turbulence is active for q > ql,

one can simply express Cε2/3 in terms of the turbulent kinetic energy E>
kin ≡

∫∞
ql
E(q) dq:

Cε2/3 =
2

3
E>

kinq
2/3
l . (2.36)

Note that E>
kin is easily accessible in many CFD models (both RANS and

LES) which use a closed equation for E>
kin to construct their closure models.

55



2.4.1 The model for the large-scale advection

To complete the definition of our flow model, the large-scale component,
U , has to be defined. This latter is obtained in terms of the same model for
the small-scale fluctuations except for the fact that we erased the dependence
on x(0) in Ai, φi and θi. This choice allows us to maintain an explicit
dependence on large-scale space coordinates in the eddy-diffusivity tensor
field. In plain words, we generate only one realization for each large-scale
mode i of the processes Ai(t), φi ( here dependent on the i-th mode unlike
what happens for the small-scale velocity component) and θi (here set to
zero), which will be the same for every particle. The flow U is therefore:

U1 = U0
1 +

M
∑

i=1

Ai(t) sin(φi) cos[qi cos(φi)x+ qi sin(φi)y]

(2.37)

U2 = U0
2 −

M
∑

i=1

Ai(t) cos(φi) cos[qi cos(φi)x+ qi sin(φi)y]

where M is the number of active wavenumbers qi with qi < qL and U0 is the
flow mean component. Note that the randomness of the direction angle φi
guarantees that U −U0 is zero-mean valued, since the flow is a 2π−periodic
function with respect to the angles, and

∫ π

0
dφi sin(φi) cos[qi cos(φi)x+ qi sin(φi)y] +

+

∫ 2π

π
dφi sin(φi) cos[qi cos(φi)x+ qi sin(φi)y] = 0 ,

(2.38)
∫ π

0
dφi cos(φi) cos[qi cos(φi)x+ qi sin(φi)y] +

+

∫ 2π

π
dφi cos(φi) cos[qi cos(φi)x+ qi sin(φi)y] = 0 ,

(2.39)

having done the substitution φ→ φ− π in the two integrals from π to 2π.

To conclude this section, let us make a comment on Urms. The total
kinetic energy is obtained by averaging on both the small and large scales.
We will keep the bracket notation for the small scale ensemble mean value,
whereas we will use an overline to indicate the large scale mean value, which
we can obtain by means of a space-time average (ergodicity hypothesis),
recalling that the amplitude processes are realizations of Eq. (2.26) and
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then they fulfill Eqs.(2.27). The result is easily as follows:

Ekin =
1

2
〈(u+U) · (u+U)〉 = (2.40)

=
1

2

N
∑

i,j=1

〈ui · uj〉+
1

2

M
∑

i,j=1

U i ·U j +
1

2
|U0|2 = E>

kin + E<
kin

which follows from the fact that amplitudes of different modes are uncorre-
lated and where we have defined

E<
kin =

|U0|2
2

+

M
∑

i=1

Bi

4
. (2.41)

It then follows that the velocity root-mean square reads

Urms ≡
√

2Ekin =
√

2(E<
kin + E>

kin) . (2.42)

The fact that U0 explicitly enters in Urms, thus acting as a sweeping effect
in the same ways as large eddies do, is a consequence of our choice not to
assume Galilean invariance. This latter symmetry is indeed often broken
in the presence of realistic boundary conditions, e.g. those encountered in
environmental problems.

2.5 Explicit expression for the eddy-diffusivity field

To obtain the eddy-diffusivity field associated to the flow field defined
in Sec. 2.4, one can proceed along two different ways. One is based on
the Eulerian view and follows from the application of (2.24). The second
possibility is to start from the definition of eddy-diffusivity in Lagrangian
terms and proceed with the calculation in this framework. We decided to
follows the second option and we provide here some details of the calculation
which, at the very end, will lead to an explicit expression for both the eddy-
diffusivity tensor and the effective large-scale advection defined in (2.20).

The starting point is the well-known definition of eddy-diffusivity in La-
grangian terms:

Dαβ(U) = lim
t→∞

1

2

d

dt
〈(xα(t)− 〈xα(t)〉)(xβ(t)− 〈xβ(t)〉)〉 (2.43)

where brackets denotes averages with respect to the random small-scale ve-
locity statistics and xα(t) defines a particle trajectory ruled by the Langevin
equation

dx(t)

dt
= U(X(T ), T ) + u(x(t), t) . (2.44)
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From now on we neglect the molecular diffusivity as customary when study-
ing transport in turbulent (chaotic) environment and adopt the convection
that Greek indexes are used for vector components while Latin indexes select
different normal modes. As already said, capital letters for spatial coordi-
nates originate from the multiple-scale jargon and are meant to stress that
U(X , T ) evolve on scales much larger than those of u. The space/time de-
pendence in U(X , T ) will thus be considered as parametric. Physically, this
amounts to saying that in the transport process, particles see a constant
large-scale advection for the entire duration of the renormalization stage
associated to the small-scale dynamics.

Because of the fact that the spatial modes involved in (2.28) are mutually
uncorrelated and statistically homogeneous, we can proceed by analyzing the
transport process for each single mode and then adding all contributions.
This interesting result is reported in Appendix 2.A.

The starting point is to rotate coordinates in a way to have the wavenum-
ber aligned with the x-axis. This is easily done in terms of suitable rotation
matrices Rαβ(φ(x(0))), x

′
α = Rαβ(φ(x(0)))xβ with an angle such that in the

new coordinate system n′ = Rn = (1, 0). Recalling that for a matrix belong-
ing to the rotation group in two dimensions, SO(2,R), one has R11 = R22

and R12 = −R21, the expression for the velocity field in the rotated system
is easily obtained:

u′i 1(x
′, y′, t) = 0

(2.45)

u′i 2(x
′, y′, t) = −Ai(x

′(0), t) cos[qix
′ + θi(x(0))] .

For each normal mode u′
i, in its new reference frame, the equation of motion

turns out to be (omitting for the sake of brevity dependence on large-scale
variables in U ′):

dx′i
dt

= u′
i(x

′
i(t), t) +U

′ (2.46)

where U ′ = RU . Thus the solution for the i-th mode is:

x′i = x′(0) + U ′
1t

(2.47)

y′i = y′(0) + U ′
2t−

∫ t

0
dt′Ai(x

′(0), t′) cos[qi(x
′(0) + U ′

1t
′) + θi(x(0))]

Straightforwardly, only Di 22 ≡ 〈(y′i(t)−〈y′i(t)〉)2〉 is non zero in this new
coordinate system. From Eq. (2.27), it follows that:

〈y′i〉 = y′(0) + U ′
2t . (2.48)
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Exploiting well-known trigonometric identities, the expression for Di 22

reads:

Di 22 =
1

4

d

dt

∫ t

0
dt′
∫ t

0
dt′′〈Ai(t

′)Ai(t
′′)〉〈cos[qiU ′

1(t
′ − t′′)] +

(2.49)

+cos[qi(2x
′(0) + U ′

1(t
′ + t′′)) + 2θi]〉

where we have exploited the fact that Ai and θi are independent random
processes together with the properties given by (2.27).
The phase average inside the above integral can be computed explicitly be-
cause phases are uniformly distributed:

〈cos[qi(2x′(0) + U ′
1(t

′ + t′′)) + 2θi]〉 =
(2.50)

=
1

2π

∫ 2π

0
dθi cos[qi(2x

′(0) + U ′
1(t

′ + t′′)) + 2θi] = 0 ,

from which, after simple manipulations and exploiting again (2.27), expres-
sion (2.50) becomes:

D′
i 22 = lim

t→∞

∫ t

0
dt′Bi

e
− |t′−t|

τi

2
cos[qiU

′
1(t

′ − t)] =
Bi

2

τi

τ2i q
2
iU

′
1
2 + 1

.(2.51)

The effect of the large-scale velocity at the denominator always causes a
reduction of the eddy diffusivity.
The last step is to go back to the original coordinate system for each normal
mode remembering that n′ = (1, 0) and thus U1 = n′ · U′ = n · U. We
also have to sum all contributions coming from different modes i (see again
Appendix 2.A) and average over the angular directions:

D11 =
N
∑

i=1

〈D′
i 22R

2
21〉 =

N
∑

i=1

Bi

2
〈 τi sin

2[φ]

τ2i q
2
i (n(φ) ·U)2 + 1

〉

D12 =

N
∑

i=1

〈D′
i 22R21R11〉 = −

N
∑

i=1

Bi

2
〈 τi sin[φ] cos[φ]

τ2i q
2
i (n(φ) ·U )2 + 1

〉

D22 =

N
∑

i=1

〈D′
i 22R

2
22〉 =

N
∑

i=1

Bi

2
〈 τi cos

2[φ]

τ2i q
2
i (n(φ) ·U)2 + 1

〉 .

(2.52)

It is worth recalling that D12 = D21 since R22 = R11. Eventually, the
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angular averages give rise to the following three integrals:

∫ 2π

0

sin2 φdφ

τ2i q
2
i (U1 cosφ+ U2 sinφ)2 + 1

−
∫ 2π

0

sinφ cosφdφi
τ2i q

2
i (U1 cosφ+ U2 sinφ)2 + 1

∫ 2π

0

cos2 φdφ

τ2i q
2
i (U1 cosφ+ U2 sinφ)2 + 1

.

(2.53)

The three integrals involved in the above expressions can be evaluated ex-
actly. This is the very last step to obtain the explicit expression of the eddy
diffusivity field. The final result reads:

D11 =
U2
rms

α2

[

α2

U2
rms

U2
1 (U

2
2 + U2

1 ) + (U2
2 − U2

1 )

√

α2

U2
rms

(U2
1 + U2

2 ) + 1 + U2
1 − U2

2

]

×

[
√

α2

U2
rms

(U2
1 + U2

2 ) + 1(U2
1 + U2

2 )
2

]−1 N
∑

i=1

Bi

2
τi

(2.54)

D22 =
U2
rms

α2

[

α2

U2
rms

U2
2 (U

2
2 + U2

1 ) + (U2
1 − U2

2 )

√

α2

U2
rms

(U2
1 + U2

2 ) + 1 + U2
2 − U2

1

]

×

[
√

α2

U2
rms

(U2
1 + U2

2 ) + 1(U2
1 + U2

2 )
2

]−1 N
∑

i=1

Bi

2
τi

(2.55)

D12 =
U2
rms

α2
U2U1

[ α2

U2
rms

(U2
2 + U2

1 )− 2

√

α2

U2
rms

(U2
1 + U2

2 ) + 1 + 2
]

×

[

√

α2

U2
rms

(U2
1 + U2

2 ) + 1(U2
1 + U2

2 )
2
]−1

N
∑

i=1

Bi

2
τi . (2.56)

In tensorial form, the above expressions can be written as:

Dβγ =

U2
rms

α2

[

α2

U2
rms

|U|2UβUγ + (|U|2 δβγ − 2UβUγ)
(√

α2

U2
rms

|U|2 + 1− 1
)]

√

α2

U2
rms

|U|2 + 1 |U|4

N
∑

i=1

Bi

2
τi

(2.57)
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where it is now evident how the effect of the large-scale velocity acts to
renormalize the bare correlation time. Note that in the limit U → 0 one
obtains the ‘bare’ diffusivity whose entries are D11 = D22 =

∑N
i=1

Biτi
4 and

D12 = 0.

To conclude this section it is worth remarking that expressions similar to
(2.57) can also be derived in three dimensions. Their final form, toghether
with a sketch of the derivation, is reported in Appendix 2.C).

2.5.1 The effective advecting velocity

To determine the effective advection field (2.20) one has to take the di-
vergence of Dαβ from the explicit expressions (2.54-2.56). This can be easily
done via chain rule for derivatives, once returned to the original variables
x, t.
Recalling that Dαβ =

∑N
p=1Dp αβ, one arrives at:

∂Dαβ

∂xβ
=

N
∑

p=1

∂Dp αβ

∂Uγ

∂Uγ

∂xβ
. (2.58)

The resulting expressions for
∂Dp αβ

∂Uγ
are reported in Appendix 2.B together

with the velocity gradient tensor.

2.6 Numerical study

The main aim of this section is to verify the reliability of our expressions
for the eddy-diffusivity and effective advection by varying the extension of
the spectral gap depicted in Fig. 2.1. The limiting case will be a situation
where the spectral gap reduces to zero, as in many situations of interest. As
a further objective, in the absence of spectral gap, we will perform a com-
parison between our model performances and other possible simpler choices
to describe the effect of the unresolved small-scale motion.

For these purposes we perform kinematic simulations mimicking homoge-
neous, isotropic and stationary turbulence in two dimensions accompanied
by Lagrangian simulations. Kinematic simulations are a widely used tool
to investigate turbulent dispersion both from the point of view of relative
dispersion and absolute dispersion. Interested readers can refer, in way of
example, to [51] and [52], and references therein .

Once fully resolved flow fields are available, it is easy to isolate their
large-scale components U (i.e. active for q < qL) and small-scale compo-
nents u (i.e. active for q > ql). The extension of the spectral gap will be a
free parameter. In the following we will set ε = 1 and ql = 2π which fix the
dimensionless form of our model.
The total field U +u we obtain in this way will be the background in which
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a puff of N seeded particles will evolve according to the Langevin equation
(2.2).
The evolution given by (2.2) in terms of the fully resolved velocity field is
what we can define as our “exact” evolution. One the other hand, retaining
the sole large-scale flow component U , we can easily calculate the eddy-
diffusivity field and the effective advection. Through these fields the evolu-
tion equation of the same initial puff of seeded particles can be determined
via Eq. (2.22) and properly compared with the “exact” puff evolution.

For testing purposes, let us start by considering the simpler situation
where the velocity field is of the form U + u with U constant in space
and time and u built in terms of N=5 modes in Eq. (2.28) for q > ql.

For i = 1, · · · , 5 we assume Bi = 4Cε2/3q
−5/3
i , with C = 1.4 (remember

that ε = 1 and ql = 2π). U is (20, 3) and Urms ∼ 20.3. This means
that the maximum and minimum decay times of the small-scale modes are
τmax ∼ 0.008 and τmin ∼ 0.002, respectively. Because of the fact that no
large-scale velocity component is present here (we only have the mean field
component), a pure diffusive regime is expected for times sufficiently larger
than τmax ∼ 0.008. The expression for the eddy-diffusivity tensor follow
from Eqs. (2.54)-(2.56) from which we have: 〈(xα − 〈xα〉)(xβ − 〈xβ〉)〉 =
2Dαβt, with D11 = 0.0051, D22 = 0.0037, D12 = 0.00022. The numerical
results obtained from the integration of the Langevin equation with the fully
resolved velocity field are shown in Fig. 2.2. Averages are performed by
following 9× 104 particles and their initial position are uniformly spread on
a unit square. The resulting time behavior of 〈(xα − 〈xα〉)(xβ − 〈xβ〉)〉 from
the numerical integration of the Langevin equation is fitted with the function
at + b for t > τmax. The best fit curves agree with our model predictions
with relative errors of ∼ 2% (for D11), 1% (for D22) and 8% (for D12).

