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Chapter 1
Introduction

On April 2010 a serious environmental disaster started: it was going to be the
worst in United States history. After the explosion of the Deepwater Horizon,
an oil platform of the British Petroleum Company, about 500000 tons of oil were
discharged in the Gulf of Mexico with heavy impact on the ecosystem and an
estimated economical damage of 17.5 billion dollars.
Every spring, countless numbers of fungal spores fly northward from Mexico, car-
ried by wind in the large-scale atmospheric circulation that interests the North
American region. Many of them are pathogens of the main crops cultivated in
US and Canada ([1]). Understanding spore transport is crucial to inform decision
making, especially to indicate to farmers what is the right time to spray their
crops and protect them from devastating pathogenic invasion.
Ocean hydrodynamics affects the distribution of small fish species. For instance,
in the Mediterranean Sea the reproductive strategy of the European Anchovy is
strongly influenced by the surface currents that carry around eggs and larvae, as
investigated in [2] for the particular case of the Sicily channel.
These seemingly unrelated phenomena are all examples of transport in geo-
physics, carried out either by oceanic or atmospheric currents. In a very general
way, we can talk about transport whenever the spatial distribution of a substance
changes in time. This definition encloses a wide range of phenomena that belong
to very different fields in science and enginereeng.
Computational power and storage are ever more reliable and affordable. Thanks
to advances in both software and hardware, numerical tools became widely avail-
able to study transport phenomena in the environment. This is particularly in-
teresting for environmental problems, as experiments in the field are expensive
and they can only provide sparse information, whereas numerical models de-
scribe the dynamics in a regular grid in space and time. Numerical models are
a powerful tool for fundamental scientific inquiry, but they also offer essential
assistance for land management in both ordinary and extraordinary situations.
Quantitatively understanding geophysical flows, as well as the substances they
carry, is challenging. Atmospheric and oceanic flows are typically turbulent,
and their dynamics couples a wide range of space-time scales. The full range of
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2 Chapter 1. Introduction

dynamically coupled scales, from the millimeters to thousands of kilometers, is
inaccessible to direct numerical simulations. Turbulence is intrinsecally chaotic,
in that a minor deviation in the initial conditions leads to complitely different
evolutions. Moreover, the current state of the environment cannot be monitored
with sufficient detail.
In this thesis, I will focus on phenomena that depend mainly on the large scales.
In these class of problems, numerical simulations can be developed, where the
small scales are not resolved but rather parameterized.
The definition of large and small scales depends on the particular application.
Different strategies have been developed to model the unresolved scales, which
depend on the constraints of the specific application. I will discuss and apply
sub-grid models for fungal spore dispersal in the atmosphere and sea surface
transport.

Survival strategies in fungal kingdom The first part of my thesis focuses
on the large-scale atmospheric transport of fungal spores. Despite the fundamen-
tal role of fungi for ecosystems and human activities, this mega-diverse group of
species remains largely obscure and understudied. Recently, fungi has received
increasing attention, mostly due to the economic impact of fungal pathogens on
agriculture. Single species like Sclerotinia sclerotiorum can produce billion of
dollars of damage per year and similar figures are common to several different
pathogenic species on the main food crops (e.g. wheat and rice). In the following,
I focus on the North American region, first because this is where meteorological
datasets are best resolved. Second because a wealth of information is available
on crop disease, and it appears that pathogens travel from Mexico to Canada
following large scale atmospheric circulation patterns.
The wheat pathogen Puccinia graminis causes stem rust and jeopardizes the
harvest causing huge economical losses. This fungus passes the winter in the
warm region of Mexico and Southern USA and during the spring it disperses
northward, reaching Canada in few months. This dynamics is possible due to
the geographical structure of the central USA, characterized by flat terrain, with
mountains on either side West and East and affected by mainly northward and
southward currents connecting Mexico with Canada. At the same time, this ex-
tended region is full of crops, suitable for fungal invasion.
Numerical models have been deployed to study spore transport and spatial dis-
persal of plant diseases caused by fungi. Some of these studies focus on dynamics
at the scale of the canopy, others on transport within the surface layer (the lower
part of the planetary boundary layer) and others on regional and global scales
([8], [6] and [7]). In this thesis I focus on spore dispersal in the open atmosphere,
i.e. once the spores leave the canopy.
The motivation for studying spore dispersal stems from its importance for fungal
survival. Indeed, although fungi are sessile organisms, and have no wings or legs
for locomotion, they routinely translocate in space by dispersing their micro-
scopic spores. Most species rely on air currents to transport their spores in the
atmosphere. The spectacular mechanisms of spore discharge have been investi-
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gated previously and suggest that fungi finely optimize discharge speed (see [3],
[4] and [5]). Many species discharge spores at accelerations nearly unmatched
in nature, and additionally developed adaptations to sail the spores through the
boundary layer surrounding the parent fungus. Spores can then be transported
away by atmospheric currents, in their search for a more suitable environment.
From the physical point of view, spores are solid particles, characterized by a
density, volume and shape which affect their atmospheric transport. Unlike abi-
otic particles, they have a limited lifespan as their viability depends substantially
on temperature, moisture and especially UV exposure during flight. Their sur-
vival depends on both physical and biological aspects: to germinate the spores
as to survive during the flight and reach a suitable host at the right stage of
maturation for the infection. Most of this factors are out of control for a fungus,
which can only manage the time for spores liberation.
The fundamental question I want to address here is related to the stochastic
nature of turbulent transport: fungi optimize discharge, but the fate of their
spores is dramatically affected by stochasticity in atmospheric transport. What
can fungi do to positively bias the unknown fate of their spores? The original
contribution of my work is to highlight that the initial condition plays a key role
in determining spore trajectory. Indeed the time of spore liberation dictates the
duration of a spore journey from take-off to landing. This fundamental infor-
mation suggests that fungi may tune discharge to maximize survival, according
to longevity of their particular kind of spore. I conducted a series of numerical
simulations for atmospheric transport in North America, using realistic datasets
for wind and other meteorological fields. By a statistical analysis of the results, I
quantified the duration of spores flight as function of the time of liberation in the
environment. I discovered that spores remain in the atmosphere for a timescale
that can range from hours until days and even weeks. Because UV light damage
can kill a spore in as little as few hours, it is crucial for fungi to correctly time
spore ejection to avoid massive die offs. To understand the underlying causes for
these widely different flight times, I analyzed the numerical results and found
that the dynamical state of the atmospheric boundary layer at the liberation is
the crucial parameter. By correlating the statistics of flight time with that of
several weather parameters, I determined that stability is the most important
driver. This can be understood because close to ground, where spores start their
journey, the mean vertical motion is almost zero while turbulent fluctuations
may dominate the dynamics, depending on stability of the atmosphere.
This result lays the foundations for further biological inquiry, particularly related
to what are the best strategies to sense the micrometeorology and infer the state
of atmospheric stability and respond appropriately.

Eddy diffusivities in sea surface transport In the second part of the thesis
I study the reliability of eddy diffusivity closures in describing the sea surface
dispersion of passive tracers.
As anticipated, the abundance of active dynamical degrees of freedom makes
impossible to perform direct numerical simulations of the transport. Even if
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our interest is in the large-scale dynamics, the effect of smaller scales cannot be
ignored in general. Therefore, to study the behavior of concentration fields on
large scales, the standard approach is to solve a transport equation, in which
the advection is given by the large-scale velocity of the carrying flow (e.g. the
output of a geophysical circulation model like ROMS, MITgcm, WRF, etc.) and
the effect of smaller scales is described defining new diffusion coefficients in the
diffusive term, namely the eddy diffusivities (ED) (see for example [16], [15]).
Differently from standard diffusion, in which the molecular diffusivity is only a
property of the involved substances, these redefined quantities depend on the
specific features of the carrying flow e thus they should be represented, in gen-
eral, as tensor fields rather than constants.
The procedure to define the ED is not unique and several levels of accuracy can
be adopted. Typical approaches are empirical or semi-empirical, dependent on
the specific application and thus conditioned to calibration procedures.
As shown in [20] and [21], a possible way to write the advection-diffusion equation
for large-scales evolution is based on the multiple scale perturbative technique.
A peculiar consequence of this technique is that, as the large-scale velocity field
(resolved by circulation models) is involved in determining the ED field, also the
unresolved scales affect the effective advective term in the evolution equation, as
a slight correction in the underlying flow velocities, originated from circulation
models. Following the theoretical formalism developed in [21], Boi et alt. [17]
developed new formulas for the ED tensor as function of the resolved velocity
components and other parameters related to the unresolved turbulence.
My research in this field is aimed to investigate the reliability of ED closures, in
model the sea surface dispersion for realistic applications. The underlying idea
is the following: consider as an advective field the output of an oceanographic
model, with a very good resolution both in time and space, and assume this field
to be a satisfying representation of the real flow. Then apply a spatial filter to
this field, obtaining a new advective field with worse resolution, as in the case
when the information about the removed scales is not actually available. Finally
compare the statistics of dispersion, computed with different descriptions of the
unresolved scales, to evaluate what model is more reliable in reproducing the
transport in the fully resolved field.
The comparison gives apparently counterintuitive results, suggesting that clo-
sures based on an ED approach can eventually overstimate the transport, re-
spect to study the dispersion without any model for the unresolved dynamics.
This fact turned out to be related with an effective compressibility of the surface
velocity field, that can occur even if the trimensional flow has zero divergence.
Even if this result has been obtained for a particular case study, this reveals the
necessity to develop an ED model, that can take in to account also the effects of
a compressible component in the advective field.



Chapter 2
Fundamental results

In this chapter some fundamental concepts and results related with transport
processes, and used in my thesis, are recalled.

2.1 Transport processes
This section deals with the main physical mechanisms involved in transport phe-
nomena. Starting from diffusion and then introducing advective transport, the
basic equations to describe the movement of a substance in a fluid are obtained.
For a more detailed and deeper presentation consider, for example, [15].
In the context of continuum mechanics, the general problem of transport can be
defined introducing the balance law for the dispersed substance. Considering a
fixed region with volume V , the balance of an extensive (i.e. depending on the
size of the system) physical quantity Q inside this volume is simply expressed by
the equality

�Q = �QE +�QP (2.1)

that is, the variation of Q in a certain time interval �t is given by two contri-
butions: the quantity �QE entered in the volume and the internal production
�QP .
Developing the theory we assume the continuum hypotesis, i.e. that local quan-
tities, defined as the limit of extensive quantities per unit volume when the size
of the volume shrinks to zero, are defined in a slightly different sense respect to
the ordinary calculus. Indeed the volume has to be

1. sufficiently small in order to consider the extensive quantity Q approxima-
tively constant inside it;

2. but large enough for the fluctuations of Q inside the volume to be neglected.

Introducing the vector j as the amount of Q that cross an infinitesimal surface
of area dS and normal unit vector n during an infinitesimal time interval dt:

�Q = (j · n)dSdt,

5



6 Chapter 2. Fundamental results

the first contribution can be written as the total flux of j across the boundary of
the region

�QE = ��t

‹
@V

j · ndS.

The negative sign is a consequence of defining n on the boundary as pointing
outward of the region. Also the production term can be expressed as

�QI = �t

˚
V

§QdV

where the production rate of Q has been introduced. Then equation (2.1) can
be written as:

Q(t+�t)�Q(t) = ��t

‹
@V

j · ndS +�t

˚
V

�QdV.

Now using the divergence theorem to switch the flux integral to a volume integral,
dividing by �t and taking the limit �t ! 0 gives the form

dQ

dt
= �

‹
@V

j · ndS +

˚
V

�QdV.

that is the balance equation for Q in the integral form.
Moreover, writing the amount of Q inside the region as the integral of its volume
concentration ✓ and taking the time derivative inside the volume integral (that
is allowed because the region is fixed in time), leads to the further equation

˚
V

@✓

@t
dV = �

˚
V

@ · j+ �QdV. (2.2)

Finally, since the latter holds for any volume V , the equality holds for the inte-
grands too:

@✓

@t
= �@ · j+ �Q (2.3)

Equation (2.3) describes the differential form for the balance of Q. This equation
is not sufficient to solve the problem of transport, both ✓ and j are unknown
quantities and further constitutive laws are required to specify the form of j.
Such laws depending on the specific processes involved in the transport.

