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Introduction

This thesis collects the work performed during my Ph.D. activity, concern-
ing the study of turbulence mainly from the analytical point of view. The
manuscript is subdivided into three parts, containing two chapters each. Ci-
tations consisting in numbers between square braces are relative to the gen-
eral bibliography at the end of the manuscript. Capital letters between round
braces refer to the list of my own publications, placed after this introduction.

The guideline of my work consisted in the consideration that, despite a
huge range of scales of motion are excited and nonlinearly coupled in turbu-
lent flows, it is nevertheless possible to individuate at which scales different
phenomena take place and other effects are negligible, and at the same time
one can extract a whole range of scales, extending for several orders of mag-
nitude, where universal behaviours are expected, independently of external
intervention and boundary constraints.

The study of turbulence has a greater and greater relevance in the frame-
work of fluid dynamics, also because it is connected to mathematical concepts
of chaos dynamics which developed only in these last few decades (one may
think, in way of example, to fractal and multifractal theories [1]). The most
relevant contribution was however given by Kolmogorov at the half of the
last century (the famous theory K41, expressed in 1941 [2]), even if Leonardo
da Vinci already had a precise idea of the physical phenomena taking part
in turbulence [1].

A very important role, in defining the different sceneries emerging in the
study of turbulent flows, is played by the “Reynolds number” (Re), defined
as the adimensional ratio Re = UL/ν, U , L and ν being the typical velocity
and size of the flow and the kinematic viscosity of the fluid, respectively. In
way of example, if one considers the flow around a cylinder, its radius may
be identified as the typical length L, while a characteristic speed U can be
defined as the mean value of the velocity over the whole volume.
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For values Re! 1, the linear terms are dominant in the equations describing
the flow dynamics: laminar flows are expected, showing “simple” behaviours
which can often be described by exact solutions.
In the intermediate region, Re ≈ O(1), nonlinear effects act in competition
with purely dissipative ones: the flow develops nonstationary behaviours, the
velocity field gets complicated, the Fourier analysis of its frequency spectrum
shows a growing number of excited modes, until a critical value Rec (strongly
dependent on geometry and external forcing, thus nonuniversal).
For Re > Rec the fluid shows a sharp transition: the spectrum becomes
continuous, the flow turns highly nontrivial (at least in its temporal charac-
teristics), features related to transport are sensibly amplified.
For Re→∞ (that is, Re% Rec, such a regime is known as “fully-developed
turbulence”), the (apparent) aleatory character also extends to the spatial
behaviour of the velocity field: the number of excited temporal frequencies
and spatial scales tends to infinity, and the same is for the number of degrees
of freedom necessary to correctly describe the flow dynamics. Apart from
some considerations in chapter 5, which apply to general flows (also laminar
ones), I will exclusively focus my attention on this regime.

From the phenomenological point of view, fully-developed turbulence con-
sists in a hierarchy of turbulent eddies on different spatial and temporal
scales. The instability of large-scale eddies generates smaller-scale eddies
which, becoming themselves unstable, give rise to similar structures on scales
even smaller, and so on. The basic idea, on which Kolmogorov built up his
K41 theory, derives from Richardson’s concept of turbulent cascade. Ac-
cording to this vision, the energy injected into the system at a large scale
creates strong correlations in the velocity fields between points distant this
same scale from each other, and such correlations are associated with the
presence of eddies. Energy thus flows from large scales (small wavenumbers)
to small scales (large wavenumbers, where dissipative terms become relevant
and stop the cascade), through a process of eddy fragmentation. Such a
process is local, in the sense that eddies at each scale are generated by the
fragmentation of eddies at a scale just larger, and is self-similar, i.e. it does
not depend on the observation scale.

Part I: Turbulence at mesoscopic scales

Self-similarity at different scales is a key point in fully-developed turbulence,
in the sense that it accounts for the existence of a wide range of scales where
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universal behaviours are expected and the “matching” with large- and small-
scale constraints is reducible to the knowledge of some parameters, as the
external energy input rate. This range of scales is called inertial and presents
some universal features, like the scaling exponents of the velocity structure
functions. Chapter 1 is meant to clarify some points about this degree of
universality, in particular the absence of logarithmic corrections in scaling
power laws. The analysis presented here is essentially based on an article
written together with Uriel Frisch, Andrea Mazzino and Victor Yakhot (A).