2.6.1 Observables to measure model reliability

Let us now pass to analyze the general situation in the presence of a
large-scale velocity component. A possible way to assess the performances
of our eddy-diffusivity and effective advection model for the evolution of a
puff of initially seeded particles is to compare (against the “exact” evolution)
different absolute dispersion observables associated to the puff as a function
of time. Here we focus on different moments of particle displacements from
their initial positions in the frame of reference moving with the mean flow
U0. In formulae, we will compute

Mp(t) = 〈|x− x(0) −U 0t|p〉 (2.59)

for different p. Another observable we will consider is the probability density
function, P , of ∆(t) ≡ |x − x(0) − U0t| at different times. This latter
quantity encodes both large and small fluctuations of particle displacements
thus giving a complete description of the absolute dispersion phenomenon.
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Figure 2.2: Particle variance ζαβ = 〈(xα − 〈xα〉)(xβ − 〈xβ〉)〉 vs time in a
small-scale flow plus a constant component. Continuous lines represent the
theoretical slopes; symbols represent the numerical results for ζ11 (×), ζ12
(+), and ζ22 (∗).

2.6.2 Results and discussions

Let us start to investigate the reliability of our closure model based on
the eddy-diffusivity tensor field (2.54)–(2.56) and effective advection (2.58)
by varying the extension of the spectral gap depicted in Fig. 2.1. In Fig.
2.3 we report the moment M2(t) defined by (2.59) for the “exact” evolution
(continuous line) and for our closure model (dotted line) for ε = qL/ql = 1
(lower panel), corresponding to the absence of spectral gap, and ε = 0.125,
upper panel. The small-scale field has N = 14 modes, while the large-scale
component has one active mode (i.e. M = 1). The mean field component is
U0 = (4, 0).
As one can see from Fig. 2.3, the two descriptions are almost indistinguish-
able already for ε = 0.125. For ε = 1 our closure works reasonably well and
captures the relevant feature of the exact curve.

Note that at the final observation time the mean particle displacement is
of order one and thus comparable to 2π/qL = 1 (case corresponding to ε = 1)
and smaller than 2π/qL = 8 (case corresponding to ε = 0.125). This tells
us that we are observing the dispersion phenomenon in the pre-asymptotic
regime. In terms of typical times, the largest small-scale velocity correlation
time τmax ∼ 0.035 is four times smaller than the observation time t = 0.125
which also justifies a description based on the eddy-diffusivity.

To quantitatively estimate the discrepancy between the two descriptions
we have computed the relative errors for different values of ε. Errors have
been defined in terms of the L2-norm ||f ||2L2 ≡

∫

dt|f(t)|2 from which the
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Figure 2.3: M2 vs time, following the exact evolution (continuous red line)
and our description with eddy diffusivity plus effective velocity (dotted green
line). In the upper panel, ε = 0.125, and Urms = 4.8. In the lower panel,
ε = 1 and Urms = 4.5.
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Figure 2.4: L2-relative errors Dp(ε)/Dp(1) (see text) for different orders of
the moment p as a function of the gap extension ε. Full circles refer to
p = 1/2, × to p = 1, empty circles to p = 2, empty squares to p = 3, and full
squares to p = 4. Urms = 4.5. The normalizing factors Dp(1) are: D1/2(1) =
0.34, D1(1) = 0.12, D2(1) = 0.019, D3(1) = 0.0035, D4(1) = 0.00072.

relative error follows from the definition of relative functional distance:

Dp(ε) ≡
||Mp(ε)−ME

p (ε)||2L2

||Mp(ε)||L2 ||ME
p (ε)||L2

. (2.60)

In this expression ME
p (ε) refers to the exact evolution while Mp(ε) corre-

sponds to our closure.

The results are summarized in Fig. 2.4 where Dp(ε)/Dp(1) is shown for
different values of ε. As expected, the smallest errors are for p = 2 corre-
sponding to the errors calculated on second-order moments. It is interesting
to remark that also p 6= 2 provide satisfactory results. This is probably
related to the quasi-Gaussian character of the dispersion process on pre-
asymptotic scales.

Having shown that our closure model works even in the absence of scale
separation within the pre-asymptotic stage of the dispersion phenomenon,
we are now ready to investigate how our closure compares with alternative
strategies. We decided to choose as reference closures the following cases.
Case A: our closure; Case B: evolution with the sole large-scale velocity (i.e.
no closure at all); Case C: our closure without the effective (compressible)
large-scale advection; Case D: a naive closure based on the naive idea that
the eddy diffusivity only depends on the small-scale advection. Accordingly,
in this latter case the eddy diffusivity is obtained by setting to zero the large-
scale velocity component (including the mean field component). All cases
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have Urms ∼ 4.5.
The results are reported in Figs. 2.5 and 2.6. In Fig. 2.5 we show the be-
havior of the moments M2(t) (upper panel) and M4(t) (lower panel) as a
function of time for the “exact” evolution (continuous line), which we indi-
cate with the letter E, and for cases A, B, C and D, with ε = 1. In Fig. 2.6,
P (∆(t)) is shown for t = 0.0325 (corresponding to t ∼ τmax) and t = 0.125
(corresponding to t ∼ 4τmax) for the cases A,C,D and the exact evolution.
As one can see from these figures, our closure works significantly better than
the other strategies. This is true also with respect to the simpler closure
where the effective large-scale advection is neglected even if in this case the
differences are quite small.

The discrepancies seen in the left panel of Fig. 2.6 are due to the small
observation time (of the order of τmax). This implies that the particle dynam-
ics is still self-correlated and, as a result, the renormalization process giving
rise to the eddy-diffusivity is still in progress. Anyway, also in this case our
closure works better then the other strategies. Also note that the accuracy
of our closure becomes significantly better as the observation time becomes
sufficiently larger than τmax (lower panel of Fig. 2.6). This is expected as a
result of the increased time-scale separation between the small-scale velocity
and the particle dynamics ensuring the development of the renormalization
process.

2.7 Conclusions

The key requirement shared by all closure strategies is the presence of
scale separation. As a matter of fact, in real situations this requirement is
not always fulfilled and a natural question arises on the level of accuracy
of a description based on the eddy-diffusivity concept forced to work even
in the absence of scale separation. Moreover, a long-standing accepted idea
in the realm of large-scale transport is that small-scale features of a carrier
flow gives rise to the concept of eddy-diffusivity while the large-scale veloc-
ity component only acts as a large-scale advection. In this chapter both
issues have been analyzed on the basis of known results in the field of large-
scale transport obtained via multiple-scale expansions. From these results it
clearly emerges that the eddy-diffusivity has an explicit dependence also on
the large-scale advection and, conversely, small scales affect the large-scale
advection via an effective compressible velocity field.
Theoretical results are thus somehow contrasting the general belief, a fact
that led us to quantitatively address these important issues.
To do that, our idea has been to define a stochastic velocity ensemble mim-
icking relevant features of small-scale turbulence which, at the same time,
allowed us to obtain an explicit expression both for the eddy-diffusivity tensor
field and for the effective large-scale advection. Once the explicit expressions
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for both quantities have been obtained, we have quantified i) the deteriora-
tion of the eddy-diffusivity description by reducing the scale-separation in
the carrier flow; ii) the importance of the contribution of small-scales to
the large-scale advection emerging as a new compressible velocity compo-
nents, and, iii) we have also compared the accuracy of our closure against
other simple (apparently reasonable) possible strategies. In relation to i)
we quantitatively measured the quality of the performance of our closure
by a direct comparison against the results obtained from the exact evolu-
tion equation. This comparison has been carried out for different extensions
of the spectral gap, including the situation corresponding to the absence
of scale separation. Although a deterioration of the closure performance is
clearly detectable by reducing the scale separation, relevant features of the
large-scale transport are still captured by our closure. As far as ii) is con-
cerned, we have shown that, in all analyzed cases, the contribution to the
large-scale advection coming from small-scale velocity fluctuations is negligi-
ble. Although small, its contribution is however in the direction of the exact
solution. This finding is thus in agreement with the common belief which
considers the large-scale velocity component as the sole contribution to the
large-scale advection. Finally, in relation to iii) we can state that our closure
performs better than other reasonable alternative strategies. In particular,
the approach that assumes an eddy-diffusivity only dependent on small-scale
velocity fluctuations works considerably worse than our closure. This clearly
points to the conclusion that the large-scale velocity component has a role to
determine the eddy-diffusivity. Unlike the previous conclusion, this evidence
is against the common belief that sees the eddy-diffusivity as a product of
small-scale fluctuations. Also, the simplest description in terms of a tracer
equation without any kind of eddy diffusivity (a model often considered to
study surface dispersion in the ocean and in the atmosphere) turns out to
be the worst option.
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Figure 2.5: M2 (upper panel) and M4 (lower panel) vs time for ε = 1 and
Urms = 4.5. The continuous line depicts the exact evolution, and it is in-
dicated by the letter E; case A is our closure; case B is the evolution with
large-scale flow only; case C represent our closure without the effective com-
pressible velocity contribution; "naive" description is finally indicated by
letter D.
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Figure 2.6: Probability density functions of ∆(t) for ε = 1 and Urms = 4.5.
In the upper panel t = 0.0325, in the lower panel t = 0.125. The continuous
line depicts the exact evolution; the dashed line is the case A; full circles the
case C; empty circles indicate case D.
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Appendix

2.A A superposition principle for the eddy-diffusivities

In this Appendix we show the existence of a superposition principle which
holds for the eddy-diffusivity field with advection by statistically homoge-
neous parallel flows. For the sake of simplicity our focus will be restricted
to two-dimensional cases. A simple generalization allows one to extend our
results to three dimensions.
Let us start from the definition (2.43) of eddy-diffusivity in Lagrangian
terms. From this equation the well-known Taylor expression easily follows
(the molecular diffusivity is assumed to be negligible in this work):

D = lim
t→∞

〈
∫ t

0
dt′u(x(t), t)⊗ u(x(t′), t′)〉 . (2.61)

In Fourier space, the incompressible velocity field reads u(x, t) =
∫

dq
A(q,t)q⊥

q eiq·x

which, plugged into (2.61), gives

D = lim
t→∞

∫ t

0
dt′
∫

dq

∫

dq′q
⊥ ⊗ q′⊥

q2
〈A(q, t)A(q′, t′)ei(q·x(t)+q′·x(t′))〉 .

(2.62)
where x(t) is solution of the (multiple-scale) system

dxi

dt
=

∫

dq
A(q, t)q⊥

q
eiq·x(t) +U(X, T ) . (2.63)

The main problem for the analytical calculation of D is that the solution of
(2.63) has to be used in (2.62). This is in general a daunting task.
To overcome the problem, let us suppose u to be a parallel flow pointing
along a constant direction q⊥/q = n⊥. If one assumes it is built in terms of
a finite superposition of Fourier harmonics, the (discrete) Fourier decompo-
sition becomes:

u(x, t) =
∑

i

A(qi, t)n
⊥eiqin·x . (2.64)

Note that it corresponds to the kinematic models we introduced in Sec. 2.4,
after absorbing the phases eiθi in the amplitudes, which are now complex
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numbers.
By multiplying Eq. (2.63) by n the following important result is obtained:

n · x(t) = n ·U(X, T )t .

It allows one to replace in Eq. (2.62) the term depending on the trajec-
tory x(t) with a more innocent contribution not depending on the particle
trajectory:

D = lim
t→∞

(

n⊥ ⊗ n⊥
)

∫ t

0
dt′
∑

i,j

〈A(qi, t)A(qj , t′)〉ei(qin·Ut+qjn·Ut′) . (2.65)

Let us now show that to arrive to the superposition principle it is enough
to assume an homogeous statistics for the velocity field. In Fourier space,
homogeneity is equivalent to the well-known condition

〈û(qi, t)⊗ û(qj , t
′)〉 ∝ δ(qi + qj)

that simply says, toghether with the relation û(−qi, t) = û
∗(qi, t), indepen-

dence of Fourier modes. Since û(qi, t) ∝ A(qi, t)n
⊥, we have in the discrete

case that 〈A(qi, t)A(qj , t′)〉 = 〈A(qi, t)A∗(qi, t′)〉δqi,−qj , and (2.65) becomes:

D = lim
t→∞

(

n⊥ ⊗ n⊥
)

∫ t

0
dt′
∑

i

〈A(qi, t)A∗(qi, t
′)〉eiqin·U(t−t′) =

∑

i

Di

where Di is the eddy-diffusivity associated to the i-th mode:

Di = lim
t→∞

(

n⊥ ⊗ n⊥
)

∫ t

0
dt′〈A(qi, t)A∗(qi, t

′)〉eiqin·U(t−t′)

≡ lim
t→∞

∫ t

o
dt′〈ui(xi(t), t)⊗ u∗

i (xi(t
′), t′)〉

and to compute trajectories only the i-th mode is involved:

dxi

dt
= ui(xi(t), t) +U(X, T ) = A(qi, t)n

⊥eiqin·xi(t) +U(X, T )

where we have identified ui with A(qi, t)n
⊥eiqi·x.

2.B Explicit expression for the effective advection

To determine the effective advection we need to evaluate

∂Dαβ

∂xβ
=

N
∑

p=1

∂Dp αβ

∂Uγ

∂Uγ

∂xβ
. (2.66)
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To obtain the divergence of the eddy-diffusivity field we again consider
the following three integrals, which are related to the eddy diffusivity itself
through Eqs. (2.53):

∫ 2π

0

sin2 φdφ

τ2i q
2
i (U1 cosφ+ U2 sinφ)2 + 1

−
∫ 2π

0

sinφ cosφdφ

τ2i q
2
i (U1 cosφ+ U2 sinφ)2 + 1

∫ 2π

0

cos2 φdφ

τ2i q
2
i (U1 cosφ+ U2 sinφ)2 + 1

.

Our first remark is that, if in the third integral we perform the transformation
φ→ π/2− φ, then we obtain:

∫ π
2

− 3π
2

sin2 φdφ

τ2i q
2
i (U2 cosφ+ U1 sinφ)2 + 1

.

The value of the latter does not change if we evaluate it between 0 an 2π.
This because the integrating function has a period of 2π. Thus we ob-
tain an integral similar to the first one after commuting U1 � U2. This
means that D11(U1, U2) = D22(U2, U1) and we only have to compute two
integrals. By means of a similar argument, by exploiting the fact that
sinφ cos φ = 1/2 sin 2φ and sin(π − 2φ) = sin 2φ, one can also easily prove
that D12(U1, U2) = D12(U2, U1). We are going to use these properties to
evaluate the eddy diffusivity divergence below.