2.1.1 Diffusion

Diffusion is a very familiar transport phenomenon. Consider, for instance, the
behavior of an ink drop released in a still liquid. As time is going on, the
drop expands its spatial extension and the color decreases its intensity, finally
becoming homogeneously distributed in space. Now look at small solid particles
flying in a fluid, like dust in the air. With the help of the sun, their very
discontinuous and random flights can be easily observed. It is an example of
Brownian motion and it can be explaned as the result of all the collisions between
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a particle and the microscopic molecules of the surrounding fluid. At macroscopic
scales, it turns in to diffusion of dust in to the whole available volume of your
room. These are only two of many examples of diffusive processes in our everyday
life. Moreover, not only matter can undergo diffusion, but also properties of the
fluid (like salinity, temperature, momentum, energy, etc.) can be transported
through this mechanism.
To write a differential equation for diffusive processes we have to specify the
related form for j. For diffusion of matter in a fluid, described by the evolution
in time of the concentration of matter, the constitutive law is due to the work
of the german physiologist Fick. From experimental observations he found out
that

1. the flux of matter is a function of the gradient of concentration: j = f(r✓);

2. diffusive processes are isotropic, i.e. they doesn’t have a preferential direc-
tion;

3. diffusive processes are homogeneous, i.e. they are invariant for spatial
translations;

4. f is linear.

From these four features the Fick’s law can be written as:

j = �D0@✓

where D0 is the molecular diffusivity, a property of the substances involved in
the diffusive process. The minus sign comes from the additional experimental
evidence that diffused matter flows in order to reduce the concentration gradi-
ent, from high to low concentration areas. To write the diffusion equation it is
sufficient to substitute the Fick law in equation (2.3):

@✓

@t
= �@ · (�D0@✓) + �Q

and then, being D0 a constant:

@✓

@t
= D0@

2✓ + �Q (2.4)

It is noteworthy that equation (2.4) has the same mathematical form of the
Fourier’s equation of heat.

Fundamental solutions of the diffusion equation

It is easily verified that, without sources (�Q = 0), the function

G(x, t) =
1

(4⇡D0)
3/2

e�r2/(4D0t)
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is a solution of the diffusion equation, where r2 =

P
i x

2
i . The function G(x, t)

represents a tridimensional Gaussian centered in the origin with variances

�2
i = 2D0t

Then the size of the distribution increases as
p

t with velocity decreasing as 1/
p

t.
Moreover the G function approximates the Dirac’s delta distribution as t ! 0,
hence it is a solution of the homogeneous diffusion equation with initial condition
✓(x, 0) = �(x). It is also called the Green’s function or the fundamental solution
for the diffusion equation and, thanks to the superposition principle, the general
solution can be written in terms of this function. Hence purely diffusive processes
are quiet simple to describe.

2.1.2 Advection

Typical values for D0 are of the order of 10�5m2

s
, hence molecular diffusion is

very common but also very slow as a transport process. Taking, for example, a
source of smell and sitting 1 meter away from the source, we could wait to feel
it, more than three hours from the emission.This time is significantly reduced if
the smell is transported also by advection.
If the substance is immersed in a fluid in motion with a velocity field v(x, t) and
considering the substance as a passive tracer, then a further contribution arises
in the density current due to advection:

j = v✓

Adding this new contribution inthe balance law gives the following differential
form:

@✓

@t
+ @ · (✓v) = D0@

2✓ + �Q

Finally, if the carrying field is also incompressible (and then with zero diver-
gence), as can usually be assumed in geophysics, the equation becomes:

@✓

@t
+ v · @✓ = D0@

2✓ + �Q. (2.5)

Furthermore, if we relax the requests on the diffusive process, removing the
conditions of isotropy and homogeneity, an advection-diffusion equation can be
written again, but now the diffusion coefficient is not simply a constant, becoming
in general a tensor field.

2.2 The Lagrangian approach
Up to now the transport problem has been introduced looking at the concen-
tration field ✓(x, t), that is the Eulerian framework. Equivalently we can use
the Lagrangian approach, that consists in following trajectories of transported
particles.
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We start to handle particle trajectories with a very simple but fundamental case,
the Brownian motion of particles in a still fluid. A particle of the immersed sub-
stance undergoes a lot of collisions with the smaller molecules of the surrounding
fluid (animated by thermal agitation) which transfer momentum to the particle,
that turns in to a random velocity, like for dust flying in the room. Hence we
can write the equation of motion for the dust particle as:

ẋ(t) =
p
2D0⌘(t) (2.6)

where I consider the unidimensional case for simplicity. Here ⌘(t) is a stochastic
process whose realizations determine at each time step the velocity of the particle
(for a good presentation on stochastic processes see [31]). Moreover we assume
that:

1. h⌘(t)i = 0, i.e. a single particle has a zero velocity on average or, alterna-
tively, the mean velocity over an ensemble of particles is zero;

2. h⌘(t)⌘(t0)i = �(t � t0), i.e. different realization of the process, arbitrary
close in time, are uncorrelated.

With these hypoteses we can formally write the solution of eq. (2.6) as

x(t) = x0 +

p
2D0

ˆ t

0

⌘(t0)dt0,

where x0 is the initial position of the particle. Even if we cannot integrate ⌘(t)
that is not a function, we can evaluate statistics of the random variable x such

hx(t)i = hx0i+

p
2D0

ˆ t

0

h⌘(t0)idt0.

Here we used the fact that the average operator commutes with the integral.
Now, because of hypotesis 1 we find that hx � x0i = 0. Considering now the
variance

h(x� x0 � hx� x0i)
2
i = h(x� x0)

2
i = 2D0

ˆ t

0

dt0
ˆ t

0

dt00h⌘(t0)⌘(t00)i = 2D0t

where we used the properties of the delta distribution. In analogy with the
fundamental solution of the eulerian diffusion problem we recognize that the
variance grows linearly in time.
Now consider the evolution of the probability density P (x, t) that the Brownian
particle can be found around point x at instant t. The probability density P (x, t+
�t) that the particle is found close to x at time t + �t can be evaluated by
summing over all its possible positions x0 at time t. Then P (x, t +�t) is given
by the integral over x0 of the probability density P (x0, t) that the particle was
found at x0 at time t, times the conditional probability P (x, t + �t|x0, t), that
starting from x0 at time t, it reaches x at time t+�t:

P (x, t+�t) =

ˆ
dx0P (x, t+�t|x0, t)P (x0, t). (2.7)
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We found that, in a time interval �t, a Brownian particle undergoes a displace-
ment �x = x�x0 whose average vanishes and whose variance is equal to 2D0�t.
We will denote the distribution of this displacement by �(�x). If �t is small
enough, we can expand P (x0, t) on the right-hand side of equation (2.7) in a Tay-
lor series in powers of �x around the x point. Changing the integration variable
to �x, we obtain

P (x, t+�t) =

ˆ
d(�x)�(�x)


P (x, t)��x

@P

@x0 |x +
1

2

�x2 @2P

(@x0)2
|x + ...

�

Because �x vanishes on average, the second term in the right hand side vanishes
too and we can write:

P (x, t+�t) = P (x, t) +D0�t
@2P

@x2
+ o(�t)

and finally, taking the limit for �t ! 0 we found that the probability density P
satisfies the diffusion equation

@P

@t
= D0

@2P

@x2
,

with the identification of D0 with the molecular diffusivity introduced in the
Eulerian framework.
The procedure that we used to show the connection between Brownian mo-
tions and molecular diffusion can be generalized. Particularly, in the case of
Lagrangian particles whose velocity is given by the sum of a random component
and an advective deterministic one v(x, t):

˙

x = v(x(t), t) +
p

2D0⌘(t),

it can be proved (see for example [30]), that the corresponding Eulerian equation
is the advection-diffusion equation (2.5):

@✓(x, t)

@t
+ v · @✓(x, t) = D0@

2✓(x, t).

Also dealing with a generalized diffusive process it can be proved that the Eule-
rian equation:

@✓(x, t)

@t
+ @ · (v(x, t)✓(x, t)) = @i@jDij(x, t)✓(x, t).

is equivalent to
˙

x = v(x(t), t) +
p
2Dij⌘(t),

where the square root of a matrix is not ambiguous as Dij is assumed to be
positive definite.
This fact is very important as the theoretical support for Lagrangian simulations
performed in my thesis work.
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2.3 Turbulence
Either using a Lagrangian or an Eulerian approach, there is a physical problem
in studying the transport of matter: we have to tackle the dynamical complexity
of turbulence. This phenomenon can be very relevant, especially dealing with
geophysical flows. It is a well known experimental fact that, in a given system,
laminar flows are stable only up tu certain critical values of the typical velocity.
This values change for different system and depend from the geometry and the
physical properties of the fluid.
Over this critical velocities instabilities arise, becoming chaotic with significant
fluctuations. Chaotic motions are always present at the molecular scales, also
when the macroscopic flow is stationary. Hence perturbation of the flow are
always present but this perturbation are suppressed or limited if the flow is
neutral or stable. Otherwise perturbations grow up becoming comparable with
the base flow.
Turbulence is due to nonlinear advective terms in the Navier-Stokes equations.
The relative importance of such nonlinear terms respect to the viscous term can
be measured by a dimensionless parameter, the Reynolds number

Re =
U2/L

⌫U/L2
=

UL

⌫
(2.8)

where U , L and ⌫ are the typical velocity of the fluid, the characteristic length
scale and the kinematic viscosity. Critical values of the Reynolds number for
transitions from laminar to turbulent regimes, can vary very much, with cases in
which the flow can persist in a laminar state up to Re > 100.000.
In geophysics Reynolds numbers are very high, consider for example an important
geophysical phenomenoun like the Gulf stream. It has a typical velocity of 1 m

s
,

a width of about 100 km. Assuming ⌫ ⇠ 10

�6 m2 s�1, the Reynolds number
reaches values of

Re =
UL

⌫
=

1⇥ 10

5

10

�6
= 10

11

then the flow is typically turbulent, as usual in ocean and atmosphere.
As a strongly nonlinear process, turbulence is chaotic and hence a deterministic
description of turbulent systems is impossible. The standard approach consists
in considering the involved physical quantities as random variables. The idea,
due to Reynolds, is to consider an ensemble of many identical systems and to
decompose all the dynamical variables is the sum of two terms, the ensemble
average h⇠i and the fluctuation ⇠:

⇠ = h⇠i + ⇠0

Introducing such decomposition in the fundamental equations allows to write
the evolution equations for the averaged quantities (a detailed description of the
procedure can be found in [12]). I report here the result of the substitution
for the fundamental equations (the average components of the velocity field are
indicated as huii = Ui :
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• the continuity equation:
@Ui

@xi

= 0;

• the Navier-Stokes equation (RANS: Reynolds averaged Navier-Stokes equa-
tions):

dUi

dt
= �

1

⇢

@P

@xi

+

@

@xj


⌫
@Ui

@xj

� hu0
iu

0
ji

�
+ gi (2.9)

Notice that the mean values evolution equations are not completely decou-
pled from fluctuations because there is a nonlinear interaction between the
two components. The effect of this interaction on the mean flow equations
is represented by the correlations hu0

iu
0
ji. This correlations can be included

in a redefinition of the stress tensor h⌧iji for the mean flow:

h⌧iji = �P �ij + µ

✓
@Ui

@xj

+

@Uj

@xi

◆
� ⇢hu0

iu
0
ji

Then in addition to the mean stress there is a new tensor, the Reynolds’
stress tensor that can be written in matrix form as

R = �⇢

0

@
hu0u0

i hu0v0i hu0w0
i

hv0u0
i hv0v0i hv0w0

i

hw0u0
i hw0v0i hw0w0

i

1

A .

Notice that, to close the mathematical problem, we need to express this
stress tensor in terms of the mean flow, this is called the closure problem
and the way to describe this interaction is not unique.

• the advection-diffusion equation for passive scalar transport:

@h✓i

@t
+ hui ·@h✓i = �@ · h✓0u0

i + @ · (✓@h✓i) ,

where h✓0u0
i represents the turbulent transport, often empirically described

by the K-theory, according to which

h✓0u0
i = �K@h✓i,

where K can be in general a tensor (Turbulent diffusion tensor) and its
elements have to be deduced from esperimental data or given by models.

This Reynolds averaging procedure is very important because, most of the numer-
ical models that produce advective fields for transport models uses this approach
to compute the dynamics.
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2.4 Homogeneization
We saw as the presence of turbulence involves too many degrees of freedom to be
completely described and as, in the context of RANS, the Reynolds stress tensor
enters in the dynamics of the mean flow with the related problem of closure. The
choice to close the problem assuming the turbulent fluxes as diffusive (K-theory)
is only a possible assumption. Anyway, starting from the advection-diffusion
equation

@t✓(x, t) + v(x, t) · @✓(x, t) = @2D0✓(x, t). (2.10)
and using the homogeneization technique of multi-scale perturbation theory, It is
possible to obtain again an advection-diffusion equation for the pre-asymptotic
behavior of the large-scale component of the concentration field. The following
theory has been developed in [20] and [21]. Biferale and alt. found that, for
a passive tracer in a periodic advective velocity field, the asymptotic behavior
of the large-scale scalar concentration, in the reference frame of the mean flow,
is diffusive. Indeed they started from equation (2.10) and, expressing the con-
centration field as a perturbative multi-scale series, they obtained the following
asymptotic equation for the large-scale field h✓0i:

@T h✓0i = DE
ijrirjh✓0i

where DE
ij is a positive-definite tensor that is named Eddy Diffusivity tensor.

With the same technique, Mazzino and alt. obtained the preasymptotic equation.
They separated the advective field in the sum of a large scale U and a small scale
u component:

v = U + u.

The idea is to identify U with the part of the advective field that are known in
realistic applications and u with the subgrid unresolved scales. Here the term
preasymptotic indicates to the evolution of the scalar field on the same scales of
U. Then the resulting equation is

@t⇥(x, t) + U(x, t) · @⇥(x, t) = @i [Dij(x, t)@j⇥(x, t)] .

where now ⇥(x, t) is the large scale concentration field. The tensor Dij is neither
simmetryc nor positive-definite, hence the equation can be written in terms of
its symmetric part:

@t⇥(x, t) + @ ·

⇥
UE

(x, t)⇥(x, t)
⇤
= @i@j

⇥
DE

ij(x, t)⇥(x, t)
⇤

(2.11)

where

UE
i (x, t) ⌘ [Ui(x, t) + @jDij(x, t)] , DE

ij(x, t) ⌘
Dij(x, t) +Dji(x, t)

2

.

The main result of the preasymptotic theory is to obtain, directly from the
fundamental laws, an equation for the large-scale concentration that still has the
form of an advection-diffusion equation. This fact is very relevant for my work,
particularly for chapter 4 in which I study the transport on the sea surface using
the Lagrangian counterpart of the Eulerian equation 2.11.
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2.5 Anomalous diffusion
In previous sections we saw that, typically, the role of the smaller scales in the
advective field is to diffuse tracer particles, with effective diffusion coefficients
that take the name of eddy diffusivities. A footprint of this kind of dynamics is
that the variances of particles’ displacements evolve linearly for large times:

h(x(t)� x(0))2i ! 2DEt,

that is analogous to the case of Brownian motions, but here the molecular diffu-
sivity D0 has been replaced with the eddy diffusivity DE. All the effects due to
the unresolved scales in the advective velocity field are summarized in the eddy
diffusion coefficient.
In some cases, nontrivial small-scale dynamics can lead to a different behavior
and anomalous diffusion is observed. This phenomenon occurs when variances
of the displacement show a different time evolution, i.e.,

h(x(t)� x(0))2i ⇠ t2⌫ ,

with ⌫ 6=

1
2 . Particularly the case when ⌫ < 1

2 corresponds to subdiffusion, that
occurs only in compressible fields and is basically due to trapping effects, while,
when the field is incompressible and the molecular diffusivity is nonzero, either
superdiffusion ⌫ > 1

2 or standard diffusion takes place. This kind of phenomena
has been largely studied in different systems and with several techniques, see for
example [13] and [14].



Chapter 3
Survival strategies in fungal kingdom

Dispersal processes are very important because of their influence on survival
of many biological organisms. A multitude of species of plants and fungi use
airborne pollen and spores to move and reproduce. Serious virulent pathologies,
like the Foot and Mouth desease of cloven-hoofed animals, spread through abiotic
aerosols. Biological tracers like larvae are transported by oceanic currents and
are significantly affected by turbulence.
In this chapter I discuss biological issues related with the large-scale dispersal of
fungal spores in the atmosphere and I present the results of numerical simulations
aimed at understanding the duration of a spore flight in the atmosphere.

3.1 Fungal spore dissemination

Despite its abundance and economical impact the fungal kingdom is still largely
unexplored, only few percent of the estimated 1 to 8 million of fungal species have
been described. Fungi play key roles in nature, from decomposers, symbionts,
parasites and pathogens and are simultaneously among the worst threats and the
most fundamental components af many ecosystems. As a fundamental feature
fungi are heterotroph organisms; differently from plants they are not capable of
photosynthesis and hence need to feed on dead matter or live in symbiosis with
hosts to obtain the nutrients that are necessary for their survival. In geogra-
phycal areas subjected to a temperate climate suitable hosts are only available
in short periods along the year depending on suitable environmental conditions,
especially temperature. Similarly, within the tropical zone the presence of re-
sources is limited in time, in this case the driving factor is the alternation of very
dry with very wet and rainy phases. Best conditions for fungal hosts growth
are found in subtropical or prosperous tropical areas. Here fungi can count on
resources all year around, yet suitable patches of resources are discontinously
distributed in space. After a fungus established on a host it starts to increase
its biomass developing the mycelium, its vegetative apparatus, that is made up
of many filamentous structures called hyfae. Even in best cases the resources
supply is finite in time and fungi have no legs or any locomotive apparatus to

15
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translocate to new favorable habitats. To face this challenge fungi developed
different mechanisms. Some species evolved specific structures called sclerotia:
a conglomerate of compact mass of hardened fungal mycelium containing food
reserves. In this form fungi can survive severe winters until favorable growth
conditions return. In some cases mycelia can stay dormant inside plant seeds.

The most prominent mechanism for survival is spreading of fungal spores.
Differently from sclerotia and seeds, spores are very small and light hence large
numbers can be stored in few space and carried around by wind, making dissem-
ination very effective. Production, storage, liberation and single spore features
are very peculiar of individual species. Fungi can perform either sexual or asexual
reproduction and consequently genetic pool of the offspring may be homogeneous
or diverse. Some species choose the tissues of infected hosts as storing place, oth-
ers let spores rest externally, others develop new structures called fruit bodies
whose shape is very different from species to species. Typical spore size is of
the order of magnitude of one to ten microns and then countless numbers can
be produced and packed in a little space: as examples the ordinary corn smut
fungus produces almost a billion spores in a cubic centimeter of infected tissue
and there are about 70000 million spores of Puccinia graminis at one time on
a heavily rusted bush of barberry of few meters. Moreover a fungus can pro-
duce many generations of spores employing just one week more or less between
consecutive ones. Prolificacy is crucial for the survival but longevity of spores is
fundamental too, due to the aforsaid time and space discontinuity of resources
fungal spores has to survive after land in a dormant state before germination in
order to wait hosts at a proper stage to establish on and in many cases they are
able to survive unfavourable seasons under certain conditions. Also the viabil-
ity during flight is important since spores are exposed to severe temperatures,
moisture and most importantly UV-ray. Another aspect of fungal dispersal is
the spectacular mechanisms for spore liberation: when stored externally these
corpuscle are typically detached by movement or passively released and they
abandon the fungus by settling. However, the majority of fungi, about 75% of
described species, produces spores inside fruit bodies made of thousands of mi-
croscopics sacs, called asci, that act like cannons powered by osmotic pressure [4],
[5]. Although these fungal cannons are optimal and realize accelerations of order
10

5g, nearly unmatched in nature, the launch speed may not be enough to get
the spores through the boudary layer of still air around the fruit body. The fungi
developed a myriad adaptations to solve this problem. For example, thousand of
species synchonise ejections of their spores to mobilize the air right next to the
fruit body and create a jet of air that travels much further than isolated spores.
As consequence of this refined optimization these fungi increase the probability
for a spore to exit the stagnant boundary layer around the fruit body and to be
carried away by wind. Depending on the particular case, the dissemination by
wind can interest a very wide range of spatial scales, from local, to regional, to
intercontinental. It is a well established fact that airborne spores can reach very
great heights and distances from the source: the observations, made on balloon
traps and airplanes, reveal the presence of fungal spores at altitudes of more
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than 4000 meters over infected crops or above the Caribbean Sea, about 1000
km from the nearest possible source. In addition, to be effective, spores trav-
eling high in the atmosphere have to come to the ground and they accomplish
this either through vertical downdrafts, possibly caused by storms and rain, or
by sedimentation. Sedimentation velocities typically range from 0.5 mm/s to 20

mm/s in dry air conditions but could be increased by factors of about 2 or 3
in wet conditions and rough extimations of deposition distances from the source
easily give values about thousand of kilometers. On the contrary other situations
show dissemination on the shorter scales of the forest, the orchard or the single
crop.
Analyzing this wide range of possibilities mycologists started to classify dissemi-
nation processes according to their extent then introducing the concepts of Long
distance dissemination (LDD) and Short distance dissemination (SDD). Differ-
ent species have developed essentially different strategies: some species spread
their spores on local scales and other species spread their spores to regional and
even continental scales, whence spores fly for weeks before landing. Clearly the
latter spores must be well adapted for atmospheric transport and particularly
resistant to meteorological agents. An important challenge for spore dispersal
is that fungi often need specific hosts at the right condition that are sparsely
distributed in space. Consider, for example, pathogens of certain specific crops
in regions with high diversification of agricultural activities.
Ultimately the relative success or failure of a survival strategy is determined
by several factors: the amount of spores produced; the release mechanism; the
resistance either during flight or after landing; the abundance, the extent and
timeliness of dissemination; and the state of a possible host in order to germi-
nate. From the point of view of the fungus, the fate of its spores is uncertain.
Crucially, in this highly stochastic scenario, fungi can only control the initial
condition, i.e. the time for spore release. A number of physical and evolutionary
questions arise: What is the role of the initial condition for the trajectory of
the spores in the atmophere? What is the best timing to release spores? Can
fungi release spores to maximize their probability of survival? As shown by my
research the answer to this questions can vary essentially among species and dif-
ferent survival strategies have to be developed.
Different strategies are needed because of the different biological constraints.
Some species evolved particularly resistant spores, e.g. by developing pigments
that protect the spores from UV light exposure. Spores of the wheat pathogen
Puccinia graminis can remain viable in the atmosphere for weeks. On the other
hand, some species have more fragile spores, that die after few hours of expo-
sure to UV light. Spores need to sediment before they die: flight time must be
strictly smaller than survival times. In the following I elucidate what are the
best strategies to ensure that this constraint is satisfied.
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3.2 Describing spore dispersal
Fungal spores have no legs or fins for locomotion and are carried around passively
by wind. Hence in describing their motion they can be considered as particles
subject to external forces. The starting point to study the dispersal of fungal
spores is the equation of motion for a single spore. Newton’s second law reads:

Mg � ⇢AirV g + ⌘(VWind � u) = Ma (3.1)

where M , V , u and a are mass, volume, velocity and acceleration of a spore. On
the left hand side gravity, Archimede’s force and the effect of the moving fluid
surrounding the spore are taken into account. The last term works to make spores
travel at the same speed of the surrounding air VWind in the neighbourhood of
spore position x(t); the dimensional parameter ⌘ sets the strength of this term
and can be determined in the particular case in which the spore falls down in
still air [23]. The equation of motion can be written in term of the Stokes time
⌧S :

=

M
⌘

,

�g +

(VWind � u)

⌧S
= a (3.2)

where � :

= 1 �

⇢
Air

⇢
S

is a dimensionless parameter and ⇢S is spore density. The
Stokes time represents the characteristic response time over which a spore reacts
to accelerations of the surrounding fluid. Air density in normal conditions is
about 1.225 kg/m3 and spore densities have been measured for many kinds of
spores belonging to different species [24]. In some cases it is very close to water
density because of the high water content of some species, from 50% to 75%. For
other species this water content is smaller, from 6% to 25% but anyway, taking
� ⇠ 1 is found to be a good approximation for all species.
Looking at the non-dimensional form of the previous equation and being U and T
respectively the characteristic velocity and time (typically the Kolmogorov time
scale of a turbulent atmosphere), it can be found that, if

⌧S ⌧ T ; �g �

U

T
,

then the acceleration in equations 3.1 and 3.2 can be neglected and finally fungal
spores can be treated as passive tracers with an additional gravitational settling
velocity VG :

= g�⌧S:
dx(t)

dt
= VWind[x(t), t] +VG, (3.3)

Table 3.1 gives an overview of the involved parameters for some fungal species:
As mentioned before, the Stokes time and therefore the gravitational settling
velocity can be determined considering the case of a spore falling down in still
air. For spherical particles for example it gives:

⌧S =

2

9

⇢Sr
2

µ

where µ = 1.81 10�5 Pa · s is the dynamical viscosity of air and r is the radius of
the spore.
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Table 3.1 – Physical spore parameters

Species size [µm] density [

g
cc
] Stokes time [s]

puccinia graminis 28.3 (length) 0.47 1.78 10�3

17.5 (width)
sclerotinia sclerotiorum 12 (length) 0.44 1.95 10�4

6 (width)

3.3 Numerical study

In order to understand the influence of the spores release time on the survival
strategies of fungi, I conducted a numerical study of atmospheric dispersal using
real metereological datasets. For this purpose the dispersal has been studied
following a Lagrangian approach, i.e. following the trajectories of each spore
according to eq. 3.3. Note that I am focusing here on the large scales and the
effect of the unresolved dynamics has to be properly modeled.
Spores are microscopic objects but their trajectory spans large scales, reaching
hundreds of kilometers. The entire range of coupled space-time scales cannot be
fully resolved: meteorological data are available on a 12 km grid, and subgrid
models account for additional fluctuations with an eddy viscosity model and
phenomenological expressions for the eddy viscosity.