By direct computation, after lengthy algebra one obtains:

∂Dp 11

∂U1
= −

[

U6
1 τ

4
p q

4
p + 3τ2p q

2
pU

4
1 − 3U2

1U
4
2 τ

4
p q

4
p +

−6τ2p q
2
pU

2
2U

2
1 + 2U2

1 +

+(4U2
1 τ

2
p q

2
pU

2
2 − 2U2

1 − 2U4
1 τ

2
p q

2
p)
√

τ2p q
2
p(U

2
1 + U2

2 ) + 1 +

−9U4
2 τ

2
p q

2
p − 6U2

2 − 2U6
2 τ

4
p q

4
p +

+6(U2
2 + U4

2 τ
2
p q

2
p)
√

τ2p q
2
p(U

2
1 + U2

2 ) + 1)
]

U1B
2
p ×

[

2(U2
1 + U2

2 )
3q2pτp

(

τ2p q
2
p(U

2
1 + U2

2 ) + 1
)3/2]−1

, (2.67)
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∂Dp 11

∂U2
= −

[

3U2
1 (U

4
1 + U4

2 )τ
4
p q

4
p + 6U4

1 τ
4
pU

2
2 q

4
p +

+9τ2p q
2
pU

4
1 + 6τ2p q

2
pU

2
2U

2
1 + 6U2

1 +

−4U2
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2
p q

2
pU

2
2
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τ2p q
2
p(U

2
1 + U2

2 ) + 1 +

+
√

τ2p q
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p(U

2
1 + U2

2 ) + 1(2U4
2 τ

2
p q

2
p − 6U2

1 − 6U4
1 τ

2
p q

2
p) +

−3U4
2 τ

2
p q

2
p − 2U2

2 + 2U2
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√

τ2p q
2
p(U

2
1 + U2

2 ) + 1
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U2B
2
p ×

[

2(U2
1 + U2

2 )
3q2pτp

(

τ2p q
2
p(U

2
1 + U2

2 ) + 1
)3/2]−1

, (2.68)

Since in the three integrals (2.53) the integrating functions and their
derivatives with respect to the velocity are limited, one can interchange in-

tegration and differentiation to compute
∂Dαβ

∂Uγ
, and it is easy to see that:

∂D12

∂U2
= −∂D11

∂U1

Also notice that, for the symmetry properties of the eddy-diffusivity ten-
sor with respect to U1 and U2, other derivatives of the eddy-diffusivity with
respect to the velocity can be easily obtained from the above expressions, by
simply substituting:

∂Dp 12

∂U1
=
∂Dp 12

∂U2

∣

∣

∣U1→U2
U2→U1

,

∂Dp 22

∂U1
=
∂Dp 11

∂U2

∣

∣

∣U1→U2
U2→U1

,

∂Dp 22

∂U2
=
∂Dp 11

∂U1

∣

∣

∣U1→U2
U2→U1

.

(2.69)

As a consequence, one has:

∂Dp 12

∂U1
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[

U6
2 τ

4
p q

4
p + 3τ2p q

2
pU

4
2 − 3U2

2U
4
1 τ

4
p q

4
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−6τ2p q
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2
1U

2
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2 +
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p q

2
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p q
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−9U4
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p q
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1 − 2U6
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p q
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τ2p q
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p(U

2
1 + U2
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, (2.70)
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∂Dp 22

∂U1
= −

[

3U2
2 (U

4
2 + U4

1 )τ
4
p q

4
p + 6U4

2 τ
4
pU

2
1 q

4
p +

+9τ2p q
2
pU

4
2 + 6τ2p q

2
pU

2
1U

2
2 + 6U2

2 +

−4U2
2 τ

2
p q

2
pU

2
1

√

τ2p q
2
p(U

2
1 + U2

2 ) + 1 +

+
√

τ2p q
2
p(U

2
1 + U2

2 ) + 1(2U4
1 τ

2
p q

2
p − 6U2

2 − 6U4
2 τ

2
p q

2
p) +

−3U4
1 τ

2
p q

2
p − 2U2

1 + 2U2
1

√

τ2p q
2
p(U

2
1 + U2

2 ) + 1
]

U1B
2
p ×

[

2(U2
1 + U2

2 )
3q2pτp

(

τ2p q
2
p(U

2
1 + U2

2 ) + 1
)3/2]−1

, (2.72)

∂Dp 22

∂U2
= −

[

U6
2 τ

4
p q

4
p + 3τ2p q

2
pU

4
2 − 3U2

2U
4
1 τ

4
p q

4
p +

−6τ2p q
2
pU

2
1U

2
2 + 2U2

2 +

+(4U2
2 τ

2
p q

2
pU

2
1 − 2U2

2 − 2U4
2 τ

2
p q

2
p)
√

τ2p q
2
p(U

2
1 + U2

2 ) + 1 +

−9U4
1 τ

2
p q

2
p − 6U2

1 − 2U6
1 τ

4
p q

4
p +

+6(U2
1 + U4

1 τ
2
p q

2
p)
√

τ2p q
2
p(U

2
1 + U2

2 ) + 1)
]

U2B
2
p ×

[

2(U2
1 + U2

2 )
3q2pτp

(

τ2p q
2
p(U

2
1 + U2

2 ) + 1
)3/2]−1

. (2.73)

In a similar way, from the definition of our large-scale velocity (2.37)
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herein used, the velocity gradient tensor reads:

∂U1

∂x
= −

M
∑

i=1

Ai(t)qi sin(φi) cos(φi) sin[qi(cos(φi)x+ sin(φi)y)]

∂U1

∂y
= −

M
∑

i=1

Ai(t)qi sin
2(φi) sin[qi(cos(φi)x+ sin(φi)y)]

∂U2

∂x
=

M
∑

i=1

Ai(t)qi cos
2(φi) cos[qi(sin(φi)x+ sin(φi)y)]

∂U2

∂y
=

M
∑

i=1

Ai(t)qi sin(φi) cos(φi) cos[qi(sin(φi)x+ sin(φi)y)] .(2.74)

2.C Explicit expressions for the eddy-diffusivity field

in three dimensions

In this Appendix we generalize to three-dimensions the results of Sec. 2.5.
The main technical difference with respect to Sec. 2.5 is that a single Fourier
harmonic of a parallel flow needs three angles to be identified, instead of one
as in two dimensions. This makes the problem more cumbersome from the
geometrical point of view. Indeed, it is still true that the wavenumber in each
Fourier harmonic is perpendicular to the velocity, but now it can lie in any
direction on the plane orthogonal to that. This fact is related to the three
coordinates we need to parametrize the group connected to the invariance
under three-dimensional rotations (the so-called SO(3,R) group).
In order to have isotropy, we have therefore to rotate the generical vector,
or tensor, for each element of the group (i.e., along any possible direction)
and finally integrate with respect to the Haar measure on the group itself,
to have an average over any rotation.
The simplest way to generalize to three dimensions the statistically isotropic
small-scale flow we described in Sec. 3 is to generate a flow for each initial
condition x(0) having also the wavenumber direction n fixed. This flow is
univocally identified by three angles as described above, and there always
exists an orientation of the coordinate system such that our flow takes the
form (0, u′(z′), 0). Its i−th harmonic turns out to be depending again just
on the wavenumber modulus qi:

u′1(x
′, y′, z′, t) = 0

u′2(x
′, y′, z′, t) =

N
∑

i=1

Ai(x
′(0), t) cos[qiz

′ + θi(x(0))]

u′3(x
′, y′, z′, t) = 0 .
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In order to obtain an isotropic statistics, we need to associate three random
angles to each particle initial condition and take the average over their evo-
lution.
There are several possible choices to fix a coordinate system on the group
with its associated expression of the Haar measure. We decided to proceed
in the following way, remembering that in SO(3,R) rotations are not com-
mutative and thus the order of their action has to be defined. In our case,
before performing the two rotations to align the wavenumber n along the z-
axis , which is similar to what we did in two dimensions, we do a preliminar
coordinate rotation around n itself so that the velocity will eventually lie on
the y−axis.
Once we know that n′ = (0, 0, 1) = Rn, to get back to the old system the
following relationship has to be taken into account:





0
0
1



 =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









cosφ sinφ 0
− sinφ cosφ 0

0 0 1









sin θ cosφ
sin θ sinφ

cos θ



 (2.75)

where the unit vector n is identified by the two spherical angles θ and φ.
The preliminar rotation we need is the one around the unit vector n, which
can be expressed as [59]:

R(ψ,n) = I +N sinψ +N 2(1− cosψ)

where ψ is the rotation angle, I is the identity and Nαβ = −ηαβγnγ , ηαβγ
being the Levi-Civita symbol. Notice that this rotation has effect solely on
the velocity unit vector, since it maps n = (sin θ cosφ, sin θ sinφ, cos θ) in it-
self. The most general rotation can then be expressed as R(θ)R(φ)R(ψ,n).
The eddy-diffusivity tensor will transform as:

D =
1

2π2

∫ 2π

0
sin2

ψ

2
d
ψ

2

∫ π

0
sin θdθ

∫ 2π

0
dφ

× [R(θ)R(φ)R(ψ,n)]−1D′R(θ)R(φ)R(ψ,n) (2.76)

after averaging over the angles by integrating over the Haar measure in the
so-called parametrization (ψ,n) [59]. Here D′ is:

D′
αβ =

N
∑

i=1







0 0 0

0 Bi

2
τi

(U ·n(φ,θ))2q2i τ2i +1
0

0 0 0






(2.77)

Since the integrating function does never depend on ψ, the integral over this
angle is easily doable, but to compute the integral over φ and eventually θ,
we need to rotate the coordinates further to have U along the z−axis, so
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that n ·U = |U | cos θ. This can be done by means of the rotation:

Rαβ(U) =











U3√
U2
1+U2

2+U2
3

0 −
√

U2
1+U2√

U2
1+U2

2+U2
3

0 1 0√
U2
1+U2√

U2
1+U2

2+U2
3

0 U3√
U2
1+U2

2+U2
3



















U1√
U2
1+U2

2

U2√
U2
1+U2

2

0

− U2√
U2
1+U2

2

U1√
U2
1+U2

2

0

0 0 1









(2.78)
Now the eddy-diffusivity tensor turns out to be:

Dαβ =
1

2π2

N
∑

i=1

∫ 2π

0
sin2

ψ

2
d
ψ

2

∫ π

0
sin θdθ

∫ 2π

0
dφ (2.79)

× R(U)−1
αγ [R(θ)R(φ)R(ψ,n)]

−1
γ2

× Bi

2

τi
(|U | cos θ)2q2i τ2i + 1

× [R(θ)R(φ)R(ψ,n)]2δR(U )δβ

and the three integrals can be finally computed sequentially. The result is
too cumbersome to write here entry by entry; however, its tensorial form
reads:

Dαβ =

[

α

Urms
|U|

(

|U|2δαβ − 3UαUβ

)

+

(

(3 +
α2

U2
rms

|U|2)UαUβ − |U|2δαβ

+
α2

U2
rms

|U|4δαβ
)

arctan

(

α

Urms
|U|
)][

4
α3

U3
rms

|U|5
]−1 N

∑

i=1

Bi

2
τi (2.80)

It is noteworthy that, as U → 0, we recover the isotropic expression Dαβ =

δαβ
∑N

i=1
Bi

6 τi
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Chapter 3

The role of inertia on

large-scale particle transport

3.1 Introduction

Understanding the role of particle inertia on the late-time dispersion
process is a problem of paramount importance in a variety of situations,
mainly related to geophysics and atmospheric sciences. Airborne particulate
matter in the atmosphere has indeed a well-recognized role for the Earth’s
climate system because of its effect on global radiative budget by scattering
and absorbing long-wave and short-wave radiation [54]. For the sake of
example, one of the most intriguing issue in this context is related to the
evidence of anomalous large fluctuations in the residence times of mineral
dust observed in different experiments carried out in the atmosphere [60].

Those observations naturally lead to the idea that settling and dispersion
of inertial particles, both contributing to the residence time of particles in
the atmosphere, crucially depend on the peculiar properties of the carrier
flow encountered in the specific experiment. For the gravitational settling,
this question was addressed in Ref. [29]. It turned out that the value of the
Stokes number alone, St, directly related to the particle size, is not sufficient
to argue if the sedimentation is faster or slower with respect to what happens
in still fluid. With minor variations of the carrier flow, for a given St, it has
been shown that either an increase or a reduction of the falling velocity are
possible thus affecting in a different way the particle residence time in the
fluid.

Our aim here is to shed some light on how dispersion of inertial particles
does depend on relevant properties of the turbulent carrier flow. Our focus
will be on the late-time evolution of the particle dynamics, a regime fully
described in terms of eddy-diffusivities [57, 58, 26]. Our main question can
be thus rephrased in terms of the behavior of the eddy diffusivity by varying
some relevant features of the carrier flow (e.g. the form of its auto-correlation
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function), for a given inertia of the particle.
This analysis for generic carrier flows is a task of formidable difficulty and
forces to the exploitation of numerical approaces which, however, make it
difficult to isolate simple machanisms on large-scale transport induced by
inertia. To overcome the problem, we decided to focus on simple flow field
where the problem can be entirely grasped via analytic (or perturbative)
techniques. As we will see, quasi-parallel flows are natural candidates to
allow one the analytical treatment of large-scale transport.

3.2 Eddy diffusivity for parallel flows

To start our analysis let us considered the well-known model [63, 31] for
transport of heavy particles in a given carrier flow u(X (t), t):

dX (t) = v(t) dt (3.1)

dv(t) = −
(

v(t)− u(X (t), t)

τ

)

dt+

√
2D0

τ
dω(t)

with dω being a white-noise process coupled by a constant molecular diffu-
sivity D0 [32], v(t) is the particle velocity, X is its trajectory and τ denotes
the Stokes time.
Focusing on a d-dimensional space (here d=2 or 3), let us assume for the car-
rier flow a parallel flow with the sole non-zero component u1(x2, . . . , xd, t).
The latter is a stationary and homogenoeus random field such that:

〈u1(x2, . . . , xd, t)〉 = 0,

〈u1(x2, . . . , xd, t)u1(0, . . . , 0, 0)〉 = B(x2, . . . , xd, |t|),
(3.2)

and ω(t) is the Wiener process, with the following well-known properties:

ω0 = 0 a.s.

s1 ≤ s2 ≤ t1 ≤ t2 =⇒ 〈∆ω(s2 − s1)⊗∆ω(t2 − t1)〉 = 0

s1 ≤ s2 =⇒ ωn(s2)− ωn(s1) ∼ Gn(0, s2 − s1)

(3.3)

Here, Gn(0, s2 − s1) is the zero-mean Gaussian process of the n-th com-
ponent with variance s2−s1, and ∆ω(s2−s1) is the time increment ω(s2)−
ω(s1). The expressions v(t) and X (t) easily follow from Eqs. (3.1). It is suf-
ficient to define a new field v′(t) = et/τv(t) and proceed by direct integration.
The final result is:

vn(t) = e−
t−to
τ vn(t0) +

√
2D0

τ

∫ t

to

dωn(s) e
− t−s

τ (3.4)

80



Xn(t) = Xn(t0) + τ(1 − e−
t−to
τ )vn(t0)

+
√

2D0

∫ t

to

dωn(s) (1− e−
t−s
τ )

(3.5)

for n 6= 1, and

v1(t) = e−
t−to
τ v1(t0) +

√
2D0

τ

∫ t

to

dω1(s) e
− t−s

τ

+
1

τ

∫ t

to

ds u1(X2(s), . . . ,Xd(s), s) e
− t−s

τ (3.6)

X1(t) = X1(t0) + τv1(t0)(1− e−
t−to
τ )

+
√

2D0

∫ t

to

dω1(s) (1− e−
t−s
τ )

+

∫ t

to

ds u1(X2(s), . . . ,Xd(s), s) (1 − e−
t−s
τ )

(3.7)

for n=1. Here the integral with respect to dω(s) are meant in Ito’s sense.
The eddy diffusivity can be now obtained in terms of v(t) and X (t):

Def = lim
t↑∞

1

d
〈v(t) ·X (t)〉 (3.8)

The explicit calculation gives:

lim
t↑∞

1

d
〈vn(t)Xn(t)〉 =

= lim
t↑∞

1

d

2D0

τ

∫ t

to

∫ t

to

〈dωn(s)dωn(s
′)〉 (1 − e−

t−s
τ )e−

t−s′

τ =

= lim
t↑∞

1

d

2D0

τ

∫ t

to

ds (1− e−
t−s
τ )e−

t−s
τ =

D0

d
(3.9)

for n 6= 1, and:

lim
t↑∞

1

d
〈X1(t)v1(t)〉 =

D0

d
+ lim

t↑∞
1

dτ

∫ t

to

ds

∫ t

to

ds′

×〈u1(X2(s), . . . ,Xd(s), s)u1(X2(s
′), . . . ,Xd(s

′), s′)〉
×e− t−s

τ (1− e−
t−s′

τ )

(3.10)

for n = 1. Note that, to obtain Eqs. (3.9-3.10) we have neglected the
decaying terms proportional to e−(t−t0)/τ . This has been possible because of
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the limit t → ∞ contained in the definition of Def. We also have exploited
the independence between ω(t) and u(X (t), t).