3.3.1 The meteorological dataset

Numerical models for dispersal processes need advective fields as input. Typ-
ically this information comes from other numerical models, run to solve the
Navier-Stokes equation under appropriate conditions, together with the continu-
ity equation, the equation of state for air and other additional equations that
account for peculiar processes of the atmosphere such as cloud microphysics, etc.
In my research about fungal spores dispersal I used a wide dataset, the North
American Regional Reanalysis (NARR)[28], produced by the National Centers
for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric
Administration (NOAA)[29], a US government department, and publicly avail-
able. The dataset is a reanalysis, the result of a procedure of matching between
regularly gridded fields, produced by atmospheric models, and sparse observa-
tions assimilated from meteorological stations, balloons, airplanes, satellites, etc.
This multiple contribution makes the reanalysis our best knowledge of the state
of the atmosphere at a certain time. The NARR is a regional reanalysis of North
America, from Mexico to Canada, cointaining temperatures, winds, moisture,
soil data, and dozens of other parameters. The main data that are assimilated,
in order to initialize the model to real-world conditions, are temperatures, winds,
and moisture from radiosondes as well as pressure data from surface observations.
Also included in this dataset are dropsondes, pibals, aircraft temperatures and
winds, satellite radiance (a measure of heat) from polar (orbiting Earth) satel-
lites, and cloud drift winds from geostationary (fixed at one location viewing
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Figure 3.1 – Geographycal domain of North American Regional Reanalysis
(NARR): the dataset covers the entire area of the continent in the northern
hemisphere, from Mexico to Canada across the United States. Grid points
on which meteorological variables (like wind velocity) are known are plotted
one every five, the actual horizontal resolution is about 32 km.

Earth) satellites. An important contribution is given by the assimilation of pre-
cipitation data coming from a very dense network of various sources. The NARR
grid is a Lambert conformal grid with 309 x 237 horizontal point and 24 levels on
vertical pressure-sigma coordinates system. The horizontal resolution is about
32 km. The described time period start from 1979 to today and the state of the
atmosphere is available with a sampling time of 3 hours.

3.3.2 Numerical techniques.

To perform simulations I used the Hybrid Single Particle Lagrangian Integrated
Trajectories (HySPLIT) model. It is a FORTRAN code, developed at the Air
Resource Laboratory (ARL) of NOAA and largely adopted in the scientific com-
munity to study dispersal phenomena in the atmosphere. In addition to the
computation of atmospheric transport, this code has the possibility to describe
different kind of deposition processes, chemical reactions, particle resuspension
and radioactive decays. In the following I present only the main numerical fea-
tures of the code related with simulations performed in this thesis, for a complete
overview on HySPLIT and the related technical bibliography, refer to the HyS-
PLIT technical guide, available from the web [25].
HySPLIT is conceived with a Lagrangian approach, it solves the equation of
motion for each particle of the dispersed substance according to the wind speed
and the gravitational settling as pointed out in section 3.2. Moreover, since from
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NARR the wind field is given with a 32 km resolution, all the information about
the unresolved scales has to be modeled. Hence the contribution of wind velocity
to the trajectory of each particles is splitted in advection by resolved wind speed
and effective diffusion by subgrid turbulence given by a proper model.

Stability computation

A preliminary and fundamental step in computing particle’s evolution is the eval-
uation and quantification of atmospheric boundary layer (ABL) stability at each
particle location. This step is very important in order to choose the proper mod-
elization for turbulent velocities that substantially affect the dispersion process.
Here I recall only notions that are strictly related with this thesis, several specific
texts exist for a deeper description about the subject, like [26] and [27].
If stability could be measured through several quantities HySPLIT uses the com-
putation of the Monin-Obukhov length L, that is a dimensional parameter related
with the stability of the surface layer, the lower part of the ABL. It is positive or
negative when the ABL state is respectively stable or unstable. The expression
for L is

L = �
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2 , called the friction velocity, is

related with the turbulent stress at the surface ⌧s and the air density ⇢, and the
covariances hu0w0

i and hu0w0
i are the kinematic momentum fluxes at the surface.

In the denominator g is the gravity acceleration, k = 0.4 is the von Karman con-
stant, ✓ is the potential temperature and hw0✓0i is proportional to the turbulent
heat flux at the surface. From a physical point of view L measures the relative
contributions to turbulent kinetic energy given by buoyant production and shear
production, representing the heigth at which these two contributions are equal.
During unstable conditions another velocity scale can be introduced, the convec-
tive velocity W ⇤

=

⇥
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⇤ 1
3 , where Zi is the boundary layer depth, that is

another important parameter involved in the computation of turbulent motions.
HySPLIT assumes Zi to be the heigth at which the potential temperature exceeds
the groud value by 2

�
K (starting from the top and going down). A minimum

depth of 250m, is assumed (probably overestimating night time ABL thickness).
If the turbulent kinetic energy (TKE) field is available from the meteorological
dataset the mixed layer depth can also be computed from the TKE profile in-
stead of the temperature profile. In this case the mixed layer depth is assumed
to be the height above the ground at which the TKE drops by more than half of
its previous value.
Stability can be studied through different procedures, depending on the infor-
mation carried by the meteorological data used. If surface heat and momentum
fluxes are not available, as in the case of NARR dataset, the stability is estimated
from wind and temperature profiles according to the following steps:
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• preliminary evaluation of the bulk Richardson number

R0
b =

g�✓�Z

✓12[(�u)2 + (�v)2]

where � indicates the gradient between levels 1-2 of the internal grid and
✓12 is the related layer-average potential temperature;

• possible correction for very coarse vertical spacing data files (if the values
at Z2 comes from linear interpolation from external meteorological data
level at a heigh Zd is much greater than Z2):
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;

• from Rb, estimation of the ratio z
L
, evaluated at the top of the surface layer,

by using empirical interpolation formulas:
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• computation of friction velocity and temperature:
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or the unstable case, �2 
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In the stable case Prn = 0.923 is the turbulent Prandtl number during
neutral conditions, a = 1, b = 2/3, c = 5, d = 0.35.

Equations

Subgrid turbulent velocities come from a stochastic model, and the equation of
motion for a single particle takes the form of a stochastic ordinary differential
equation. The discrete form of such equations is:

X(t+�t) = XAdv(t+�t) + U 0
(t+�t)�tGX

Y (t+�t) = YAdv(t+�t) + V 0
(t+�t)�tGY

Z(t+�t) = ZAdv(t+�t) +W 0
(t+�t)�t(Ztop)

�1
+ VG�t

where P(X, Y, Z) is particle position, the pedices Adv indicates new positions
computed by advection of the resolved wind speed, U 0, V 0,W 0 are the turbu-
lent velocity components and GX , GY , (Ztop)

�1 are scaling factors related to the
adopted coordinates. As horizontal coordinates the same system of the meteo-
rological dataset is kept, but fields are interpolated on an internal sigma terrain
following vertical system, i.e. whose coordinate lines follow the orography of the
terrain.

Advection

Given the position P(t) of a particle at some time t the model first computes the
advective contribution to the new position P

0
(t +�t) at time t +�t. It uses a

two step technique with a first guess position:

P

0
(t+�t) = P(t) +V(P, t)�t,

where V(P, t) is the resolved wind velocity at time t interpolated at the particle
position and then giving a final position:

P(t+�t) = P(t) +
1

2

[V(P, t) +V(P

0, t+�t)]�t.

Trajectories are terminated if they exit the upper boundary, whereas their inte-
gration formally continues after a particle hits the ground.
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Dispersion

The second step in computing tracer particle motion consists in adding a further
displacement due to turbulent velocities given by stochastic processes. For each
component such process is described by the following equations
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(t+�t) = R(�t)U 0
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and where the autocorrelation function R is
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with TL
i

= TL
W

, TL
U

or TL
V

Lagrangian time scales, assumed as constant in
the model and equal to TL

W

= 100s and TL
U

= TL
V

= 10800s. The random
velocities U 00, V 00, W 00 are computed as

U 00
= �1�1, V 00

= �2�2. W 00
= �3�3,

where the �2
i are the turbulent velocity variances and �i are realizations of gaus-

sian random processes with mean 0 and unitary standard deviation.

Determination of U 00 V 00 W 00: the model has different possibilities for com-
putes �i values too. Turbulent velocity variances are computed directly either
from stability functions, friction velocity u⇤, convective velocity scale W ⇤ and
boundary layer depth Zi. Semiempirical formulas for the eddy diffusivity vary
from stable to unstable conditions and also for different locations in the ABL.
A first possibility is given by the following expressions for the stable or neutral
cases:

• for the surface layer:
�2
3 = 3.0(u⇤

)
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)

2,
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• for the rest of boundary layer:
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while unstable conditions are modeled as follow:

• for surface layer:
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• and in the rest of the ABL:
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where R = 0.2 is the ratio between the heat flux at the inversion point to
the flux at the surface.

In order to determine turbulent motions for the dispersed particles inside the
ABL, an alternative choice is to evaluate the diffusion coefficients and convert
them into turbulent velocities. Particularly the vertical diffusion coefficient K3

is given by the following expressions:
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stable conditions. Therefore the turbulent velocity variance can be computed by
the formula:
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Analogous semiempirical descriptions are used also for the open atmosphere,
above the ABL. Note that, in this part of the atmosphere the contribution of the
unresolved turbulence is subdominant due to the strong large scale circulation.
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Deposition

Deposition of spores to the ground is simply computed assuming that the particle
deposition flux j(x, t) is propotional to particle concentration at ground level ✓:

j(x, t) = Vd✓(x, t)|z=0

where the parameter Vd has the dimension of a velocity and has been taken equal
to the gravitational settling velocity. This identification is the simplest choice,
more sophisticated description is possible, taking into account the specific effect
of the type of canopy, e.g. forests, crops, lakes, cities or other possible soil uses.
Assuming that deposition occurs in a layer of thickness �Zd above the ground
level and taking particle concentration as constant within this layer, the time
employed by the mass present in �Zd to be completely deposited is equal to
�Z

d

V
d

and hence the fraction of mass deposited in a time step �t is given by the
ratio V

d

�t
�Z

d

. This mass removal is reproduced in the simulations with the following
probabilistic technique:

• throughout each time step the probability for a spore to be deposited is
identified with the ratio

P =

Vd�t

�Zd

• therefore at the end of a step a random number � in the interval between
0 and 1 is extracted for each particle below �Zd which will be deposited if
� < P .

3.3.3 Statistical observables

Simulations give considerable information about the dispersal process. The nat-
ural output of the adopted model are particle trajectories by which eulerian
concentrations can be rebuilt on suitable grids simply collecting particles whose
positions stay inside each defined cell of the grid. In this work I focus on the
statistics of the flight time, i.e. the time between spore take off and landing.
The former can be useful for studying the spatial extent of fungal dissemination,
the latter are the subject of the present work that deals with the implications
of spores release time on the effectiveness of the dissemination. Additional ob-
servables like the deposition distance, are important to understand the reach of
fungal dispersal. Here I focus on flight time to understand the constraints on
survival imposed by the physics of dispersal in the atmosphere. Spores sediment
after a timescale that can vary considerably from one trajectory to another, even
when their initial condition is identical. Hence each release is associated with a
probability distribution of flight times from which a probability density function
(PDF) and a cumulative probability function (CPDF) can be computed. Conse-
quently several statistical quantities can be considered, for example the moments
of the PDF. In this work I consider the mean flight time:

⌧ =

1

N

NX

i=1

⌧i
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Figure 3.2 – Geographical distribution of spores release location in North Amer-
ica: ten different starting locations have been chosen for spores release and
are showed on the map as red circles.

Alternatively it can be used as statistical observable the time after which a given
fraction of the spores has sedimented.

3.4 Results
Preliminary simulations revealed substantially different scenarios. Flight times
are much longer for spores released at certain hours of the day rather than others.
Then I set out to understand the role of the initial condition on the statistics of
flight time. I chose 10 different starting locations distributed across the whole
North American continent (figure 3.2), and with widely different uses of the soil.
All these locations are biologically relevant for several kinds of fungal species and
because of the presence of different agricultural activities (table 3.2). For each
location the dispersal has been computed releasing spores every 3 hours during
the months of January, April, July and October of year 2014 (as representative
of the four seasons), for a total amount of 9680 simulations. In the following I
will refer to a release as a dispersal process starting at a fixed time from a specific
location.
As suggested by preliminary results, most releases showed a common feature:
the presence of a diurnal cycle in the mean flight time signal i.e. the presence
of oscillations with a period of 24 hours in the behavior of this statistics. Plots
of these signals for three selected locations, situated at very different latitudes,
are shown in figures from 3.3 to 3.8. Signal for Green Mexico, that belongs to
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Table 3.2 – Starting locations for simulations

Location latitude longitude description label
Int. maize and green GREEN

wheat improvement 19.6 �99.2 revolution MEXICO
center (Mexico)
Yaqui and Mayo major wheat WHEAT

valleys 27.7 �109.0 production area MEXICO
(Mexico) in Mexico

Baja coastal, BAJA
(Mexico) 31.4 �115.7 California CA

peninsula
Oklahoma crops in great CROPS

33.5 �94.6 plains of US OKLA
Wilson County, tobacco TOBACCO
North Carolina 35.9 �78.1 production NC
Watsonville, major CROPS
California 36.9 �121.5 agricultural CA

area
San Juan forest FOREST

national forest 37.5 �107.9 on Rockies COLORADO
Wisconsin vegetables VEGGIES

44.1 �90.9 growing area WI
La Verendyre reserve WILD

(Canada) 46.8 �76.1 aunique CANADA
Alberta forests WHEAT

(Canada) 52.2 �111.1 and wheat ALBERTA

the tropical area, shows a very regular cycle in all seasons with very strong ex-
treme events during summer; at Veggies Wi, a location in continental US, the
diurnal cycle is less defined and the seasonal effect seems to be more impor-
tant; a further scenario comes up at higher latitudes in Wheat Alberta where
during winter the cycle is almost completely absent. To sustain this qualitative
considerations I performed a more quantitative analysis of the results, based on
different indicators. Two aspects are relevant and pointed out by simulations:

1. strength of the cycle (measured by the amplitude of the oscillations);

2. reproducibility of the cycle (quantified by how the period of oscillations is
to 24h).

As previously pointed out, these features significantly depend on seasons and
locations of spores discharge. To give a quantitative measure of cycle’s charac-
teristics the deposition data have been analyzed computing ensemble averages
and standard deviations of mean flight times related to discharges performed at
the same hour of the day. The results are shown in figures 3.9 to 3.18, in which



3.4. Results 29

(a) Location: Green Mexico; Month: January.

(b) Location: Green Mexico; Month: April.

Figure 3.3 – Mean flight time signal for releases started at Green Mexico during
January and April of year 2014.
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(a) Location: Green Mexico; Month: July.

(b) Location: Green Mexico; Month: October.

Figure 3.4 – Mean flight time signal for releases started at Green Mexico during
July and October of year 2014.
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(a) Location: Veggies WI; Month: January.

(b) Location: Veggies WI; Month: April.

Figure 3.5 – Mean flight time signal for releases started at Veggies Wi during
January and April of year 2014.
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(a) Location: Veggies WI; Month: July.

(b) Location: Veggies WI; Month: October.

Figure 3.6 – Mean flight time signal for releases started at Veggies Wi during
July and October of year 2014.
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(a) Location: Wheat Alberta; Month: January.

(b) Location: Wheat Alberta; Month: April.

Figure 3.7 – Mean flight time signal for releases started at Wheat Alberta during
January and April of year 2014
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(a) Location: Wheat Alberta; Month: July.

(b) Location: Wheat Alberta; Month: October.

Figure 3.8 – Mean flight time signal for releases started at Wheat Alberta during
July and October of year 2014
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the typical day for the chosen location and period is depicted: the maximum
of the averaged mean flight time quantifies the strength of the cycle and the
standard deviation is related to the actual 24 hours periodicity of the signal. As
a measure of this latter property the following ratio can be introduced:

I =

2�̄

max h⌧i

where ⌧ are mean flight times and angular brackets denotes average on simula-
tions started at the same hour. The computed values of the ratio are reported

Table 3.3 – Diurnal cycle strength and sharpness: for each starting location and
each selected period, the maximum mean flight time averaged on releases
performed at the same hour of the day and the index I that measure the
goodness of the cycle are shown.

Location January April July October Year
time [days] max h⌧i, I max h⌧i, I max h⌧i, I max h⌧i, I max h⌧i, I

Green Mexico 2.24, 0.51 2.71, 0.77 4.86, 0.75 2.02, 0.77 2.89, 1.03
Wheat Mexico 1.45, 0.46 3.19, 0.59 5.21, 0.58 3.07, 0.39 3.18, 0.99

Baha CA 1.52, 0.63 3.12, 0.82 4.33, 0.68 2.73, 0.55 2.85, 1.15
Crops Okla 1.43, 0.88 2.57, 0.69 3.74, 0.43 2.45, 0.65 2.46, 0.87
Tobacco NC 1.03, 1.27 2.13, 0.97 3.24, 0.56 2.38, 0.86 2.14, 1.04
Crops CA 1.12, 0.62 2.65, 0.67 4.85, 0.39 3.11, 0.50 2.93, 0.79
Forest CO 0.64, 2.56 1.97, 1.36 3.80, 0.89 1.99, 1.00 2.03, 1.59
Veggies WI 0.96, 1.58 2.09, 1.09 3.65, 0.58 1.95, 1.01 2.16, 1.14

Wild Canada 0.69, 2.14 1.79, 0.95 2.63, 0.85 1.74, 0.90 1.66, 1.18
Wheat Alberta 0.20, 4.76 2.53, 1.05 4.30, 0.43 2.11, 0.87 2.24, 1.18

in table 3.3, together with maximum values of average mean flight time; val-
ues close to or greater than 1 indicate that the diurnal signal is buried in the
standard deviation band and hence the cycle is not well defined. Looking at
the values of I we notice that for tropical and subtropical locations the cycle
is clearly present independently from seasons while in other places it is almost
always present during summer than other periods of the year. Moreover the
trend is that highest flight times result from lowest latitudes (with the exception
of Wheat Alberta). This is very important because tropical and subtropical ar-
eas are regions where many fungal species find favourable conditions to survive
during winter (overwintering region), waiting for spring and summer to expand
their presence spreading northward.

3.4.1 Role of the ABL dynamics

Having observed and quantified the presence of a diurnal cycle in the statistics
of spores deposition, the natural questions to answer are on the reasons at the
origin of the cycle dynamics and on the dynamical driving mechanism. By analyz-
ing probability density functions (PDF) and associated cumulative distributions
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(a)

(b)

Figure 3.9 – Dots represent the mean flight time averaged on all releases per-
formed in Green Mexico at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

(CPDF) of flight times for spores released at the same hour, two qualitatively
and substantially different dynamics appear. In way of example, in figures 3.19
and 3.20, the distributions of flight times, averaged on all releases at same hour,
are shown for the location Baja CA and discharge at 2:00 AM (3.20) and 2:00
PM (fig 3.19). Because the PDFs are strictly related to the deposition flux of
spores to the ground, the comparison of figures 3.19a and 3.20a indicates that:
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(a)

(b)

Figure 3.10 – Dots represent the mean flight time averaged on all releases per-
formed in Wheat Mexico at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

• in the first case (release at 2:00 PM) the flux to ground is lower than in
the second case (release at 2:00 AM);

• for releases at 2:00 PM deposition is strongly reduced after the early stage
of the dispersal process. In the other cases the flux to ground decays more
slowly;
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(a)

(b)

Figure 3.11 – Dots represent the mean flight time averaged on all releases
performed in Baja Ca at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

• as a consequence of the previous points particles, fly much longer in the
first case and the deposition process continues for days and shows peaks
with a characteristic distances of about 1 day, reflecting the diurnal cycle.

A key point is that the early stage of the dispersal process is crucial in deter-
mining the mean flight time of spores because significantly different fractions
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(a)

(b)

Figure 3.12 – Dots represent the mean flight time averaged on all releases
performed in Crops Okla at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

of the spores puff are deposited to the ground starting at different hours. For
examples releasing at 2:00 AM involve an average time of half a day to deposit
the 70% of the spores while at 2:00 PM requires an average time of about 2

weeks, with all the possible implication on survival strategies of different species
producing spores with significantly different survival skills. Understanding why
this difference of order of magnitude appears needs to analyze what happens at
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(a)

(b)

Figure 3.13 – Dots represent the mean flight time averaged on all releases
performed in Tobacco NC at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

spore puffs after the release. The initial condition is the same for all releases,
with all spores concentrated at the same height above and close to the ground.
Looking at the vertical dispersion two clearly different behaviors occur. As one
can see in figure 3.21, in some cases after few minutes the puff expands itself
for hundreds of meters in the vertical; in other cases it stays vertically bounded
with all spores close to the ground for hours. The first dynamics is typical of
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(a)

(b)

Figure 3.14 – Dots represent the mean flight time averaged on all releases
performed in Crops Ca at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

sunlight hours while the second of night time releases. The previous analysis on
diurnal cycle and a sistematic look at PDFs and cumulative distributions reveal
that also maxima in time of flight correspond to discharge of spores during sunny
hours and minima corresponds to night time releases. This fact gives the key
to read the cycle, that is: flight times strongly depend on the dynamical state
of the ABL, particularly the stability. Discharging during sunny hours, when
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(a)

(b)

Figure 3.15 – Dots represent the mean flight time averaged on all releases
performed in Forest Colorado at the same hour but different days of the
selected period; width of the shaded band is the related standard deviation.
Figure a) shows the result of the averaging procedure for January, April, July
and October separately; in figure b) all months are considered togheter.

the ABL is unstable with strong vertical convective turbulence and when the
thickness of the boundary layer easily reach the order of kilometers, allows the
puff to extend from a few meters to hundreds in few minutes. This fact strongly
reduces deposition and allows the spores to reach the large scale circulation (and
consequently traveling horizontally for hundreds of kilometers). When sun is not
heating the soil, the state of the ABL is typically stable and its thickness is lower
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(a)

(b)

Figure 3.16 – Dots represent the mean flight time averaged on all releases per-
formed in Veggies Wi at the same hour but different days of the selected
period; the width of the shaded band is the related standard deviation. Fig-
ure a) shows the result of the averaging procedure for January, April, July
and October separately; in figure b) all months are considered togheter.

than for unstable cases. Moreover the vertical diffusion is strongly suppressed
keeping the puff concentrated close to ground for hours consequently supporting
deposition of spores to the ground.

To reinforce such considerations I made a further analyses dealing with ABL
parameters (whose information is again extrapolated from the NARR dataset).
Such analysis is based on correlations between the mean flight time signal, a
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(a)

(b)

Figure 3.17 – Dots represent the mean flight time averaged on all releases
performed in Wild Canada at the same hour but different days of the selected
period; width of the shaded band is the related standard deviation. Figure
a) shows the result of the averaging procedure for January, April, July and
October separately; in figure b) all months are considered togheter.

24 hours periodic behaviour and the time series of four chosen ABL parame-
ters, measured at the release location. The involved quantities are the friction
velocity u⇤, the convective velocity W ⇤, the Monin-Obhukov length L and the
boundary layer thickness Zi. Each parameter plays a different role in determinig
the dynamical state of the ABL and then, potentially, the feature of the spores
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(a)

(b)

Figure 3.18 – Dots represent the mean flight time averaged on all releases
performed in Wheat Alberta at the same hour but different days of the
selected period; width of the shaded band is the related standard deviation.
Figure a) shows the result of the averaging procedure for January, April, July
and October separately; in figure b) all months are considered togheter.

dispersal. As measure of the correlation the Pearson coefficient

⇢X,Y =

Pn
i=1[(xi � x̄)(y � ȳ)]pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2

has been adopted. Here X is a variable, xi is the value of X at time i and the
overbar indicates the mean of X on its whole time signal. In the analysis X is
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(a)

(b)

Figure 3.19 – Probability density function and cumulative distribution of flight
times, averaged on all releases started at 2:00 PM (unstable case) of all days
in July 2014. The blue line with squares is the averaged curve. The distance
between green continuous lines and the blue line represents the standard
deviation from the average.