The following quantity:

〈u1(X2(s), . . . ,Xd(s), s)u1(X2(s
′), . . . ,Xd(s

′), s′)〉

=

∫

dd−1k

(2π)d−1
B̌(k2, . . . , kd, |s− s′|)

× 〈eı[k2(X2(s)−X2(s′))+···+kd(Xd(s)−Xd(s
′))]〉 ,

(3.11)

where X (t) is given by Eq. (3.5), must be plugged into Eq. (3.10) to obtain:

lim
t↑∞

1

d
〈X1(t)v1(t)〉 =

D0

d
+ lim

t↑∞
1

dτ

∫ t

to

ds

∫ t

to

ds′
∫

dd−1k

(2π)d−1

× 〈eı[k2(X2(s)−X2(s′))+···+kd(Xd(s)−Xd(s
′))]〉e− t−s

τ (1− e−
t−s′

τ )

× B̌(k2, . . . , kd, |s− s′|)
(3.12)

The mean value in the previous formula can be computed via path integral
over the infinitesimal increments of the Wiener process (n ≥ 2). We start
by inserting Eq. (3.5) in the exponential argument:

〈eıkn(Xn(s)−Xn(s′))〉 = eıknvn(t0)(e
−

s′−to
τ −e−

s−to
τ )

×〈eı
√
2D0

∫∞
to

dωn(r) [H(s−r)(1−e−
s−r
τ )−H(s′−r)(1−e−

s′−r
τ )]〉

(3.13)

To evaluate the mean value, we have to integrate over the Wiener measure
along the paths. By discretizing the pahts in the Ito sense, and partitioning
time so that r0 = t0:

〈eıkn(Xn(s)−Xn(s′))〉 = eıknvn(t0)(e
− s′−to

τ −e−
s−to

τ )

× lim
∆ωn(rm)→0

∫ ∞
∏

m=0

d∆ωn(rm)





e−
(∆ωn(rm))2

2∆rm√
2π∆rm

×eıkn
√
2D0∆ωn(rm) [H(s−rm)(1−e−

s−rm
τ )−H(s′−rm)(1−e−

s′−rm
τ )]

]

= eıknvn(t0)(e
− s′−to

τ −e−
s−to

τ )

× e
−|kn|2D0

∫∞
t0

dr [H(s−r)(1−e−
s−r
τ )−H(s′−r)(1−e−

s′−r
τ )]2

(3.14)
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where ∆ωn(rm) ≡ ωn(rm+1)− ωm(rm). Upon taking into accout that:

∫ ∞

t0

dr [H(s− r)(1− e−
s−r
τ )−H(s′ − r)(1− e−

s′−r
τ )]2 =

=

∫ s

t0

dr(1− e−
s−r
τ )2 +

∫ s′

t0

dr(1− e−
s′−r
τ )2

−2

∫ min(s,s′)

t0

dr(1− e−
s−r
τ )(1− e−

s′−r
τ ) =

=
[

s− t0 − 2τ(1− e−
s−t0

τ ) +
τ

2
(1− e−

2s−2t0
τ )

]

+

[

s′ − t0 − 2τ(1− e−
s′−t0

τ ) +
τ

2
(1− e−

2s′−2t0
τ )

]

−
[

2
(

min(s, s′)− t0
)

− 2τ

(

1 + e−
|s−s′|

τ

−e−
s−t0

τ − e−
s′−t0

τ

)

+τ

(

e−
|s−s′|

τ − e−
s−t0

τ
− s′−t0

τ

)]

=

= τ
[ |s− s′|

τ
− 1− e−

2s−2t0
τ + e−

2s′−2t0
τ

2

+e−
|s−s′|

τ + e−
s−t0

τ
− s′−t0

τ

]

(3.15)

from Eq. (3.12) we easily arrive at:

Def = D0 + lim
t3↑∞

1

τ d

∫

dd−1k

(2π)d−1

∫

[t0,t3]2
dt1dt2 (3.16)

× eık·v(t0)τ (e−
t20
τ −e−

t10
τ )

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ +e−

t10+t20
τ − e

−
2t10
τ +e

−
2t20
τ

2

)]

×e−
t31
τ B̌(k2, . . . , kd, |t12|) (1 − e−

t32
τ )

where we have introduced the new symbol tab = ta − tb. This is the same
result as the first perturbation order for Gaussian flows which we present in
Appendix 3.6.

Proposition 3.2.1. Eddy diffusivity in Eq. (3.16) does actually not depend
on t0.

Proof. To evaluate the needed asymptotic limit in Eq. (3.16), we first per-
form the substition t1 − t0 → t1, t2 − t0 → t2, and t3 − t0 = T , which means
t3 → ∞ =⇒ T → ∞, since t0 is finite (or, if t0 is equivalent to −∞, then T
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will tend to infinity as well):

Def = D0 + lim
T↑∞

1

d

∫

dd−1k

(2π)d−1

∫

[0,T ]2
dt1dt2 e

ık·v(t0)τ (e−
t2
τ −e−

t1
τ )

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ +e−

t1+t2
τ − e

−
2t1
τ +e

−
2t2
τ

2

)]

×e
−T−t1

τ

τ
B̌(k2, . . . , kd, |t12|) (1 − e−

T−t2
τ )

The latter, in which the dependence on t0 is disappeared owing to the limit,
is equivalent to Eq. (3.16).

Having stated this independence on the initial condition, which physically
means that the diffusion process losts its memory, we can freely choose t0 =
−∞. After a further substition T−t1 → t1, T−t2 → t2, the eddy-diffusivity
takes the following, simpler form:

Def = D0 +
1

τ d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

∫ ∞

0
dt2

× e
−D0‖k‖2

[

|t12|− τ

(

1−e−
|t12|
τ

)]

× e−
t1
τ B̌(k2, . . . , kd, |t12|) (1 − e−

t2
τ ) . (3.17)

Proposition 3.2.2. Let it f(t) be a bounded and integrable function van-
ishing at t→ ∞. Thus:

lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ f(|t12|) (1 − e−

t2
τ ) =

∫ ∞

0
dtf(t)

Proof. The starting point is:

lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ f(|t12|) (1 − e−

t2
τ ) . (3.18)

Let us perform the substition t1 − t2 → t, t1 → t1. Thus

= lim
T↑∞

1

τ

∫ T

0
dt1

∫ t1

t1−T
dtf(|t|) (e−

t1
τ − e−

2t1−t

τ ) . (3.19)

Looking at Fig. 3.1, we switch the order of integration, performing it with
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Figure 3.1: Integral domain in the new variables t and t1.

respect to t1 first:

=
1

τ

∫ 0

−∞
dt

∫ +∞

0
dt1f(|t|) (e−

t1
τ − e−

2t1−t

τ )

+ lim
T↑∞

1

τ

∫ T

0
dt

∫ T

t
dt1f(|t|) (e−

t1
τ − e−

2t1−t

τ )

=

∫ 0

−∞
dtf(|t|)

(

1− e
t
τ

2

)

+ lim
T↑∞

∫ T

0
dtf(|t|)

×
(

−e−T
τ + e−

t
τ +

e−
2T−t

τ − e−
t
τ

2

)

= lim
T↑∞

∫ T

0
dtf(|t|)

(

1− e−
T
τ +

e−
2T−t

τ

2

)

(3.20)

The second addend e−
T
τ

∫ T
0 dtf(|t|) tends to 0 as T ↑ ∞ since the integral

is bounded. As to the third one:

0 ≤
∣

∣

∣

∣

∣

∫ T

0
dtf(|t|)e

− 2T−t
τ

2

∣

∣

∣

∣

∣

≤
∫ T

0
dt

∣

∣

∣

∣

∣

f(|t|)e
− 2T−t

τ

2

∣

∣

∣

∣

∣

≤ sup
t

|f(t)| τ e
−T

τ − e−
2T
τ

2
→T↑∞ 0

(3.21)

As a result, we have shown that Eq. (3.18) equals the first and only non-zero
addend.
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We can apply this result to the time-correlation function in spatial Fourier
space B̌(k2, . . . , kd, |t|), which is integrable and bounded. When D0 6= 0, the

role of f(t) would be played by exp[−D0‖k‖2(t− τ (1− e−
t
τ ))] B̌(k2, . . . , kd, |t|),

and we see that D0 could even regularize a bad behaviour of the pure flow
time correlation function on long times. If we now apply Prop. (3.2.2) to
Eq. (3.17), we arrive at the final expression:

Def = D0 +
1

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt

× e
−D0‖k‖2

[

t− τ
(

1−e−
t
τ

)]

B̌(k2, . . . , kd, t) . (3.22)

It is interesting to note that such an expression coincides with the one for
tracer particles with coloured noise [70]. Notice that the presence of the
molecular diffusivity can even regularize bad ultra-violet behaviors of the
correlation function. This means it could give a finite eddy diffusivity also
when the diffusion for particles in the pure flow without Brownian noise is
anomalous. Certainly, no anomalous diffusion can origin from the presence
of τ . This gives a ful theoretical explanation to the numerical observations
accomplished in Chapter 1.

3.3 Generalization to general density ratio β

Let us now move to the general inertial case for 0 < β ≤ 3. In this
more complicate situation, we can leverage the generalized Taylor formula
achieved in [65] and the previous relations for heavy particles. The equation
of motion are now:

dX (t) = (V(t) + βu(X (t), t) dt (3.23)

dV(t) = −
(

V(t)− (1− β)u(X (t), t)

τ

)

dt+

√
2D0

τ
dω(t)

where now V(t) has no longer the immediate physical meaning of particle
velocity, but it is rather the more general and so-called covelocity.

The flow being parallel, nothing changes in comparison to the component
along n 6= 1, and Eqs. (3.5), (3.9), (3.11), (3.10), (3.13), and (3.15) still hold
true. In the x direction, instead, the position process is:

X1(t) = X1(t0) + τV1(t0)(1− e−
t−to
τ )

+(1− β)

∫ t

to

ds u1(X2(s), . . . ,Xd(s), s) (1 − e−
t−s
τ )

+β

∫ t

to

ds u1(X2(s), . . . ,Xd(s), s)

+
√

2D0

∫ t

to

dω1(s) (1 − e−
t−s
τ ) (3.24)
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and the velocity is:

Ẋ1(t) = V1(t0)e
− t−to

τ

+
1− β

τ

∫ t

to

ds u1(X2(s), . . . ,Xd(s), s) e
− t−s

τ

+β u1(X2t, . . . ,Xdt, t) +

√
2D0

τ

∫ t

to

dω1(s) e
− t−s

τ (3.25)

This means that the entire eddy diffusivity now reads:

Def = lim
t↑∞

1

d
〈Ẋ (t) ·X (t)〉 = D0

+
(1− β)2

τ d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

∫ ∞

0
dt2

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ

)]

× e−
t1
τ B̌(k2, . . . , kd, |t12|) (1 − e−

t2
τ )

+
β(1− β)

τ d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

∫ ∞

0
dt2

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ

)]

× e−
t1
τ B̌(k2, . . . , kd, |t12|)

+
β(1− β)

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

× e
−D0‖k‖2

[

t1+ τ

(

1−e−
t1
τ

)]

× (1− e−
t1
τ ) B̌(k2, . . . , kd, t1)

+
β2

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

× e
−D0‖k‖2

[

t1+ τ

(

1−e−
t1
τ

)]

B̌(k2, . . . , kd, t1) (3.26)

where we have again integrated over the Wiener measure for the molec-
ular diffusion and chosen the initial condition at −∞ by virtue of the inde-
pendence of it.

By applying Prop. (3.2.2), we can recast Eq. (3.26) after some algebra:
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Def = D0 +
1− β + β2

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

× e
−D0‖k‖2

[

t1+ τ

(

1−e−
t1
τ

)]

B̌(k2, . . . , kd, t1)

+
β(1− β)

τ d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

∫ ∞

0
dt2

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ

)]

e−
t1
τ B̌(k2, . . . , kd, |t12|)

− β(1− β)

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

× e
−D0‖k‖2

[

t1+ τ

(

1−e−
t1
τ

)]

e−
t1
τ B̌(k2, . . . , kd, t1)

(3.27)

Let us consider the second addend. We can again perform the substition
t1 − t2 → t, t1 → t1, similarly to what was done for Eq. (3.18). Thus:

lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ

)]

B̌(k2, . . . , kd, |t12|)

= lim
T↑∞

1

τ

∫ T

0
dt1

∫ t1

t1−T
dt e−

t1
τ

× e
−D0‖k‖2

[

|t|+ τ

(

1−e−
|t|
τ

)]

B̌(k2, . . . , kd, |t|) (3.28)

Looking at Fig. 3.1, we switch the order of integration, performing it with
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respect to t1 first:

=
1

τ

∫ 0

−∞
dt

∫ +∞

0
dt1 e

− t1
τ

× e
−D0‖k‖2

[

|t|+ τ

(

1−e−
|t|
τ

)]

B̌(k2, . . . , kd, |t|)

+ lim
T↑∞

1

τ

∫ T

0
dt

∫ T

t
dt1 e

− t1
τ

× e
−D0‖k‖2

[

|t|+ τ

(

1−e−
|t|
τ

)]

B̌(k2, . . . , kd, |t|)

=

∫ ∞

0
dt e

−D0‖k‖2
[

t+ τ

(

1−e−
t
τ

)]

B̌(k2, . . . , kd, t)

+

∫ ∞

0
dt e−

t
τ e

−D0‖k‖2
[

t+ τ

(

1−e−
t
τ

)]

B̌(k2, . . . , kd, t)

− lim
T↑∞

e−
T
τ

∫ T

0
dt e

−D0‖k‖2
[

t+ τ

(

1−e−
t
τ

)]

B̌(k2, . . . , kd, t)

(3.29)

If the integral in the last line is bounded, then that term vanishes as T → ∞:

lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ

× e
−D0‖k‖2

[

|t12|+ τ

(

1−e−
|t12|
τ

)]

B̌(k2, . . . , kd, |t12|)

=

∫ ∞

0
dt e

−D0‖k‖2
[

t+ τ

(

1−e−
t
τ

)]

B̌(k2, . . . , kd, t)

+

∫ ∞

0
dt e−

t
τ e

−D0‖k‖2
[

t+ τ

(

1−e−
t
τ

)]

B̌(k2, . . . , kd, t)

(3.30)

By plugging Eq. (3.30) into Eq. (3.27), many terms cancel out and we arrive
at:

Def = D0 +
1

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt1

× e
−D0‖k‖2

[

t1+ τ

(

1−e−
t1
τ

)]

B̌(k2, . . . , kd, t1)

(3.31)

which is the same as the heavy particle case β = 0.
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3.4 Analysis and results

To play more easily with Eq. (3.22), let us first consider the limit od
small D0. This would make the resulting integrals easier to manage and
carry out. A first order expression carried out on Eq. (3.22) gives:

Def = D0 +
1

d

∫

dd−1k

(2π)d−1

∫ ∞

0
dt tr B̌(k, t)

×
(

1−D0‖k‖2
(

t− τ
(

1− e−
t
τ

)))

+ . . .