⌧ and Y changes among u⇤, W ⇤, L, Zi and a 24 hours periodic signal H. This
procedure shows that mean flight times correlate better with stability rather than
hours of release, giving higher values for the correlation coefficient (see table 3.4).
This fact clearly emerges where the diurnal cycle is particularly corrupted, while
the ABL stability parameters persists to provide good correlation with the mean
flight time signal. As an example one can look at Wild Canada in January (3.12).
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(a)

(b)

Figure 3.20 – Probability density function and cumulative distribution of flight
times, averaged on all releases started at 2:00 AM (stable case) of all days
in July 2014. The blue line with squares is the averaged curve. The distance
between green continuous lines and the blue line represents the standard
deviation from the average.

3.5 Conclusions

The motion of a spore after leaving its parent mycelium is very complex and
spores escaped from the same fungus at the same time can land hundreds of
kilometers far each other. Where and when spores will land and what environ-
mental conditions will encounter, during and at the end of their atmospheric
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(a)

(b)

Figure 3.21 – Histograms of particles height during the first hour after the
release. a) unstable case; b) stable case.

travel, is unknown for fungi. Facing this high level of unpredictability brings the
species of fungal kingdom to develop survival strategies based on huge prolifica-
tion to balance the spore wasting related with the uncertainty of the reproduction
mechanism. Moreover biological studies show that some species has evolved their
strategies in order to maximize the range of dissemination differently form oth-
ers. Then the characteristic life of a spore during flight can vary from hours to
weeks considering one species or another and why this differentiation started is
an interesting evolutionary issue.
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Table 3.4 – Pearson correlation coefficients for location Green Mexico: correla-
tion between the mean flight time and other signals. H is a 24 hours periodic
signal and other signals are time series of ABL parameters u⇤, W ⇤, L and
Zi.

Green Mexico ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.47 0.62 0.67 -0.80 0.40
April 0.31 0.55 0.68 -0.63 0.48
July 0.36 0.57 0.58 -0.61 0.16

October 0.41 0.52 0.62 -0.64 0.29
Year 0.31 0.48 0.50 -0.55 0.24

Table 3.5 – Pearson correlation coefficients for location Wheat Mexico.

Wheat Mexico ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.53 0.66 0.67 -0.61 0.46
April 0.37 0.61 0.66 -0.60 0.47
July 0.36 0.65 0.65 -0.61 0.39

October 0.59 0.60 0.65 -0.70 0.52
Year 0.33 0.57 0.56 -0.59 0.40

However my research puts in light that flight times are driven mainly by
stability of the ABL at time of release and that this feature often generates a
well defined diurnal cycle whose amplitude can made the hour of the day to
release spores a crucial choice to set up an effective survival strategy. As a first
consequence, if a fungal species belongs to the class of LDDers, it has to discharge
spores during unstable phases of the ABL, typically in sunny hours. Otherwise,
if a fungus does not want to go far and its spores cannot resist too long to UV ray
exposure, the best choice is to release spores on stable periods (typically night
time) or it can use other mechanisms to reach the ground (the wet deposition
is a relevent example). Indeed there is among mycologists the common believe
that some species release before rainy periods. The work presented in this thesis
doesn’t deal with wet deposition, hence investigating the effect on flight times due
to rain is a first interesting way to go deeper in the comprehension of the problem.
On smaller scales new questions arise in light of this work: do fungi properly tune
their releases according to a diurnal cycle, for instance following their internal
circadian cycle? Or they develped biological devices that are able to measure
quantities possibly related with stability, like soil temperature? Are they able to
predict the incoming of a rainy period? Future numerical analyses togheter with
focused and enlightened observations will put in light other interesting features
of this very interdisciplinary research field.
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Table 3.6 – Pearson correlation coefficients for location Baja Ca.

Baja Ca ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.42 0.53 0.67 -0.51 0.50
April 0.33 0.44 0.60 -0.53 0.46
July 0.32 0.55 0.69 -0.49 0.51

October 0.41 0.62 0.63 -0.49 0.53
Year 0.27 0.42 0.60 -0.51 0.52

Table 3.7 – Pearson correlation coefficients for location Crops Okla.

Crops Okla ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.43 0.51 0.53 -0.63 0.39
April 0.42 0.45 0.55 -0.46 0.33
July 0.39 0.58 0.68 -0.75 0.59

October 0.50 0.54 0.62 -0.63 0.44
Year 0.39 0.51 0.63 -0.59 0.49

Table 3.8 – Pearson correlation coefficients for location Tobacco NC.

Tobacco NC ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.26 0.54 0.60 -0.54 0.39
April 0.39 0.58 0.56 -0.61 0.38
July 0.43 0.47 0.56 -0.54 0.44

October 0.34 0.41 0.53 -0.48 0.37
Year 0.33 0.52 0.58 - 0.54 0.44

Table 3.9 – Pearson correlation coefficients for location Crops CA.

Crops CA ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.33 0.42 0.53 -0.53 0.58
April 0.34 0.52 0.57 -0.62 0.49
July 0.36 0.51 0.63 -0.70 0.61

October 0.37 0.56 0.61 -0.63 0.51
Year 0.29 0.38 0.52 -0.57 0.54

Table 3.10 – Pearson correlation coefficients for location Forest Colorado.

Forest Colorado ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.15 0.49 0.31 -0.33 0.45
April 0.21 0.35 0.34 -0.39 0.26
July 0.34 0.59 0.54 -0.59 0.10

October 0.34 0.60 0.51 -0.59 0.39
Year 0.23 0.10 0.32 -0.32 0.33
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Table 3.11 – Pearson correlation coefficients for location Veggies WI.

Veggies WI ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.28 0.45 0.35 -0.57 0.49
April 0.32 0.55 0.53 -0.57 0.18
July 0.33 0.49 0.66 -0.66 0.57

October 0.40 0.43 0.47 -0.55 0.15
Year 0.30 0.52 0.63 -0.59 0.45

Table 3.12 – Pearson correlation coefficients for location Wild Canada.

Wild Canada ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.14 0.51 0.51 -0.40 0.35
April 0.43 0.46 0.50 -0.55 0.32
July 0.34 0.47 0.53 -0.54 0.23

October 0.32 0.46 0.53 -0.55 0.42
Year 0.30 0.42 0.51 -0.49 0.30

Table 3.13 – Pearson correlation coefficients for location Wheat Alberta.

Wheat Alberta ⇢⌧̄ ,H ⇢⌧̄ ,U⇤ ⇢⌧̄ ,W ⇤ ⇢⌧̄ ,L ⇢⌧̄ ,Z
i

January 0.10 0.49 0.45 -0.42 0.34
April 0.29 0.36 0.53 -0.57 0.47
July 0.39 0.49 0.64 -0.77 0.48

October 0.42 0.53 0.62 -0.58 0.33
Year 0.27 0.48 0.64 -0.63 0.47
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Chapter 4
Eddy diffusivities in sea surface

dispersion

As pointed out in chapter 2 the specific choice of an eddy diffusivity closure is
not unique and strongly depends on the particular application. In this chapter
the passive tracer problem on the sea surface is studied. Several closures are
compared giving in some cases apparently counterintuitive results thus rising the
necessity to develop new models for such cases.

4.1 The strategy

To compare the efficiency of different eddy diffusivity closures I developed the
following strategy. Given an advective field v(x, t) with a certain resolution
(henceforth the fully resolved field FRF), a realistic situation, in which only the
dynamics up to certain scales is known, can be mimed removing the small-scale
contribution. This can be done, for instance, by a low-pass filter in the wave-
number space (figure 4.1).
Such a filter simply consists in turning off from the spatial Fourier transform
of the FRF all the modes related to wave numbers higher than a chosen cutoff
and then coming back to the ordinary space. The procedure gives a field with a
coarser resolution with respect to the FRF and we will refer to it as the large-
scale field LSF.
Once the LSF is produced, transport can be numerically studied either in the
FRF, or in the LSF, or in the LSF adopting different Eddy Diffusivity schemes
too. Finally the reliability of a closure is measured in terms of the discrepancy
between the behaviour of dispersal statistics in the FRF and in the LSF adopting
the chosen scheme. Moreover the reliability of every closure will be studied
studied moving the cutoff position in the wave number space.

53
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Figure 4.1 – Sketch of how the strategy works: the large-scale field is produced
filtering out the smallest dynamical scales in the fully resolved field. In the
energy spectrum the contribution of all the modes with wave numbers higher
than a chosen cutoff is removed.
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Irminger	Basin	

Greenland	

Domain	of	the		
circula0on	model	

Figure 4.2 – The geographic area in which the circulation is given.

4.2 Advective fields
Advective fields are required in order to realize the strategy. I focused my atten-
tion on a case study in the Artic region: the Southeast Greenland shelf, adiacent
to the Irminger Basin 4.2. As studied in details in recent works ([9]), this case
is dynamically important because of dense water cascades falling down the shelf.
This phenomenon is dominated by a complex interplay between different com-
ponents of the local current system. Hence vertical motions are relevant and the
dynamics cannot be treated in terms of a shallow water approximation.
The surface component, on which we are focusing the attention, is made up of
light waters of both Atlantic and Artic origins, which flow next to each other
and form the strong Irminger Current/East Greenland Current front.
The dataset contains the information about zonal and meridional components
of the current. Fields are given on a Arakawa-C staggered grid that covers the
geographical area corresponding to latitudes from 63.690N to 66.574N and longi-
tudites from 37.036W to 29.076W , with a nominal spatial resolution of about 500
meters. The dataset was produced with a setup of the MIT general circulation
model (MITgcm, [10]) and validated with field observations. For more details
about the setup of the circulation model refer to ([9]). The computational time
step is 6 s and fields are available with a sampling time of 3 hours for the simu-
lated pediod starting the 1th June 2003 and ending the 1th September 2003. A
further time series, sampled every 10 minutes, is available only for 3 days in the
simulated period. The computational domain, and hence the produced field, is
three-dimensional. Because we are interested on the sea-surface transport, only
the surface flow is retained.



56 Chapter 4. Eddy diffusivities in sea surface dispersion

Figure 4.3 – Both preliminary analysis and transport simulations are performed
in the subdomain inside the blue square. The side of this area is about
150 km.

Both the preliminary analysis of the advective fields and the transport simula-
tions are performed on a squared subdomain, with side of 150 km (figure 4.3).
In the following the results of a preliminary analysis are shown.

4.2.1 Field analysis

The geographical area is affected by strong currents, also at the surface level (see
the top-left histogram in figure 4.4). Moreover, the direction of the stream is well
defined (westward), for the whole simulated period, as can be seen in the top-
right histogram of figure 4.4, where the time signal of the specific kinetic energy
(kinetic energy per unit mass) is shown too. All the quantities represented in
figure 4.4 are averaged over the grid points and varying in time. The bottom
topography of the basin is characterized by a well-defined shelf. The cross section
of the bathymetry showed in the left panel of figure 4.5 gives the idea of the shelf
slope: the sea depth changes from 300 m to 2500 m in about 100 km of horizontal
displacement, with the aforementioned implications on the dynamics.