(3.32)

or, in physical space:

Def = D0 +
1

d

∫ ∞

0
dt〈u(x, t) · u(x, 0)〉 − D0

d

×
∫ ∞

0
dt
[

t− τ
(

1− e−
t
τ

)]

〈[∂αuβ(x, t)][∂αuβ(x, 0)]〉

+ . . . (3.33)

For τ → 0, the limit of vanishing intertia easily follows:

Def −→τ→0 D0 +
1

d

∫ ∞

0
dt 〈u(x, 0) · u(x, t)〉

−D0

d

∫ ∞

0
dt t 〈[∂αuβ(x, 0)][∂αuβ(x, t)]〉

+ . . . (3.34)

which correspond to the result reported in [64].

Returning to the heavy particle case, in order to further simplify the
expression for the eddy diffusivity, let us focus on a 2D carrier flow with a
single wave-number k0. The correlation function we consider is [66]:

tr B̌(k, |t|) = (2π)d−1E(k0)e
− |t|

Tc cos(Ωt)

×[δ(k − k0) + δ(k + k0)] (3.35)

E(k0) being the turbulent kinetic energy associated to the wave-number.
In principle, the decay time Tc would depend on k itself, typically like 1/‖k‖
or 1/‖k‖2 [67, 68, 69]. However, since we are considering a single wave-
number flow, we can consider it as a constant. We can now nondimensionalize
our system by setting k0 = Tc = 1 and dimensionless, as to have the Stokes
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Figure 3.2: The sign of K in the St− Ω plane. Gray corresponds to K > 0;
white to K < 0. The dotted line separates the region on its left, correspond-
ing to transport enhancement due to inertia, from that on its right relative
to transport reduction.

number St = τ . By plugging Eq. (3.35) into Eq. (3.32), one obtains :

Def = D0 + E(k0)

[

1

d

2

1 + Ω2
+
D0

d
K(St,Ω)

]

(3.36)

K = −
[

4

(1 + Ω2)2
− 2(1 + St)

1 + Ω2
− 2St2(1 + St)2

(1 + St(2 + St + StΩ2))2

+
St2(4 + 3St)

1 + St(2 + St + StΩ2)
− St2(2 + St)

4 + St(4 + St + StΩ2)

]

The above expression is uniform in St. Indeed, it is a continuous function
of St∈ [0,+∞), and it tends to 0 as St→ +∞ ∀Ω, then it is limited for any
St. This means that the perturbation expansion at first order in D0 can be
used for any value of St. However, note that, since max|K| ≤ 1, we have a
constraint on D0 in order to have a uniform perturbation expansion, which
is D0 � 2

(1+Ω2)
.

The term K can be either positive or negative, depending on the impor-
tance of negative correlated regions in the correlation function (3.35). This
fact can be detected from Fig. 3.2 where the regions inside which K is posi-
tive (gray region) and negative (white region) are shown in the plane St−Ω.
It is worth recalling that, for the tracer case, the condition for having K > 0
is simply Ω > 1. The presence of inertia thus causes a change of the sign of
K from negative to positive in a subset of the St − Ω plane. In this region
inertia thus plays to increase transport with respect to the tracer case. The
region where transport is enhanced with respect to the tracer case actually
extends up to the dotted line. To observe a reduction of transport, the Stokes
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time has thus to be sufficiently large. Larger and larger values are required
for increasing Ω.

The behavior of K as a function of St is reported in Fig. 3.3 for different
values of Ω. For sufficiently small Ω, K is negative and inertia increases
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Figure 3.3: K vs St at Ω = 0.2 (first panel, clockwise sense), Ω = 0.8 (secon
panel) and Ω = 1.1 (third panel).

its value thus enhancing transport. For sufficiently large Ω, K is positive
and inertia increases its value up to a certain value of St (corresponding to
the intersection with the dotted line of Fig. 3.2) above which transport is
reduced by inertia.
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The physical explanation of the resulting behavior of K vs St, for small
St, can be traced back to the mechanism of transport enhancement induced
by a colored noise discussed in [70]. Indeed, the random contribution to the
inertial particle velocity in (3.6) turns out to be a colored noise. The fact
that for large Stokes times K goes to zero is a simple consequence of the fact
that in such a limit the contribution of the noise to the transport trivially
vanishes as 1/St2 as one can see from (3.6). A maximum of transport is thus
guaranteed in all cases where K > 0 for St = 0.

3.5 Generalization to non-parallel flows: numerical

results

Up to now, our results only applies to parallel flows. We now show
that our findings actually have a more general character they being valid,
at the leading order in a geometric parameter controlling the degree of non
parallelism, also for quasi-parallel flows. To show this fact we have to resort
to a toy numerical model and perturbation methods later on.

As a toy model, we are going to consider a lagrangian, stochastic, kine-
matic 2D model of homogeneous turbulence, whose amplitudes decay expo-
nentially as required in the previous section. Namely, we are going to pertur-
bate the parallel flow with unitary wave-vector by adding a new velocity field
which mimicks properties of statistically homogenous and quasi-stationary
turbulence [34, 35], like below:

uε1(x, y, t) = εA(X (0), t) sin(x+ ε sin(ω1t) + Θ1(X (0)))

× cos(y + ε sin(ω2t) + Θ2(X (0)))

(3.37)

uε2(x, y, t) = A(X (0), t)[cos(x+Θ0(X (0)))

− ε cos(x+ ε sin(ω1t) + Θ1(X (0)))

× sin(y + ε sin(ω2t) + Θ2(X (0)))] (3.38)

For any diffusing particle, this is a oscillating cellular flow which can develop
chaos for sufficiently high ε. Let us analyze briefly in detail this model.
Among the random variables involved, X (0) is meant to stress that we choose
independent random processes for each space location (in the following X (0)
will be the initial conditions of Lagrangian particles through which we will
investigate the transport problem; each X (0) will correspond to a given
realization of the random process). As to ε, ω1, and ω2, these parameter
make the convective cell oscillate. If ω1 and ω2 are commensurable, the
trajectories are periodic. In order to avoid this and facilitate mixing, we
choose ω1 = 1, ω2 = π/2. Convective cells are here squares with side l0 = π.
To trigger Lagrangian chaos [34, 35], the maximum oscillation amplitude ε
is usually ∼ 10−1l0. Besides, the pulsations are ω1, ω2 ∼ 1/tc, tc being the
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typical eddy-turnover time tc ∼ l0/〈A2〉. In order to be in agreement with
these conditions, we set ε = 0.5, the pulsations being already coherent with
these choices.

The random phases Θ0(X (0)) are quenched for each particle. Finally,
A(X (0), t) is the velocity amplitude, a stochastic process fulfilling the sought
correlation function. In the pure exponential correlation, it corresponds to
an Orstein-Uhlenbeck process with variance equal to 4 and unitary decay
time:

dA(t) = −A(t)dt+
√

2〈A2〉 dω(t) (3.39)

where 〈A2〉 is the (asymptotically) stationary variance. Setting 〈A2〉 = 4
guarantees that the unperturbated parallel flow u0(x, t) has unitary energy
[68]. We will choose this value in our numerical simulations. In order to have
a further oscillating contribution, with pulsation Ω, we need to complexify
the above process and exploit the following SDE:

dA(t) = −A(t)(1 − ı Ω)dt+
√

2〈(<A)2〉[dω1(t) + ı dω2(t)] (3.40)

where dω1(t), dω2(t) are two independent Wiener processes. We are inter-
ested in the real part of the solution of this complex SDE:

<A(t) = <A(t0)e−t cos(Ωt)−=A(t0)e−t sin(Ωt)

+
√
8

[
∫ t

t0

e−(t−t0) cos(Ω(t− t0))dω1(t)

−
∫ t

t0

e−(t−t0) sin(Ω(t− t0))dω2(t)

]

(3.41)

The above process has clearly zero mean value. By virtue of well known
trigonometric Werner formulae, if A(t0) = 0 or, equivalently, waiting a cer-
tain thermalization time >> 1 for an arbitrary initial condition, we get to
the following expression:

〈<A(t1)<A(t2)〉 = 4e−|t1−t2| cos(Ω(t1 − t2)) (3.42)

Therefore, when ε = 0, it is sufficient to consider the same model as Eqs.
(3.38) where the amplitude are substituted by the process <A(t) above, in
order to have a stationary correlation function like (3.35) for the parallel
flow.

This flow is statistically homogenous due to the random phases [65, 68].
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Its two-point correlation function is:

〈u(x, t) · u(x′, t′)〉 = 〈A(t)A(t′)〉
2

[

cos(y − y′)

+ ε2

(

cos
[

x− x′ + y′ − y′

+ ε
(

sin(ω1t) + sin(ω2t)− sin(ω1t
′)− sin(ω1t

′)
)]

+ cos
[

x− x′ − y′ + y′

+ ε
(

sin(ω1t)− sin(ω2t)− sin(ω1t
′) + sin(ω1t

′)
)]

)]

(3.43)

and we see that the flow tends to be as stationary as ε ∼ 0, ε ∼ 0, or

ω1 ∼ ω2. Its kinetic energy is 〈A(t)2〉
4 (1 + 2ε2), then we can consider the

oscillating cellular flow a perturbation for some ε < 0.7. The flow also turn
out to be a superposition of three wavenumbers, which are k0 = (0, 1),
k11 = (1, 1), and k12 = (1,−1).

To measure numerically the eddy diffusivity, we certainly need to wait
a time >>St, due to the presence of the Stokes transient. Moreover, when
D0 = 0, some structures of walength L >> 2π/k0 can arise and, velocity
being ∼ O(1), we nedd to wait a time t >> L, to renormalize with respect
to the typical times of the structures (for our choices of parameters, t ∼
100). Anyway, this problem does not occur when D0 > 0, since molecular
diffusivity destroys the trajectory features originating from these structures.
To handle this issue, we fit the displacement variance with the function at+b,
a being 2dDef, for t > 40 when D0 > 0 and t > 100 when D0 = 0 (see Fig.
3.4).

The numerical results are shown in Fig. 3.5. The interference term
K = Def(D0 = 0.5) − D0 − Def(D0 = 0) at St=2 turns out to be still
destructive or constructive when Ω = 0 or 3 respectively. The conclusions
hold true still up to ε = 1, therefore quite far from a perturbation regime
at Ω = 3. When Ω = 0, at ε ∼ 0.5 the contribution of frequencies from
the perturbating flow becomes relevant and a positive contribution as in the
previous case arises, which make the intercerence less destructive and tends
to increase the transport with respect to the pure exponentially decaying
case (ε = 0). However, altogether it remains destructive up to ε = 1, which
is beyond a perturbation regime.
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Figure 3.4: Numerical data (continuous line) vs best-fit curve (dashed line)
with the function at+ b, for t > 100. Here D0 = 0, ε = 1, and St = 2. The
averages were taken over 90,000 particles starting from a square of side 2π.

3.6 Generalization of Taylor formula for inertial par-

ticles

We can exploit the previous analysis to show that the eddy diffusivity
for intertial particle can be expressed in a formally identical manner with
respect to Taylor’s formula for tracers. We recall the simplified Maxey-Riley
equations in a given carrier flow u(X (t), t):

dX (t) = (V(t) + βu(X (t), t) dt (3.44)

dV(t) = −
(

V(t)− (1− β)u(X (t), t)

τ

)

dt+

√
2D0

τ
dω(t)

The position process now is:

X (t) = X (t0) + τV(t0)(1− e−
t−to
τ )

+(1− β)

∫ t

to

dsu(X (s), s) (1− e−
t−s
τ )

+β

∫ t

to

dsu(X (s), s)

+
√

2D0

∫ t

to

dω(s) (1 − e−
t−s
τ ) (3.45)
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Figure 3.5: Non-perturbative destructive (Ω = 0, dashed line) vs construc-
tive (Ω = 3, continuous line) interference when St=2, for several values of ε.
We notice a transition in curves when 0.1 < ε < 0.3, which are the values of
ε at which we get out of the perturbative regime.

and the velocity is:

Ẋ (t) = V(t0)e
− t−to

τ +
1− β

τ

∫ t

to

dsu(X (s), s) e−
t−s
τ

+β u(X (t), t) +

√
2D0

τ

∫ t

to

dω(s) e−
t−s
τ (3.46)

This means that the entire eddy diffusivity now reads:

Def = lim
t↑∞

1

d
〈Ẋ (t) ·X (t)〉 = D0

+ lim
t↑∞

(1− β)2

τ d

∫ t−t0

0
dt1

∫ t−t0

0
dt2e

− t1
τ (1− e−

t2
τ )

× 〈u(X (t− t1), t− t1) · u(X (t− t2), t− t2)〉

+
β(1− β)

τ d
lim
t↑∞

∫ t−t0

0
dt1

∫ t−t0

0
dt2e

− t1
τ

× 〈u(X (t− t1), t− t1) · u(X (t− t2), t− t2)〉

+
β(1− β)

d
lim
t↑∞

∫ t−t0

0
dt1(1− e−

t1
τ )

× 〈u(X (t− t1), t− t1) · u(X (t), t)〉

+
β2

d
lim
t↑∞

∫ t−t0

0
dt1〈u(X (t− t1), t− t1) · u(X (t), t)〉

(3.47)

We now suppose that the process is stationary at least asymptotically after
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a certain transient, as done by Pismen and Nir. Thus 〈u(X (t− t1), t− t1) ·
u(X (t− t2), t− t2)〉 = C(|t1 − t2|)

Def = lim
t↑∞

1

d
〈Ẋ (t) ·X (t)〉 = D0

+
(1− β)2

τ d

∫ ∞

0
dt1

∫ ∞

0
dt2e

− t1
τ (1− e−

t2
τ )C(|t12|)

+
β(1− β)

τ d

∫ ∞

0
dt1

∫ ∞

0
dt2e

− t1
τ C(|t12|)

+
β(1− β)

d

∫ ∞

0
dt1(1− e−

t1
τ )C(|t1|)

+
β2

d

∫ ∞

0
dt1C(|t1|)

(3.48)

Let C(t) be again a bounded and integrable function vanishing at t→ ∞.
Then we know that:

lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ C(|t12|) (1 − e−

t2
τ ) =

∫ ∞

0
dtC(t) (3.49)

By applying Eq. (3.49), we can recast Eq. (3.48) after some algebra:

Def = D0 +
1− β + β2

d

∫ ∞

0
dt1C(|t1|)

+
β(1− β)

τ d

∫ ∞

0
dt1

∫ ∞

0
dt2 e

− t1
τ C(|t12|)

− β(1− β)

d

∫ ∞

0
dt1 e

− t1
τ C(|t1|)

(3.50)

Let us now consider the second addend.

Proposition 3.6.1.

lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ C(|t12|) =

∫ ∞

0
dt C(|t|) +

∫ ∞

0
dte−

t
τ C(|t|)

(3.51)

Proof. We can again perform the substition t1 − t2 → t, t1 → t1, similarly
to what was done for Eq. (3.18). Thus:
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lim
T↑∞

1

τ

∫ T

0
dt1

∫ T

0
dt2 e

− t1
τ C(|t12|)

= lim
T↑∞

1

τ

∫ T

0
dt1

∫ t1

t1−T
dt e−

t1
τ C(|t|) (3.52)

Looking at Fig. 3.1, we switch the order of integration, performing it with
respect to t1 first:

=
1

τ

∫ 0

−∞
dt

∫ +∞

0
dt1 e

− t1
τ C(|t|)

+ lim
T↑∞

1

τ

∫ T

0
dt

∫ T

t
dt1 e

− t1
τ C(|t|)

=

∫ ∞

0
dtC(|t|) +

∫ ∞

0
dt, e−

t
τ C(|t|)

− lim
T↑∞

e−
T
τ

∫ T

0
dt C(|t|)

(3.53)

If the integral in the last line is bounded, then that term vanishes as T →
∞.

By plugging Eq. (3.51) into Eq. (3.50), many terms cancel out and we
arrive at:

Def = D0 +
1

d

∫ ∞

0
dt1C(|t1|)

(3.54)

which is the usual Taylor formula.
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Appendix

3.A Path integrals and Jannssen-De dominicis ac-

tion

Let us start off with the Cauchy problem:

dX = u(X (t), t)dt

X = X 0 (3.55)

We consider here the prepoint discretization over the time-intervals dt and
∆t. This is equivalent to the Ito discretization in the case of multiplicative
noise. The probability of being at a certain point X (t1) at a time t1 → 0
will be:

P (X (∆t1)|X 0) = δ(X (∆t1)−X 0 − u(X 0, 0)∆t1)

where ∆t1 = t1 − t0, the latter being set here to 0 for the sake of brevity. If
we now consider instead:

dX = u(X (t), t)dt+ dω(t)

X = X 0 (3.56)

we have:

P (X (t1)|X 0) =

∫

dω(0)

∫

d∆ω1P (∆ω1)P (X (t1)|X 0,∆ω1)δ(ω(0))

=

∫

d∆ω1δ(X (t1)−X 0 − u(X 0, 0)∆t1 −∆ω1)
1√

2π∆t1
e
− ∆ω2

1
2∆t1

from the well-known property of Gaussian independent increments of the
Wiener process and that ω(0) = 0. Notice that the Wiener initial condition
turns obviously out to be irrelevant in the SDE and its value can be ignored.
If we now consider the probability of being at a certain point X (t2) at a
time t2, with a very small time step ∆t2 = t2− t1, passing through the point
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X (t1) at t = t1:

P (X (t2)|X (t1)X 0) =

∫

d∆ω1

∫

d∆ω2

×P (X (t2)|X (t1),∆ω2)P (∆ω2)P (X (t1)|X 0,∆ω1)P (∆ω1)

=

∫

d∆ω2δ(X (t2)−X (t1)− u(X (t1), t1)∆t2 −∆ω2)
1√

2π∆t2
e
− ∆ω2

2
2∆t2

×
∫

d∆ω1δ(X (t1)−X 0 − u(X 0, 0)∆t1 −∆ω1)
1√

2π∆t1
e
− ∆ω2

1
2∆t1 (3.57)

As a consequence:

P (X (t2)|X 0) =

∫

dX (t1)

∫

d∆ω1

∫

d∆ω2

×P (X (t2)|X (t1),∆ω2)P (∆ω2)P (X (t1)|X 0,∆ω1)P (∆ω1)

=

∫

dX (t1)

∫

d∆ω2δ(X (t2)−X (t1)− u(X (t1), t1)∆t2 −∆ω2)
1√

2π∆t2
e
− ∆ω2

2
2∆t2

×
∫

d∆ω1δ(X (t1)−X 0 − u(X 0, 0)∆t1 −∆ω1)
1√

2π∆t1
e
− ∆ω2

1
2∆t1 (3.58)

Recalling the formal identity δ(f(x)) =
∫ +∞
−∞ dye−ıyf(x), we can recast the

Dirac measures:

P (X (t2)|X 0) =

∫

dX (t1)

∫

dX (t1)

∫

d∆ω1

∫

dX (t2)

∫

d∆ω2

e−ıX (t2)[X (t2)−X (t1)−u(X (t1),t1)∆t2−∆ω2] 1√
2π∆t2

e
− ∆ω2

2
2∆t2

×e−ıX (t1)[X (t1)−X 0−u(X 0,0)∆t1−∆ω1] 1√
2π∆t1

e
− ∆ω2

1
2∆t1 (3.59)

We suppose now to apply the previous expressions to a finite time interval
[t0, tf ], after dividing it in fine meshes of N time sub-intervals ∆ti, i = 1, .., N ,

and taking the limit {∆ti} → 0, N → ∞ as to have
∑N

i=1 ∆ti = tf − t0.
Then we obtain:

P (X (tf ) = X f |X 0) = lim
N→∞

{∆ti}→0

[

N
∏

i=0

∫

dX (ti)

∫

dX (ti)

∫

dωi

]

×
[

N
∏

i=1

e−ıX (ti)[X (ti)−X (ti−1)−u(X (ti−1),ti−1)∆ti−∆ωi]
1√

2π∆ti
e
−∆ω2

i
2∆ti

]

×δ(X (tf )−X f )δ(X (t0)) δ(ω0) δ(X (t0)−X 0)

(3.60)
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where we have used that the jacobian dω(0)
∏N

i=1 d∆ωi =
∏N

i=0 dωi and we
have put the initial condition on X = 0 for the sake of simplicity, it being
inconsequential. Eq. (3.60) is often written as:

∫

DXDXDωe−ı[
∫ tf
t0

X (t)(Ẋ (t)−u(X (t),t))dt−
∫ tf
t0

X (t)dω(t)]

× δ(X (tf )−X f ) δ(X (t0)−X 0)

(3.61)

where we omitted the not-influential initial condition on the ghost variable
and the initial point of the Wiener process; also, we indicated the Gaussian
Wiener measure simply by Dω.

The limit is independent of the discretization because we know the inte-
gral form associated to the trajectories of the stochastic differential equation
(3.56) is independent of the mesh [11]. In general, however, path integral
can be dependent on the discretization, an a prescription has always to be
assigned in those cases [10].

We can exploit the well-known results of the Fourier transform of a Gaus-
sian variable to integrale over the Wiener increments in Eq. (3.60), as to
obtain:

∫

DXDX e
−
∫ tf
t0

dt
[

‖X̄ t‖2
+ıX̄ t·(Ẋ (t)−u(X (t),t))

]

(3.62)

The quantity

−
∫ tf

t0

dt
[

∥

∥X̄ t

∥

∥

2
+ ıX̄ t · (Ẋ (t)− u(X (t), t))

]

is the Janssen-Dominicis action for a tracer particle.

3.B A free theory reminder

3.B.1 Stochastic method

We consider the stochastic differential equation1

dX t = (u0 + ̄t) dt+
√

2D0 dωt (3.63a)

X t0 = q (3.63b)

1In the rest of this Appendix, we are going to indicate the time dependence of a function

f(t) by a low index ft, in order to have a more compact notation and neater functional

formulas.
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where ̄t : R 7→ R
d is a smooth response field. The solution is

X t = q + u0 (t− t0) +

∫ t

t0

dt1 ̄t1 +
√

2Do(ωt − ωt0) (3.64)

The field-theoretic partition function is the expectation function of the gen-
erating function

Z =

〈

exp{
∫ tf

0
dtt ·X t}

〉

=

= exp

{

∫ tf

t0

dt t · [q + u0 (t− t0)] +

∫

[t0,tf ]2
dt1dt2H(t1 − t2)t1 · ̄t2

}

×
〈

exp

{

2Do

∫ tf

t0

dt t · (ωt − ωt0)

}〉

(3.65)

The expectation value

〈

exp

{

Do

∫ tf

t0

dtt · (ωt − ωt0)

}〉

= exp

{

Do

∫

[t0,tf ]2
dt1dt2 (min(t1, t2)− t0)t1 · t2

}

3.B.2 Field theory method

The partition function in the presence of a constant velocity field is

Z =

∫

Rd

ddλ

(2π)d

∫

D[X̄ ,X ] e−
∫ tf
t0

dt{D0‖X̄ t‖2+ıX̄ t·(Ẋ t−u0−̄t)−t·X t}eıλ·(X t0−q)

(3.66)

The integral can be evaluated exactly using the stationary phase approxi-
mation. This is done in three steps

• We rotate the integration contour by representing the X̄ t’s as complex
variables

X̄ t = <X̄ t + ı=X̄ t (3.67)

• We fix the new contour by requiring that the action be real on the
contour and the corresponding integral convergent.

• We evaluate the integral by expanding along the stationary value of
the action.
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Upon performing the rotation (3.67) we get into

<A =

∫ tf

t0

dt

{

Do
‖<X̄ t‖2 − ‖=X̄ t‖2

2
− (=X̄ t) ·

(

Ẋ t − u0 − ̄t
)

−  ·X t

}

(3.68a)

=A =

∫ tf

t0

dt<X̄ t ·
(

Do=X̄ t + Ẋ t − u0 − ̄t
)

(3.68b)

The vanishing phase condition is satisfied by

Do =X̄ t + Ẋ t − u0 − ̄t = 0 (3.69)

or

<X̄ t = 0 (3.70)

We rule out the second solution as it yields a diverging integral over =X̄ t.
Hence minimizing the real part of the action is equivalent to minimizing

<A? = min
X̄ t,X t,δφt

<A=0

∫ tf

t0

dt

×
{

Do‖<X̄ t‖2 + ‖=X̄ t‖2 −  ·X t + φt ·
(

Do =X̄ t + Ẋ t − u0 − ̄t
)}

(3.71)

where the Lagrange multiplier φt linearly enforces the stationary phase con-
dition. This expression allows us to reformulate the extremal problem by a
trade off between the ghost field and the Lagrange multiplier

<A? = min
X t,δφt

<A=0

∫ tf

t0

dt
{

−Do‖φt‖2 −  ·X t + φt ·
(

Ẋ t − u0 − ̄t
)}

(3.72)

The variation with respect to X t for X t0 = q yields

φ̇t + t = 0 (3.73a)

φtf
= 0 (3.73b)

which yields, after integrating the term φt · Ẋ t:

<A? = −q ·
∫ tf

t0

dtt −
∫ tf

t0

dt

{

Do‖
∫ tf

t
dt1t1‖2 + (u0 + ̄t) ·

∫ tf

t
dt1t1

}

(3.74)
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Upon taking into account that

∫

[t0,tf ]3
dt dt1 dt2H(t1 − t)H(t2 − t) t1 · t2

=

∫

[t0,tf ]2
dt1 dt2min(t1, t2) t1 · t2

(3.75)

and that

∫ tf

t0

dtu0 ·
∫ tf

t
dt1t1 =

∫ tf

t0

dt t · u0 (t− t0) (3.76)

we obtain

<A? = −
∫ tf

t0

dt t · [q + u0 (t− t0)]

−
∫

[t0,tf ]2
dt1dt2

{

D0min(t1, t2)t1 · t2 +H(t1 − t2) t1 · ̄t2
}

(3.77)

whence finally

lnZ = −<A? (3.78)

which is the result used in the main text.

Remark 3.B.1. We notice that the stationary phase approximation is cor-
rectly reproduced by finding the extremals of the Janssen-De Dominicis ac-
tion after preforming the replacement

X̄ t = −ıφt (3.79)

This is the shortcut usually adopted to implement perturbative expansions
around a Gaussian stationary point [71].

3.C Langevin–Kramers correlation functions

We compute the extremal value of the analytic continuation of the Gaus-
sian De Dominicis-Janssen action (3.130):

A =

∫ tf

t0

dt

[

−D0
‖ψ̄t‖2
τ2

+ v̄t ·
(

v̇t +
vt − u0

τ
− ̄(p)t

)

+ X̄ t ·
(

Ẋ t − vt − ̄(q)t

)

−
(


(q)
t ·X t + 

(p)
t · vt

)]

(3.80)
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The variation with respect to X t yields for X̄ tf = 0

˙̄
X t + 

(q)
t = 0 (3.81)

Similarly the variation with respect to vt yields for v̄tf = 0

˙̄vt −
v̄t

τ
+ X̄ t + 

(p)
t = 0 (3.82)

which in view of the previous equation becomes

˙̄vt −
v̄t

τ
+ 

(p)
t = −

∫ tf

t
dt1 

(q)
t1

⇒ v̄? t =

∫ tf

t
dt1 e

t−t1
τ 

(p)
t1 +

∫ tf

t
dt1 e

t−t1
τ

∫ tf

t1

dt2 
(q)
t2 (3.83)

Upon inserting into the action functional, after integrating the terms with
time derivatives by parts, we get into

A =

∫ tf

t0

dt

[

−D0
‖v̄? t‖2
τ2

− v̄? t ·
(u0

τ
+ ̄

(p)
t

)

− ̄(q)t ·
∫ tf

t
dt1

(q)
t1

]

− X t0 ·
∫ tf

t0


(q)
t dt− vt0 · v̄? t0

3.D Mathematical extension to Gaussian random

flows

3.D.1 The tracer case

The scope of this section is to recover the results of [64] working out the
details of the calculations not thereby reported.

A Lagrangian particle evolves according to the SDE

dX t = u(X t, t)dt+
√

2Do dωt (3.84)

The De Dominicis–Janssen action for a Lagrangian particle in a flow de-
scribed by a velocity field u : Rd × R 7→ R

d:

A =

∫ tf

t0

dt
{

D0‖X̄ t‖2 + ı X̄ t ·
[

Ẋ t − u(X t, t)
]}

(3.85)

The moment generating function (in Statistical Mechanics: partition func-
tion) for a diffusion process based at q is

Z =

∫

D[X̄ ,X ] e−A+
∫ tf
t0

dt(t·X t+ı̄·X̄ t) δ(d)(X t0 − q) (3.86)
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We immediately observe that such a partition function with the external
source  = 0 is equivalent to a system governed by the following SDE:

dX t = (̄t + u(X t, t))dt+
√

2Do dωt , (3.87)

where the external source ̄ turns out to be a linear perturbation of the
external velocity field.