Fourier analysis

The main goal of this work is to investigate what happens when the transport
is studied with a partial knowledge of the carrying flow, i.e. when the resolution
is limited to certain spatial scales. What happens to the dispersion if the effect
of the unknown scales is totally neglected? How can one restore for applications
the lack of information via an effective model? All this questions are relevant
and proper quantities had to be defined to deal with them. For this aim the
mathematical tool of Fourier decomposition has been used in the analysis, de-
composing the velocity field in spatial Fourier modes that are oscillating in space
with different wave vectors k. In this framework, each spatial length scale � in
the advective field is associated to all Fourier modes characterized by the same
magnitude k =

2⇡
�

of the wave vectors.
The strategy needs to know the behaviour of the advective field at each

involved length scale. Hence, at each time step, the spatial Fourier transform of
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Figure 4.4 – Upper left: histogram of the spatial averaging at fixed times of the
current speed inside the domain; Upper right: polar histogram of the direction

of the current averaged in space at fixed times; Lower: time series of spatially

averaged kinetic energy per unit mass.

the velocity field has been computed adopting the following conventions on the
direct and inverse transform:

ˆf(k) =

ˆ
e�ik·xf(x)dnx,

f(x) =
1

(2⇡)n

ˆ
e+ik·x

ˆf(k)dnk,

thus giving the following form for Parseval’s identity in the case of n = 2:ˆ
f 2
(x)d2x =

1

(2⇡)2

ˆ
|

ˆf(k)|2d2k.
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Figure 4.5 – Bathimetry inside the domain and slope of the shelf. Up: the
continental shelf very sharp in the geographic area of the case. The white
line is a top view of the cross section shown in right panel. Down: Cross
section of the shelf that gives the idea of its slope.
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Figure 4.6 – Energy spectrum calculated averaging over angular coordinates in
the k-space. In agreement with the Kolmogorov law, it shows a clear range of
ks with energies that follow a k�5/3 law up to scales of the order of ⇠ 10 km

The first important information obtained is how the kinetic energy is distributed
on spatial scales. Therefore, starting from the averaged kinetic energy per unit
mass

✏ =
EKin

M
=

1

2

´
|u(x, t)|2dx´

dx
=

1

2

h|u(x, t)|2iV ,

(where V is the volume of a grid cell) and using the Parseval’s identity, the
isotropic energy spectrum (IES) can be defined as:

S(k) =
d✏

dk
=

k

4⇡V
(|û(k)|2 + |v̂(k)|2).

This quantity is related to the energy density carried by all modes associated to
a specific length scale �.

With this convention I computed the IES of the velocity field for each sampled
time of the advective field. An example is showed in figure 4.6. Here the IES
shows the presence of an inertial range in the wavenumber space that involves
wavenumbers up to k = 10

4 m�1 . This range follows the Kolmogorov law, being
the spectrum proportional to k� 5

3 . For higher values of k (smaller spatial scales)
the spectrum follows a different power law and the associated energies decrease
faster. Further important quantities to be evaluated are the correlation times
associated with different spatial scales. Indeed the turbulent nature of the flow
allows to model the time signal of each Fourier mode as a random process with
a characteristic correlation time ⌧(k). For each mode, such characteristic time
can be computed from the correlation functions

Cx(t, t
0,k) = hû(t,k)û⇤

(t0,k)i, Cy(t, t
0,k) = hv̂(t,k)v̂⇤(t0,k)i,
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Figure 4.7 – Normalized autocorrelations permit to appreciate also qualitatively
that correlation times decrease with the wave number.

where the angular brackets denote the average over an ensamble of different
realizations and the ⇤ indicates the complex conjugate. Assuming the process
to be statistically stationary at the considered scale, the ensamble average is
replaced by the average on time and the correlation becomes simply a function
of the time lag T = t0 � t:

Cx(T,k) = hû(t,k)û⇤
(t+ T,k)i, Cy(T,k) = hv̂(t,k)v̂⇤(t+ T,k)i).

Moreover, being the amplitude of a Fourier mode a complex signal, the corre-
lation function is complex too and the correlation time can be evaluated from
its real part as the time for this function to approach zero, i.e. after this time
the signal is uncorrelated with itself. Once the correlation function had been
computed, a further averaging procedure has been applied in order to obtain
the correlation associated to a particular length scale: all functions belonging to
modes with the same magnitude of the wave vector has been averaged togheter.
This procedure corresponds to averaging over all angles in the wave vector space,
keeping fixed magnitude of k (henceforth k-shell averaging). The resulting corre-
lations, normalized with the variances of the signals, are shown in figure 4.7 for
some length scales. As can be seen, the characteristic times decrease togheter
with the length scale, that is, smaller scales are less correlated in time. Then
correlation times can be computed, alternatively, as the integral in time of the
normalized functions. Both the procedures has been implemented and lead to
very similar results.
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Figure 4.8 – Fully resolved field: snapshot of the advective velocity in the FRF at
a fixed time: the color represents the current speed and arrows the direction.
Notice that many small-scale structures are present in the flow.

4.2.2 Filtered fields

A crucial step to carry out the strategy is the production of the filtered LSF,
to mimik the inevitable lack in the knowledge of the advective field. Several
different datasets have been created for the LSF changing the position of the
cutoff in the wavenumber space for the filtering procedure. Figures 4.8 and 4.9
show snapshots of the FRF and two LSFs generated with different cutoffs and
corresponding to length scale of ⇠ 12 km and ⇠ 30 km. It is evident that many
dynamical structures are removed in the filtering process.

4.3 Modeling transport

The transport process is described adopting a Lagrangian approach and consid-
ering the dispersed particles as passive tracers. Therefore, for each simulation, an
ensemble of particles is released in the advecting flow, computing the statistics
of certain relevant quantities.
When the unresolved dynamics is completely neglected, the motion of each parti-
cle is deterministic and described by a first order ODE. On the other hand, when
an Eddy Diffusivity DE scheme is adopted, the small-scales effect is described
via a stochastic process, making the equation of motion a stochastic differential
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Figure 4.9 – Filtered fields: snapshots of the advective velocity in two LSF
generated with different cutoffs. Up: cutoff wavenumber k = 510�4m�1;
Down: cutoff wavenumber k = 210�4m�1. Notice the progressive reduction
of structures when the cutoff is reduced
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equation:
dx(t)

dt
= VAd[x(t), t] + �[x(t), t]⌘, (4.1)

where VAd[x(t), t] is the value of the advective field interpolated at the particle
position at time t, � is the unique positive-definite solution of the matrix equa-
tion DE

ij(x, t) =
1
2(�ip(x, t)�jp(x, t)), and ⌘ is a delta-correlated random vector,

extracted at each time step for each particle, according to a Gaussian distribu-
tion with mean value equal to zero and unit variance. In this framework the
most general case, in which DE is a tensor field, is considered.

4.3.1 Numerical solution techniques

All simulations have been performed with a Lagrangian numerical model, whose
source code has been written by the author using the C++ pragramming lan-
guage. Modeling or not the effect of the unresolved dynamics requires different
numerical techniques. If small-scale effects are neglected, simulations are done
solving first order ODEs. In this case, an esplicit Runge-Kutta method of or-
der four has been implemented to compute the temporal evolution. Advective
velocities at time t in the particle position are extimated by linear interpolation
either in space and time.
The use of an Eddy Diffusivity model involves the introduction of a random
component to particle velocities, in addition to the advective contribution. The
aim of this component is to mimik turbulent diffusion, spreading particles in the
same position, according to the value of the Eddy Diffusivity tensor field at such
position. Therefore, every time step, for every particle, a bidimensional vector
of random numbers is extracted from Gaussian distributions whose standard de-
viation is modulated according to the local values of DE

ij(x, t) components.
The discretization of equation (4.1), that has been implemented in the code, is

Xi(t+�t)�Xi(t) = �t


VAdv,i(X, t) +

1

p

�t
�ij(X, t)⌘j

�

with the above mentioned relationship between tensors � and D

E. Also in this
case Advective and Eddy Diffusivity fields are linearly interpolated either in space
and time.
As boundary condition particle trajectories are stopped once they reach the
boundaries of the computational domain. The time step has been set to 10min,
ensuring that the particle displacement during one step doesn’t exceed the grid
size, i.e. satisfying the condition:

�tmax{VAdv}

�x
< 1

where �x is the spatial resolution of the advective field.
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Eddy Diffusivities

Two models to describe the subgrid scales motion have been used. In the first
case a constant scalar value for the Eddy Diffusivity is used, depending on the
grid size of the advective velocity field:

DE
= 2.055 10�4

�x1.15

This formula is named the Okubo’s espression for the turbulent diffusivity and
it is largely used for oceanographic applications [18]. The value of �x has been
identified with the characteristic length �, associated with the cutoff wave number
kL =

2⇡
�

chosen in filtering the FRF.
The second model consists in explicit expressions for the components of the Eddy
diffusivity tensor as a function of the advective velocity components and other
parameters related to the unresolved scales. The tensor form of such expressions,
obtained by Boi et alt. in [17] is:

D�� =

U2
rms

↵2

h
↵2

U2
rms

|U|

2U�U� + (|U|

2��� � 2U�U�)

⇣q
↵2

U2
rms

|U|2+1 � 1

⌘i

q
↵2

U2
rms

|U|

2
+ 1|U|

4

NX

i=1

Bi

2

⌧i

(4.2)
where U is large-scale velocity vector in the the considered position. The constant
Urms is the the root mean square velocity of the FRF and it is simply related to
the whole kinetic energy by:

Urms =

p
2Ekin =

p
2(ELSF + TKE)

ELSF being the kinetic energy of the large scale field, and TKE is the turbulent
kinetic energy of the unresolved scales. This quantities have been evaluated dur-
ing the filtering process. Figure 4.10 shows the time series of Urms and

p

2TKE
in the case of LSF produced with a cutoff wavenumber kL = 210

�4 m�1.
The index i runs among the unresolved wavenumbers ki and ⌧i is the associated
correlation time that has been computed from the analysis of the correlation
function described in section 4.2.1.
The other constants {Bi}, involved in the summation, are related to the energy
spectrum:

E(ki)�ki =
1

4

Bi Ekin =

1

4

NX

i=1

Bi

where E(ki)�ki is the energy of all modes inside a thin shell, of radius ki and
thickness �ki, in the wave-vector space. Moreover, if the unresolved field obeys
the Kolmogorov 1941 theory, E(ki) = C✏2/3k�5/3, where C is the Kolmogorov
constant and ✏ denotes the energy dissipation rate. Consequently one has that

Bi = 4C✏2/3k
�5/3
i �ki

and, by definition of turbulent kinetic energy TKE ⌘

´1
k
L

E(k)dk, it turns that

C✏2/3 =
2

3

TKE k
2/3
L .
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Figure 4.10 – Comparison between time series of Urms (blue signal) and of a
characteristic turbulent velocity scale computed as

p

2TKE (red signal), for
a cutoff kL = 210�4m�1. This figure gives the idea of the relative importance
of removed scales in the transport.

This relationship is very useful in realistic applications because the TKE is easily
accessible in many CFD models (both RANS and LES).
Finally the dimensionless constant ↵ is a free tuning parameter, typically of order
1. In the present work ↵ has been evaluated by a best fit, assuming the following
functional relationship between ⌧ and k:

⌧i =
↵

Urmski

that is supported by numerical evidence reported by Kaneda et alt. [32]. Then
the obtained value is ↵ ⇠ 1.2.
With the knowledge of all involved parameters and given a LSF, it is then possible
to produce the relative field for each of the three independent components of the
Eddy Diffusivity tensor. Figures 4.11, 4.12 and 4.13 show the result of this
computation at a fixed time, for a cutoff kL = 210

�4 m�1.

4.3.2 Numerical simulations

Keeping in mind the purpose of evaluating the goodness of different models for
the unresolved turbulence, every run has been repeated, starting from the same
initial condition and releasing particles in the FRF, in the LSF and also in the
LSF using an Eddy Diffusivity model. The LSF chosen for the comparison has
been produced with a cutoff wavenumber kL = 210

�4 m�1, corresponding to a
length scale of about 30 km. On one hand this choice gives correlations times,
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Figure 4.11 – Snapshot of the D11 field calculated for kL = 210�4m�1.

Figure 4.12 – Snapshot of the D22 field calculated for kL = 210�4m�1.
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Figure 4.13 – Snapshot of the the extra-diagonal component of the Eddy Dif-
fusivity tensor field D12 = D21,calculated for kL = 210�4m�1.

in the unresolved field, that are not too long with respect to the chosen time
step. On the other hand the filter is quite strong, giving to the dispersion an
appreciable role in the dynamics.
For the computation, the particle positions and advective fields are mapped on
an internal Cartesian grid, with the x-axis along the east direction, the y-axis
northward and the origin is placed on the left-down corner of the computational
domain.
Since the direction of the mean current is always westward, in order to maximize
the domain crossing time, the starting distribution of particles positions has been
chosen near the east boundary. Particles are released uniformly on a square,
centered about 110 km east of the west boundary and at the mean latitude. The
side of the square is chosen to be like the characteristic cutoff wavelength.
The number of released particles for each run has been set to 250000, ensuring
the convergence of observed statistics. A new group of simulation with the same
initial condition started every 9 hours and particle positions has been saved every
hour.

Statistics of the dispersion

In order to measure the dispersion the components of the displacement from the
initial position:

MX = hx� x0i, MY = hy � y0i
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has been computed (brackets denote the average over the ensemble of all the
released particles). The statistics of this observables gives a quantification of
the dispersion process. The variances of the displacement are measures of the
turbulent diffusion coefficient from a Lagrangian point of view. Indeed their
asymptotic behaviour gives the diffusion tensor components:

V arij = h(xi � x0i �Mi)(xj � x0j �Mj)i ! 2Dijt.