If the velocity field is space-time constant,

u(q, t) = uo (3.88)

the solution of SDE follows immediately:

X t = q +

∫ t

t0

̄t1 dt1 + u (t− t0) +
√

2Do (ωt − ωt0) , (3.89)

The partition function is specified by the correlation functions we are going
to compute. We can obtain directly from the solution (3.89):

〈X t〉 = q + uo (t− t0) (3.90a)

〈X t1 ⊗X t2〉 = (q + uo (t1 − t0) )⊗ (q + uo (t2 − t0) )

+ 2Do(min(t1, t2)− t0)I

(3.90b)

〈

X t1 ⊗ ıX̄ t2

〉

=

〈

δX t1

δ̄t2

〉

= H(t1 − t2) I (3.90c)

where H(0) = 0.
In general, one has to compute the moment generating function if in-

terested in deriving the most general statistical observable. From Appendix
3.B.2:

Z = e
∫ tf
t0

dt t·[q+u0 (t−t0)]+
∫

[t0,tf ]
2 dt1dt2 {D0(min(t1, t2)−t0)t1 ·t2+H(t1−t2) t1 ·̄t2}

(3.91)

whence we get the following relationships:

〈

X̄ t

〉

= −ıδZ
δ̄t

∣

∣

∣

∣

=̄=0

= 0 (3.92a)

〈

X̄ t1 ⊗ X̄ t2

〉

= − δ2Z

δ̄t1δ̄t2

∣

∣

∣

∣

=̄=0

= 0 (3.92b)
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Now, let the velocity field field be Gaussian with constant mean

〈u(q, t)〉(u) = uo (3.93)

and correlation

〈(u(q2, t2)− u0)⊗ (u(q1, t1)− u0)〉(u)
= B(q1 − q2, |t1 − t2|) ≡ B(q12, |t12|)

We wish to compute the perturbative expression of the eddy-diffusivity:

Def ≡ 1

2d
lim
t↑∞

d

dt

〈

‖X t − 〈X t〉(u) ‖2
〉

(u)
(3.94)

We can evaluate (3.94) by averaging the generating function over the
velocity ensemble

〈Z〉(u) =

∫

D[X , X̄ ]

× exp

{

−
∫ tf

t0

dt
[

Do‖X̄ t‖2 − t ·X t + ı X̄ t ·
(

Ẋ t − ̄t
)]

}

〈I〉(u)
(3.95)

where

〈I〉(u) ≡ exp

{

−1

2

∫

[t0,tf ]2
dt1dt2 X̄ t1 · B(X t1 −X t2 , |t12|) · X̄ t2

}

=

exp

{

∫

[t0,tf ]
dt

(

X t ·
δ

δφt

+ X̄ t ·
δ

δφ̄t

)

}

.

× exp

{

−1

2

∫

[t0,tf ]2
dt1dt2 φ̄t1 · B(φt1 − φt2 , |t12|) · φ̄t2

}∣

∣

∣

∣

∣

φ̄=φ=0

(3.96)

The formal expression of the path integral becomes

〈Z〉(u)

= e

∫ tf
t0

dt [q+uo (t−t0)]·
(

t+
δ

δφt

)

+
∫

[tf ,t0]
2 dt1dt2 D0(min(t1, t2)−t0)

(

t1
+ δ

δφt1

)

·
(

t2
+ δ

δφt2

)

× e

∫

[tf ,t0]
2 dt1dt2 H(t1−t2)

(

t1
+ δ

δφt1

)

·
(

̄t2
+ 1

ı
δ

δφ̄t2

)

×e−
1
2

∫

[t0,tf ]
2 dt1dt2 φ̄t1

·B(φt1
−φt2

,|t12|)·φ̄t2

∣

∣

∣

φt=φ̄t=0

(3.97)
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The expression is amenable to the conceptually more transparent form

〈Z〉(u) = eW0 T(φ, ıφ̄) eO(φ,ıφ̄) e−F (φ,φ̄)
∣

∣

∣

φt=φ̄t=0

≡ eW0 T(φ, ıφ̄) eO(φ,ıφ̄)

× exp

{

−1

2

∫

[t0,tf ]2
dt1dt2 φ̄t1 · B(φt1 − φt2 , |t12|) · φ̄t2

}∣

∣

∣

∣

∣

φt=φ̄t=0

(3.98)

where

W0 =

∫ tf

t0

dt [q + uo (t− t0)] · t

+

∫

[tf ,t0]2
dt1dt2

{

D0 (min(t1, t2)− t0)t1 · t2 +H(t1 − t2) t1 · ̄t2
}

(3.99)

Furthermore T is the translation operator

T(φ, ıφ̄)

= exp

{∫ tf

t0

dt

[

(q + uo(t− t0) +G · t +R ◦ ̄t) ·
δ

δφt

+
(R† ◦ )t

ı
· δ

δφ̄t

]}

(3.100)

where we defined

R† ◦ t =
∫ tf

t0

dt1H(t1 − t)t1 (3.101)

R ◦ ̄t =
∫ tf

t0

dt1H(t− t1)̄t1 (3.102)

and

G ◦ t = 2D0

∫ tf

t0

dt1 (min(t1, t)− t0) t1 (3.103)

Finally in (3.98) the exponential of the operator

O(φ, ı φ̄)

=

∫

[tf ,t0]2
dt1dt2

{

D0(min(t1, t2)− t0)
δ

δφt1

· δ

δφt2

+
H(t12)

ı

δ

δφt1

· δ

δφ̄t2

}

(3.104)
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acts on the the interaction term. We now can re-absorb the imaginary factor
at the price of a redefinition of the ghost field:

φ̄ 7→ −ı φ̄ (3.105)

so that the loop expansion of the cumulant generating function (in Statistical
Mechanics: Helmholtz free energy) stems from the formula

W =W0 + ln
{

T(φ, φ̄) eO(φ,φ̄) eF (φ,φ̄)
}∣

∣

∣

φt=φ̄t=0
(3.106)

which involves only real quantities. The formula (3.106) is the one usually
applied in the field theoretic systematic analysis of perturbation theory [71].
Having fixed the conventions (3.105) and (3.106), we will omit in what follows
any explicit reference to the functional dependence on φ, φ̄. We generate the
perturbative expansion in powers of the scalar functional F :

T eO eF = T eO (1 + F + . . . ) = 1 + T eO F + . . . (3.107)

Consequently, at the lowest order in F it also holds that:

W = W0 + ln

(

1 +
{

T eO F
}

φtφ̄t=0

)

+ . . .

= W0 +
{

T eO F
}

φt=φ̄t=0
+ . . .

(3.108)

In order to proceed further we write

F =
1

2

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2 e

ık·(φt1
−φt2

)φ̄t1 · B̌(k, |t12|) · φ̄t2

=
1

2
∂a1 ⊗ ∂a2

∣

∣

∣

∣

a1=a2=0

:

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2 e

ı k·(φt1
−φt2

) e
∑2

i=1 aiφ̄ti B̌(k, |t12|)

(3.109)

The latter representation is useful once we recognize that O is the generator
of the Gaussian measure. Namely we recall that

Proposition 3.D.1.

eOe
∫ tf
t0

dt(t·φt+̄t·φ̄t)

= e
∫ tf
t0

dt(t·φt+̄t·φ̄t)+
∫

[tf ,t0]
2 dt1dt2 {D0(min(t1, t2)−t0)t1 ·t2+H(t1−t2) t1 ·̄t2}

(3.110)
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Proof. The proof stems from the definition of expO as Gaussian average of
a translation operator:

eOe
∫ tf
t0

dt(t·φt+̄t·φ̄t) =

∫

D[X , X̄ ]
X t0=X̄ tf

=0

× exp

{

−
∫ tf

t0

dt
[

Do‖X̄ t‖2 + X̄ t · Ẋ t

]

}

× exp

{

−
∫ tf

t0

dt

[

−X t ·
δ

δφt

− X̄ t ·
δ

δφ̄t

−
∫ tf

t
dt1X̄ t1 ·

δ

δφt

]}

× exp

{
∫ tf

t0

dt
(

t · φt + ̄t · φ̄t

)

}

= e
∫ tf
t0

dt(t·φt+̄t·φ̄t)
∫

D[X , X̄ ]
X t0=X̄ tf

=0

× exp

{

−
∫ tf

t0

dt

[

Do‖X̄ t‖2 + X̄ t · Ẋ t −X t · t − X̄ t ·
(

̄t −
∫ t

t0

dt1t1

)]}

whence the claim.

If we now set

t = ık [δ(t− t1)− δ(t− t2)] (3.111a)

̄t = a1δ(t− t1) + a2δ(t − t2) (3.111b)

Since we assume H(0) = 0, it is straightforward to obtain

eO F = ∂a1 ⊗ ∂a2 |a1=a2=0 :

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2

× eık·(φt1
−φt2

)−Do‖k‖2|t12| e
∑2

i=1 ai·φ̄ti
+ık·[a2H(t12)−a1H(t21)] B̌(k, |t12|)

2

=
1

2

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2 e

ık·(φt1
−φt2

)−Do‖k‖2|t12|

×
[

φ̄t1 − ıkH(t21)
]

· B̌(k, |t12|)
[

φ̄t2 + ıkH(t12)
]

·
(3.112)

Upon applying the translation operator T we find then
{

T eO eF
}

φt=φ̄t=0

=
1

2

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2 e

ık·
∑2

i=1(−)1+i(G◦ti+R◦̄ti+uo ti)−Do‖k‖2|t12|

×
[

R† ◦ t1 − ıkH(t21)
]

· B (k, |t12|) ·
[

R† ◦ t2 + ıkH(t12)
]

+ . . .

(3.113)
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3.D.2 Explicit expression of the diffusion constant up to lead-

ing order

In order to compute the eddy diffusivity we first need the second order
position cumulant:

δ2W

δt3 · δt3

∣

∣

∣

∣

t=̄t=0

= 2dDo t30

+

∫

[t0,t3]2
dt1dt2

∫

ddk

(2π)d
eık·uo t12−Do‖k‖2|t12| trB (k, |t12|)

+ 2Do

∫

[t0,t3]2
dt1dt2H(t12) t12

∫

ddk

(2π)d
eık·uo t12−Do‖k‖2|t12|

× (ık) · B (k, |t12|) · (ık) + . . .

(3.114)

Whence:

Def =
1

2d
lim
t3↑∞

d

dt3

δ2W

δt3 · δt3

∣

∣

∣

∣

t=̄t=0

=

Do + lim
t3↑∞

1

d

∫

[t0,t3]
dt

∫

ddk

(2π)d
eık·uo (t3−t)−Do‖k‖2|t3−t| trB (k, |t3 − t|)

+ lim
t3↑∞

Do

d

∫

[t0,t3]
dt (t3 − t)

∫

ddk

(2π)d
eık·uo (t3−t)−Do‖k‖2|t3−t|

×(ık) · B (k, |t3 − t|) · (ık) + . . .

(3.115)

After performing the substitution t3 − t→ T in the integrals, one obtains:

Do + lim
t3↑∞

1

d

∫ t3−t0

0
dT

∫

ddk

(2π)d
eık·uo T−Do‖k‖2|T | trB (k, |T |)

+ lim
t3↑∞

Do

d

∫ t3−t0

0
TdT

∫

ddk

(2π)d
eık·uo T−Do‖k‖2|T |

× (ık) · B (k, |T |) · (ık) + . . .

= Do +
1

d

∫ ∞

0
dT

∫

ddk

(2π)d
eık·uo T−Do‖k‖2|T |

×
∫

ddX e−ık·X 〈u(q +X , T ) · u(q, 0)〉

+
Do

d

∫ ∞

0
TdT

∫

ddk

(2π)d
eık·uo T−Do‖k‖2|T |

×
∫

ddX e−ık·X∂X ⊗ ∂X : 〈u(q +X , T )⊗ u(q, 0)〉+ . . .

(3.116)
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We now focus on the case uo = 0, and expand this expression up to the first
order in Do:

Do +
1

d

∫ ∞

0
dT

∫

ddk

(2π)d

∫

ddX e−ık·X 〈u(q +X , T ) · u(q, 0)〉

+
D0

d

∫ ∞

0
TdT

∫

ddk

(2π)d

∫

ddX e−ık·X∂X · ∂X
× 〈u(q +X , T ) · u(q, 0)〉

+
Do

d

∫ ∞

0
TdT

∫

ddk

(2π)d

∫

ddX e−ık·X

× ∂X ⊗ ∂X : 〈u(q +X , T )⊗ u(q, 0)〉
+ . . .

= Do +
1

d

∫ ∞

0
dT 〈u(q, T ) · u(q, 0)〉

+
D0

d

∫ ∞

0
TdT

〈

[∂Xα∂Xαuβ(q +X , T )]
∣

∣

X=0
· uβ(q, 0)

〉

+
Do

d

∫ ∞

0
TdT

〈

[∂Xα∂Xβ
uα(q +X , T )]

∣

∣

X=0
uβ(q, 0)

〉

+ . . .(3.117)

Observing that [∂Xu(q + X , T )]
∣

∣

X=0
= ∂qu(q, T ), and due to the homo-

geneity and stationarity of the two-point velocity correlation function, by
simply using the chain rule:

〈[∂qα∂qαuβ(q, T )]uβ(q, 0)〉 = ∂Xα∂Xα 〈[uβ(q +X , T )]uβ(q, 0)〉
∣

∣

X=0

= ∂Xα∂Xα 〈[uβ(q +X , 0)]uβ(q, T )〉
∣

∣

X=0
= 〈[∂qα∂qαuβ(q, 0)]uβ(q, T )〉

(3.118)

〈[∂qα∂qαuβ(q, T )]uβ(q, 0)〉
= ∂qα 〈[∂qαuβ(q, T )]uβ(q, 0)〉 − 〈[∂qαuβ(q, T )][∂qα uβ(q, 0)]〉
= ∂qα∂qα 〈uβ(q, T )uβ(q, 0)〉 − ∂qα 〈uβ(q, T ) [∂qαuβ(q, 0)]〉
− 〈[∂qαuβ(q, T )][∂qα uβ(q, 0)]〉
= −〈uβ(q, T ) [∂qα∂qαuβ(q, 0)]〉 − 2 〈[∂qαuβ(q, T )][∂qα uβ(q, 0)]〉

(3.119)

Upon taking into account all of this, for an incompressible velocity field we
end up with:

〈[∂qα∂qαuβ(q, T )]uβ(q, 0)〉 = −〈[∂qαuβ(q, T )][∂qα uβ(q, 0)]〉 (3.120a)

〈

[∂qα∂qβuα(q, T )]uβ(q, 0)
〉

= 0 (since ∂qαuα = 0) (3.120b)
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If we substitute these two identities in (3.117), we finally get the eddy-
diffusivity espression presented by Mazzino and Vergassola in 1997:

Def = Do +
1

d

∫ ∞

0
dT 〈u(q, T ) · u(q, 0)〉

−Do

d

∫ ∞

0
TdT 〈[∂qαuβ(q, T )][∂qα uβ(q, 0)]〉 + . . .

(3.121)

3.D.3 The inertial case: Gaussian Langevin-Kramers model

We now consider the simplified Maxey-Riley equations for the inertial
particles:

dX t = vt dt (3.122a)

dvt = −
(

vt − u
τ

)

dt+

√
2D0

τ
dωt (3.122b)

When the velocity is a costant u0, particle velocity along the shear compo-
nents evolves according to a d− 1-dimensional Ornstein–Uhlenbeck process

vt = e−
t−to
τ vt0 + u0 (1− e−

t−to
τ ) +

√
2D0

τ

∫ t

to

dωs e
− t−s

τ (3.123)

the position process is

X t = X t0 + vt0(1− e−
t−to
τ ) + u0 [t− to − τ (1− e−

t−to
τ )]

+
√

2D0

∫ t

to

dωs (1− e−
t−s
τ )

(3.124)

Let χt = X t ⊕ vt the phase space Gaussian process. Its initial data condi-
tioned is specified by

〈X t〉 = X t0 + vt0 (1− e−
t−to
τ ) + u0 [t− t0 − τ (1− e−

t−t0
τ )] (3.125)

〈vt〉 = e−
t−to
τ vt0 + u0 (1− e−

t−to
τ ) (3.126)

The covariance matrix has instead components in position space

〈(X t1 − 〈X t1〉)⊗ (X t2 − 〈X t2〉)〉

= 2D0 τ I

(

e−
t10
τ + e−

t20
τ − e−

|t12|
τ + e−

t10+t20
τ

2
+

min(t1, t2)− t0 − τ

τ

)

≡ G
(qq)(t1, t2; t0)

(3.127)
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in momentum space

〈(vt1 − 〈vt1〉)⊗ (vt2 − 〈vt2〉)〉 =
D0 I

τ

(

e−
|t12|
τ − e−

t10+t20
τ

)

≡ G
(pp)(t1, t2; to)

(3.128)

and cross correlation

G
(qp)(t1, t2; t0) ≡ 〈(X t1 − 〈X t1〉)⊗ (vt2 − 〈vt2〉)〉

= 2D0 I

[

1− e−
t20
τ − e−

t10
τ sinh

t20
τ

]

H(t12)

−2D0 I e
− t20

τ

[

1 + e
t10
τ − 2 e−

t10
τ

]

H(t21) (3.129)

We now consider the situation when u is a general Gaussian field. The
action is:

A =

∫ tf

t0

dt

[

D0
‖v̄t‖2
τ2

+ ı v̄t ·
(

v̇t +
vt − u0

τ
− ̄(p)t

)

+ ı X̄ t ·
(

Ẋ t − vt − ̄(q)t

)

]

−
∫ tf

t0

dt
(


(q)
t ·X t + 

(p)
t · vt

)

+

∫

[t0,tf ]2
dt1dt2 v̄t1 ·

B (X t1 −X t2 , |t12|)
2τ2

· v̄t2

(3.130)

Let us preliminarily consider the test case when the flow is δ−correlated,
i. e. B (q1 − q2, |t12|) = 4πF (q1 − q2) δ(t1 − t2). In that case the previous
action becomes:

A =

∫ tf

t0

dt

[

(D0 + 2π trF(0))
‖v̄t‖2
τ2

+ ı v̄t ·
(

v̇t +
vt − u0

τ
− ̄(p)t

)]

+

∫ tf

t0

dt
[

ı X̄ t ·
(

Ẋ t − vt − ̄(q)t

)

− (q)t ·X t + 
(p)
t · vt

]

(3.131)

This action, withouth any source, makes the functional integral easily com-
putable since it has the same form as the free theory with the substitiution
D0 → D0 +2π trF(0), which turns out to be the very eddy-diffusivity. That
is the same expression as the one in the tracer case, as proved in a different
way by Boi, Martins and Mazzino in 2015.