Hence these quantities can be used to compare the reliability of different methods
in numerical description of the large-scale transport.

Results

A close look at the resulting behavior of the statistical observable reveals unex-
pected results. By construction the LSF consists in turning off some dynamical
Fourier modes. Consequently the energy amount of the LSF is always less than
the corresponding FRF. Hence the energy amount available for turbulent diffu-
sion, typically associated with smaller scales, is significantly reduced in the LSC
and then, without any Eddy Diffusivity model, the displacement variances are
expected to increase more slowly in the LSF than in the FRF.
Surprisingly, in most cases, this fact is not true. Figures 4.14, 4.15 and 4.16
are related to three different initial conditions and, in all cases, the LSF is more
diffusive than FRF. Moreover, the introduction of an Eddy Diffusivity scheme
deteriorates the agreement with the FRF.
Why does this, at first look, counterintuitive fact happen? A look at the spatial
distribution of particles gives an hint. Comparing two snapshots of particle po-
sitions, after the same time from the release but within the FRF and the LSF,
shows a clear clustering effect in the first case. As can be seen in figure 4.17
particles are repelled from certain region and attracted on structures that show
characteristic length scales lower than the cutoff length. This is a clear effect
of compressibility. Of course, this does not mean that water is compressible,
but simply that in a 2D cut of a 3D field mass is not conserved. It is gener-
ally believed that this effect is negligible in the ocean. We actually found that
such an effect has important consequences on surface transport. Hence, even
if the tridimensional velocity fields are actually incompressible, as imposed by
the equations of the circulation model, the surface transport is given by a bidi-
mensional restriction of such fields. If vertical motions are significant, as in the
present domain, this produce an effective compressibility in the advective field.
To support this idea, a further step in the analysis has been done using a com-
pressibility index introduced in [11]:

I =

h(riv
i
)

2
i

h(rivj)2i

where angular brackets indicates the average over all grid points. This index is
zero in the perfectly incompressible case. The result of the analysis is plotted
in figure 4.18, revealing that in all cases the FRF is more compressible than the
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Figure 4.14 – Dispersion is measured looking at the particle displacement vari-
ances. This plot shows the evolution in time of V arXX + V arY Y for a
particular release of particles. The blue line represents the transport in the
FRF, the green line in the filtered field without any description of the subgrid
dynamics. Red and light blue lines are related with transport simulation in
which an Eddy Diffusivity closure has been applied. In is clear that, in this
case, Eddy diffusivity closures make worse the description of transport.

LSF. Hence, in this case, the most important contribution to a non-zero diver-
gence comes from filtered scales, consequently producing clustering of particles
on attractive structures.

4.3.3 Conclusions

Eddy diffusivities for incompressible flows are largely used in numerical models
for passive tracer transport [22]. In many cases they give good results in describ-
ing the tranport. The hypotesis of incompressible flows is also a good assumpion
in general for geophysical flows. Anyway dealing with floating tracers on the sea
surface requires to consider as advective velocity only the horizontal component
of the whole field at the surface. Often this is a good approximation because the
vertical component is actually much less important that the others. However, in
some cases, the vertical dynamics becomes important and have significant effect
also in the horizontal transport.
My work shows how the presence of compressible component on unresolved scales
of the advective field, can significantly affect the dispersion of substances in the
sea surface. Even if the tridimensional velocity field has no divergence, this
compressible component rises anyway when the vertical dynamics in the studied
region is relevant, as in the case of the Greenland Sea. In shallow basins, this
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Figure 4.15 – Dispersion is measured looking at the particle displacement vari-
ances. This plot shows the evolution in time of V arXX + V arY Y for a
particular release of particles. The blue line represents the transport in the
FRF, the green line in the filtered field without any description of the subgrid
dynamics. Red and light blue lines are related with transport simulation in
which an Eddy Diffusivity closure has been applied.
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Figure 4.16 – Dispersion is measured looking at the particle displacement vari-
ances. This plot shows the evolution in time of V arXX + V arY Y for a
particular release of particles. The blue line represents the transport in the
FRF, the green line in the filtered field without any description of the subgrid
dynamics. Red and light blue lines are related with transport simulation in
which an Eddy Diffusivity closure has been applied.

Figure 4.17 – Clustering of particles on small-scale structures in the FRF (lower
that the cutoff wave-length � ⇠ 30 km).
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Figure 4.18 – Compressibility index as function of time, it is equal to 0 in
incompressible flows (averaging on space) and it is equal to 1 in the pure
potential case. The blue line represents the fully resolved field while the
green represents the filtered one. It is evident for all times that, in the
filtering process, a great contribution to compressibility is removed.

effect cannot be seen and Eddy Diffusivity schemes work well. However, vertical
phenomena like in the Greenland Sea are not rare in oceanography and standard
Eddy Diffusion models can significantly overstimate the transport. Moreover,
this result points out the necessity to develop new closures that are able to de-
scribe transport processes also in presence of a compressible component in the
subgrid dynamics.
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Papers in preparation

Related with the research developed in this thesis I have two papers in prepara-
tion:

1. Atmospheric stability shapes strategies for fungal spores liberation in col-
laboration with A. Mazzino (Dicca - Unige), A. Seminara (CNRS - Nice)
and A. Pringle (University of Madison WI)

2. Sea-surface transport of non-bouyant particles in collaboration with A.
Mazzino (Dicca - Unige) and M.G. Magaldi (CNR - La Spezia)

73



74 Appendix A. Papers in preparation



Bibliography

[1] https://www.ars.usda.gov “United States Department of Agriculture”.

[2] L. Palatella, F. Bignami, F. Falcini, G. Lacorata, A. S. Lanotte, and R.
Santoleri, “Lagrangian simulations and interannual variability of anchovy egg
and larva dispersal in the in the Sicily Channel”, J. Geophys. Res. Oceans
119, 1306–1323 (2014).

[3] M. Roper, A. Seminara, M. M. Bandi, A. Cobb, H.R. Dillard, A. Pringle,
“Dispersal of fungal spores on a cooperatively generated wind”, PNAS 107,
17474 (2010).

[4] J. Fritz, A. Seminara, M. Roper, A. Pringle and M. P. Brenner, “A natural
O-ring optimizes dispersal of fungal spores”, J Roy Soc Interface 10, 20130187
(2013).

[5] F. Trail and A. Seminara, “The mechanism of ascus firing - merging biophys-
ical and mycological viewpoints”, Fungal Biol Rev 28, 70 (2014).

[6] D. Andrade, Z. Pan, W. Dannevik, and J. Zidek, “Modeling soybean rust
spore escape from infected canopies: model description and preliminary
results”, Journal of Applied Meteorology and Climatology 48(4), 789-803
(2009).

[7] H. Wang, X. B. Yang, and Z. Ma, “Long-distance spore transport of wheat
stripe rust pathogen from Sichuan, Yunnan, and Guizhou in southwestern
China”, Plant disease 94(7), 873-880 (2010).

[8] D. E. Aylor, “Aerial spore dispersal close to a focus of disease”, Agricultural
and forest meteorology 47(2-4), 109-122 (1989).

[9] M. G. Magaldi, T. W. N. Haine, “Hydrostatic and non-hydrostatic simulations
of dense waters cascading off a shelf: the East Greenland case”, Deep Sea Res.
I 96 , 89-104 (2015).

[10] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, “A finite-
volume, incompressible Navier Stokes model for studies of the ocean on par-
allel computers”, J. Geophys. Res. 102(C3), 5753–5766 (1997).

75



76 Bibliography

[11] G. Falkovich, K. Gawedzki, M. Vergassola “Particles and fields in fluid tur-
bulence”, Reviews of modern physics 73, 913-975 (2001).

[12] P. K. Kundu, I. M. Cohen, “Fluid Mechanics.” Elsevier Academic Press
(2008).

[13] P. Castiglione, A. Mazzino, P. Muratore and A. Vulpiani, “On strong anoma-
lous diffusion”, Physica D 134, 75-93 (1999).

[14] K.H. Andersen, P. Castiglione, A. Mazzino and A. Vulpiani, “Simple stochas-
tic models showing strong anomalous diffusion”, Eur. Phys. J. B 18, 447-452
(2000).

[15] H. B. Fischer, “Mixing in inland and coastal waters.” Academic Press (1979).

[16] U. Frisch, “Turbulence: the legacy of AN Kolmogorov.” Cambridge Univer-
sity Press (1995).

[17] S. Boi, A. Mazzino and G. Lacorata, “Explicit expressions for eddy-
diffusivity fields and effective large-scale advection in turbulent transport”,
Journal of Fluid Mechanics 795, pp. 524–548 (2016).

[18] I. Hernández-Carrasco, C. López, E. Hernández-García and A. Turiel, “How
reliable are finite-size Lyapunov exponents for the assessment of ocean dy-
namics?”, Ocean Modelling 36(3-4), 208-218 (2011).

[19] C. M. Bender, S. A. Orszag, “Advanced Mathematical Methods for Scientists
and Engineers,” MacGraw Hill, New York (1978).

[20] L. Biferale, A. Crisanti, M. Vergassola, A. Vulpiani, “Eddy diffusivities in
scalar transport“, Physics of Fluids 7(11), 2725-2734 (1995).

[21] A. Mazzino, S. Musacchio, A. Vulpiani, “Multiple-scale analysis and renor-
malization for preasymptotic scalar transport”, Physical Review E 71(1),
011113 (2005).

[22] J. H. LaCasce, “Statistics from Lagrangian observations”, Progress in
Oceanography 77(1), 1-29 (2008).

[23] J. Tesmer and M. Schnittler, “Sedimentation velocity of myxomycete spores”,
Mycological Progress 6(4), 229 (2007).

[24] C. E. Yarwood, “Water content of fungus spores”, American Journal of
Botany 636-639 (1950).

[25] “https://www.arl.noaa.gov”, Air Resource Laboratory website.

[26] J. R. Garratt, “The atmospheric boundary layer”, Cambridge University
Press, Cambridge (1992).



Bibliography 77

[27] R. B. Stull, “An introduction to boundary layer meteorology”, Springer Sci-
ence and Business Media (2012).

[28] F. Mesinger, G. DiMego, E. Kalnay, K. Mitchell and Coauthors, “North
American Regional Reanalysis”, Bulletin of the American Meteorological So-
ciety 87, 343–360 (2006).

[29] “https://www.ncdc.noaa.gov”, National Oceanic and Atmospheric Adminis-
tration website.

[30] H. Risken, “The Fokker-Planck Equation”, Springer, Berlin, Heidelberg
(1996).

[31] S. Chandrasekhar, “Stochastic problems in physics and astronomy”, Reviews
of modern physics 15(1), 1 (1943).

[32] Y. Kaneda, T. Ishihara, K. Gotoh, “Taylor expansions in powers of time of
Lagrangian and Eulerian two-point two-time velocity correlations in turbu-
lence”, Physics of Fluids 11(8), 2154-2166 (1999).



78 Bibliography



Acknowledgments

I would like to thank all the people who supported me during these three years
and without whom this would not have been possible: my supervisor Andrea
Mazzino, who patiently guided me in this experience; Agnese Seminara, who in-
troduced me to the fascinating field of biophysics and whose support was essen-
tial; Marcello Magaldi for giving me the opportunity to work with high-resolution
datasets.
Thanks also to all the office mates with whom I shared joy and efforts: Davide,
Peyman, Duaa, Krystyna, Francesco De Leo, Francesco Enrile, Francesco Fer-
rari, Stefano, Irene, Masha, Gaetano. I also want to thank all the friends and
my family, essential support in times of hard work: mom and dad, Simone and
Marco, Fausto and Graziella but above all Chiara and Bianca. Thank you!

79


	Introduction
	Fundamental results
	Transport processes
	Diffusion
	Advection

	The Lagrangian approach
	Turbulence
	Homogeneization
	Anomalous diffusion

	Survival strategies in fungal kingdom
	Fungal spore dissemination
	Describing spore dispersal
	Numerical study
	The meteorological dataset
	Numerical techniques.
	Statistical observables

	Results
	Role of the ABL dynamics

	Conclusions

	Eddy diffusivities in sea surface dispersion
	The strategy
	Advective fields
	Field analysis
	Filtered fields

	Modeling transport
	Numerical solution techniques
	Numerical simulations
	Conclusions


	Papers in preparation
	Bibliography
	Acknowledgments