The knowledge of the foregoing indicators, specifies the perturbative al-
gorithm around the Gaussian theory. The response functions are then easily
computed from the solutions of the SDEs associated to the free part of the

above action (3.130) including the new external sources ̄
(q)
t and ̄

(p)
t .

dX t = (vt + ̄
(q)
t ) dt (3.132a)

dvt = −
(

vt − u0

τ
− ̄(p)t

)

dt+

√
2D0

τ
dωt (3.132b)
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The solutions are given by Eq. (3.123)-(3.124) after substituting
√
2D0
τ dωs →√

2D0

τ dωt + ̄
(p)
t dt and X t → X t +

∫ t
t0
̄
(q)
t1 dt1. Consequently:

〈

X t1 ⊗ ı X̄ t2

〉

=

〈

δX t1

δ̄
(q)
t2

〉

= H(t12) I ≡ R
(qq)(t12) (3.133a)

〈X t1 ⊗ ı v̄t2〉 =
〈

δX t1

δ̄
(p)
t2

〉

= τ (1− e−
t12
τ )H(t12) I ≡ R

(qp)(t12) (3.133b)

〈

vt1 ⊗ ı X̄ t2

〉

=

〈

δX t1

δ̄
(q)
t2

〉

= 0 ≡ R
(pq)(t12) (3.133c)

〈vt1 ⊗ ı v̄t2〉 =
〈

δX t1

δ̄
(p)
t2

〉

= e−
t12
τ H(t12) I ≡ R

(pp)(t12) (3.133d)

We generate the perturbative expansion from the functional

W =W0 + ln
{

T eO eF
}

Φt=Φ̄t=0
(3.134)

where upon defining J = [(q), (p)] and J̄ = [̄(q), ̄(p)] we write

W0 =

∫ tf

t0

dtJ t · 〈χt〉+
∫

[tf ,t0]2
dt1dt2

{

J t1 ·
G

2
· J t2 + J t1 · R · J̄ t2

}

(3.135)

and

F =

∫

[t0,tf ]2
dt1dt2 v̄t1 ·

B (X t1 −X t2 , |t12|)
2τ2

· v̄t2 (3.136)

In order to define the functional translation operator we observe that

G ◦ J t1 + R ◦ J̄ t1 =

∫ tf

t0

dt2

×





G
(qq)(t1, t2, t0) · (q)t2 + G

(qp)(t1, t2, t0) · (p)t2 + R
(qq)(t12) · ̄(q)t2 + R

(qp)(t12) · ̄(p)t2

G
(pq)(t1, t2, t0) · (q)t2 + G

(pp)(t1, t2, t0) · (p)t2 + R
(pp)(t12) · ̄(p)t2





(3.137)

and

R
† ◦ J t1 =

∫ tf

t0

dt2






(q)
t2 · R(qq)(t21)


(q)
t2 · R(qp)(t21) + 

(p)
t2 · Rpp(t21)



 (3.138)
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so that we can write

T = exp

{

∫

[tf ,t0]
dt

[

(

〈χt〉+ G ◦ J t + R ◦ J̄ t

)

· δ

δΦt
+ R

† ◦ J t ·
δ

δΦ̄t

]

}

(3.139)

Finally the generator of Gaussian fluctuations is now

O =

∫

[tf ,t0]2
dt1dt2

[

δ

δΦt1

· G
2
· δ

δΦt2

+
δ

δΦt1

· R · δ

δΦ̄t2

]

(3.140)

With these conventions, we see that the tree level correction to the free
energy

eOF =
1

2
∂a1 ⊗ ∂a2 |a1=a2=0 : e

O

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2

× eık·(φ
(q)
t1

−φ
(q)
t2

) e
∑2

i=1 aiφ̄
(p)
ti

B̌

τ2
(k, |t12|)

(3.141)

Upon introducing the currents

J t =

[

ık [δ(t− t1)− δ(t− t2)]

0

]

(3.142a)

J̄ t =

[

0

a1δ(t − t1) + a2 δ(t − t2)

]

(3.142b)

we get into

eOF =
1

2
∂a1 ⊗ ∂a2 |a1=a2=0 :

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2

×eık·(φ
(q)
t1

−φ
(q)
t2

)− G̃(qq)(t1,t2,t0)‖k‖
2

2 e
∑2

i=1 ai·φ̄(p)
ti

+ık·[a2R(qp)(t12)−a1R(qp)(t21)] B̌

τ2
(k, |t12|)
(3.143)

where

G̃(qq)(t1, t2, t0)

= G(qq)(t1, t1, t0) +G(qq)(t2, t2, t0)−G(qq)(t1, t2, t0)−G(qq)(t2, t1, t0)

= 2D0 τ

(

1− e−
|t12|
τ + e−

t10+t20
τ − e−

2t10
τ + e−

2t20
τ

2
+

|t12|
τ

)

(3.144)
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Upon evaluating the derivatives we get into

eOF =
1

2

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2 e

ık·(φ(q)
t1

−φ
(q)
t2

)− G̃(qq)(t1,t2,t0)‖k‖
2

2

×
[

φ̄
(p)
t1 − ıR(qp)(t21)k

]

· B̌

τ2
(k, |t12|) ·

[

φ̄
(p)
t2 + ıR(qp)(t12)k

]

(3.145)

In order to derive the tree level contribution to the free energy we need to
apply the translation operator to the expression above:

TeOF |Φ=Φ̄=0 =
1

2

∫

ddk

(2π)d

∫

[t0,tf ]2
dt1dt2

×eık·[
∑2

i=1(−)i+1[〈X ti〉+G(qq)◦(q)ti
+G(qp)◦(p)ti

+R(qq)◦̄(q)ti
+R(qp)◦̄(p)t2

]− G̃(qq)(t1,t2,t0)‖k‖
2

2

×
[

R(qp)† ◦ (q)t1 +R(pp) ◦ (p)t1 − ıR(qp)(t21)k
]

· B̌

τ2
(k, |t12|) ·

[

R(qp)† ◦ (q)t2 +R(pp) ◦ (p)t2 + ıR(qp)(t12)k
]

(3.146)

3.D.4 Explicit espression for the diffusion constant at the

leading order

The second cumulant is:

δ2W

δ
(q)
t3 · δ(q)t3

∣

∣

∣

∣

∣

t=̄t=0

= G(qq)(t3, t3, t0) +

∫

ddk

(2π)d

×
{

∫

[t0,tf ]2
dt1dt2 e

ık·〈X t1−X t2〉−
G̃(qq)(t1,t2,t0)‖k‖

2

2 R(qp)†(t31) tr
B̌

τ2
(k, |t12|)R(qp)†(t32)

+

∫

[t0,tf ]2
dt1dt2 e

ık·〈X t1−X t2〉−
G̃(qq)(t1,t2,t0)‖k‖

2

2 (ık) · B̌

τ2
(k, |t12|) · (ık)

× [G(qq)(t1, t3)−G(qq)(t2, t3)] [R
(qp)†(t31)R

(qp)(t12)−R(qp)(t21)R
(qp)†(t32)]

}

(3.147)

We notice that

〈X t1 −X t2〉 = vt0τ (e−
t20
τ − e−

t10
τ ) + u0 [t12 + τ (e−

t20
τ − e−

t10
τ )] (3.148)

hence the correlation depends in principle of the initial momentum average
although memory of it is exponentially lost, as already proven in Prop. 3.2.1.
We also notice that for an incompressible flow (the limit we are interested in),
the last addend in (3.147) cancels out. If we also consider a zero-mean flow,
we end up with the same first-order expression 3.16 for the eddy diffusivity
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as in the parallel flow, which holds for any β. This means that a further
perturbation expansion in the neighbourhood of β = 1 would give some non-
zero result at least starting from the next-to-leading order of this theory with
respect to the Brownian trajectories. That would be indeed the order where
the geometry of the flow plays an active role in determining the trajectories.

120



Conclusions

In this PhD thesis we have investigated general large-scale properties of
particle transport. In particular, herein we have dedicated the treatment
to those processes to which Central Limit Theorem applies and the corre-
sponding large-scale dynamics consists of a Gaussian random process. In
these cases, standard advection/diffusion equation describes correctly the
large-scale evolution of the probability distribution function of the particles
- or, equivalently, their concentration field. Such a dynamics is then com-
pletely identified by an effective diffusivity, which is a tensor field in general
and enters into the effective advection/diffusion equation. Such a tensor field
is called eddy-diffusivity.

To study the probabilistic behaviour of several stochastic systems typi-
cally including a chaotic flow plus a possible white noise contribution, we
have exploited both numerical and analytic methods. The former were
used preliminarily in Chapter 1 to confute a perturbative result in litera-
ture [25], about the possibility of having a non-Gaussian large-scale regime
which would give rise to an infinite eddy-diffusivity tensor. The two main
ingredients considered in that analysis were the inertia of particles and the
shape of the flow spectrum in the infra-red zone. This was of potential in-
terest for applications because that region of the spectrum has not universal
behaviour. It is indeed affected by the boundary presence and the external
forces, contrarily to sufficiently-small-scale turbulence [58].

As for the numerical method, it consisted of measuring eddy-diffusivity
in Lagrangian simulations of a large number of particles in a flow whose
statistical properties (mean value, correlation functions, stationarity, ho-
mogeneity,...) were set a priori, thanks to suitable Fourier analysis along
with stochastic methods which were explained in Chapter 1. This gave us a
twofold advantage. Firstly, having a full control on the statistical behaviour
of our system allowed us to be sure that any result was totally genuine, rather
than a consequence of too short a spectral range such as the -5/3 range one
usually obtains in DNS of Navier-Stokes equations at high Reynolds number.
Secondly, we were allowed to construct an arbitrarily shape of the infrared
spectrum.

This numerical method was afterwards used to mimic small scall turbu-
lence properties according to theory of ideal turbulence [58, 67]. On such a
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model, we were able to assess the reliability of some perturbative expressions
we had achieved by means of multiple-scale methods. In this manner, we
obtained explicit effective expressions for eddy-diffusivity tensor fields and
effective advective velocity fields to insert into a possible effective transport
equation. This problem was of interest because in pollutant transport ap-
plications for Oceanography and Atmosphere Physics the unresolved small-
scale flow still gives a contribution to the mixing. Thanks to a comparison
between numerical measures in our effective model and the “exact” fully-
resolved field, those expressions turned out to be more accurate than other
possible closures, so long as the small-scales are incompressible, ergodic and
in general fulfill the several properties of ideal turbulence.

In Chapter 3 we leveraged analytic methods to obtain exact expression
of the eddy diffusivity for inertial particles. Such a result let us give an
analytic explaination for the numerical results of Chapter 1. To do that, first
we exploited the class of parallel flows, which originates an exactly solvable
problem for inertial particle diffusion. This model could have application
for example in microchannel mixing. Indeed, there flow velocity is small and
typically width of the system is 100−1000µm. Reynolds and Pèclet numbers
are thus quite low, and molecular diffusivity becomes important for mixing
process. On the other hand, suitable polymer solution can bring about
chaotic and fully mixing flows even at arbitrarily small Reynolds numbers
[73]. This system can be modelled to a first approximation with a random,
statistically stationary and homogenous parallel flow.

Successively, we showed those results about the role of inertia are useful
in more general application. Namely, they apply as a leading order expansion
every time molecular diffusivity plays an important role, no matter the form
of the carrier flow is. Another valid application is to parallel flows plus
possible small perturbations (which could represent instabilities in transition
to turbulence). Systems of inertial particles in such flows eventually turned
out to be equivalent to tracer particles in the same flow plus coloured white
noise [70].

Finally, we proved the generality of Taylor’s formula from 1921, by
demonstrating that it turns out to be applicable to inertial particles ev-
erytime the conditions for the simplified Maxey-Riley equation holds true.
The consequence of this fact could be potentially of interest in both numer-
ical and perturbation applications, because every technique which has been
applied for tracer particles so far is also applicable to inertial particles. The
result is an exact one when particles are much denser with respect to the
fluid , i. e. β ∼ 0, and everytime Stβ � 1 - typically . 10−3. In the lat-
ter case, neglecting Basset term in chaotic and fully mixing flows term does
not seem to entail such a great change in the trend of the values of eddy
diffusivity, although these values are still different.

All of the above results about tracers and inertial particles therefore
represent analytical properties. They were corroborated numerically, and
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help understand the behaviour of such physical systems in the situations
where chaotic dynamics is statistically equivalent to an ergodic stochastic
flow plus white noise.

To conclude this section, we briefly list some possible perspectives one
could try to carry on about these projects:

• evaluating the performance of the closure for tracer pre-asymptotic
transport in real cases, such as RaDAR data, RANS numerical models
in ocean and atmosphere, whenever the small-scale flow can be consid-
ered ideally turbulent and incompressible;

• evaluating a new closure for compressible cases, by exploiting the first
order perturbation results in the Appendix of Chapter 3, and then as-
sessing its performance in a compressible 2D flow such as some surface
oceanographic data [74];

• computing a new exact expression for inertial particles fulfilling the
complete Maxey-Riley equations in parallel flows; providing a gener-
alized Taylor formula for inertial particle in the complete equations,
including Basset term;

• evaluating a new closure for inertial particles.
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