When under investigation is not the flow itself, but a physical quantity
transported by it, one may however find the analogous of the inertial range.
Specifically, in chapter 2, I will focus on passive scalar advection, i.e. I will
study scalar fields which are advected by the surrounding turbulent flow but
that do not affect it. A common example is provided by the concentration
of a tracer (by definition) or even of a pollutant, if its density is sufficiently
similar to the one of the fluid and the feedback on the flow is negligible:
this means, e.g., the absence of both chemical reactions and “mechanical”
modification of the streamlines. Analogously, the temperature field can be
assumed as passive if buoyancy effects are negligible.
The convective range (the passive scalar counterpart of the inertial one) shows
universal scaling properties in ideal situations, for instance in the presence
of homogeneity and isotropy. When these conditions are not satisfied by the
large-scale constraints (as usually is in practical situations), the question of
a possible small-scale restoration of homogeneity or isotropy arises. In a con-
text similar to passive scalar transport, provided by magnetohydrodynamics
(the study of magnetic field advection), it has been shown [3, 4, 5, 6, 7]
that anisotropy persists at small scales. The objective of the chapter will be
the study of situations in which inhomogeneities play a significant role (first
from a generic point of view and later focusing on a specific case, the point-
source emission), and the investigation of their effect on universality. I will
report results discussed in two articles, the former — already published —
with Mauro Sbragaglia (B) and the latter — in preparation — with Antonio
Celani and Andrea Mazzino (C).

Part II: Turbulence at macroscopic scales

From a quantitative point of view, in principle it would be possible to build
the statistical mechanics of turbulence starting from first principles (i.e. the
equations for the turbulent flow); unfortunately, any such analytical the-
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ory of turbulence necessarily faces “closure” problems. Indeed, writing the
equations for a statistical n-th order moment, one immediately notices the
appearance of moments of order n + 1; the equations for the latter present
moments of order n + 2, and so on. Such difficulties, typical of nonlinear
systems, also hold for turbulent systems linear in the unknown field but non-
linearly interacting with the velocity field. On the other hand, the strongly
non-Gaussian character of the flow in fully-developed turbulence makes any
perturbative approach useless.
From a conceptual point of view, one can build a numerical approach, which
amounts to numerically solve (with a powerful computer) the partial dif-
ferential equations ruling turbulent flows. Despite the typical space-time
irregularity of velocity, derivatives are well-defined: thanks to viscosity, ve-
locity differences at very small scales are indeed “smooth”. However, a direct
simulation of a turbulent flow must explicitly take into account all excited
scales of motion, ranging from the largest, whose size is typically imposed by
boundary conditions (the so-called “integral scale”), to the smallest, associ-
ated with dissipative effects due to molecular motion (“Kolmogorov scale”).
For instance, a direct simulation of the atmosphere would require the de-
scription of ∼ 1027 degrees of freedom, whose number scales as Re3/4 in each
spatial direction for large Re: such numbers are clearly too large also for any
modern, powerful computer. Consequently, for a small-viscosity fluid, it is
not possible, now or in a near future, to explicitly simulate all active scales
for a turbulent flow.
Nevertheless, such a problem does not exclude the possibility of a numerical
description. Back to Richardson’s concept of turbulent cascade, one is often
not interested in describing the complete dynamics down to small scales. The
idea is then to artificially stop the energy flux at an intermediate scale, much
smaller than the integral one (so as not to be affected by large-scale, bound-
ary details) but much larger than the Kolmogorov dissipative scale. In this
way, only eddies larger than such a “cutoff” scale are dynamically described,
while the remaining, smaller ones are “parameterized” (i.e. dealt with statis-
tically): as a result, the number of degrees of freedom is drastically reduced.
This strategy is called “large-eddy simulation”. In view of what previously
stated, it is easy to find the critical point of such a scheme. Indeed, in the
absence of closed equations for the small scales of motion, most of nowadays
parameterizations are empirical, and thus not based on first principles. It
is then difficult, if not impossible, to quantify the impact of the closure on
large-scale fields.
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The situation is even more difficult when different turbulent systems are
supposed to interact with each other. One of the best-known example is
the temperature field in a turbulent flow, which, depending on the role of
buoyancy, may (as already said) behave as an active or a passive scalar. If
very few exact results on the closure problem are known for non interacting
turbulent systems, the situations is even worst in the presence of interaction.
The aim of chapter 3 is to provide some exact results for a particular class
of turbulent systems: the passive scalar turbulence. This problem is per
se interesting in connection, e.g., to numerical studies of atmospheric pollu-
tants in the atmosphere, but it might also give useful suggestions on how to
generalize the results to active scalar fields and, hopefully, to hydrodynamic
turbulence (this latter point is however, at the present stage, far from being
achieved). The parameterization of small scales will be derived from first
principles, thus allowing one to completely keep under control the statistical
effect of closures on the large, dynamically described scales of motion, and
to rigorously justify the large-eddy simulation strategy.
I will report the analysis based on my Laurea thesis (D) and later presented
in two articles and two proceedings — in both cases, one already published
(E,F) and the other submitted (G,H) — in collaboration with Antonio Celani,
Roberto Festa and Andrea Mazzino.

Once the closures are well established and justified from the analytical
point of view, the following step is obviously provided by their application to
the numerical study of real situations, as (in way of example) flows of geo-
physical relevance. In chapter 4 I will show the results of several numerical
simulations performed on the atmospheric boundary layer, aiming to quanti-
tatively verify some of the aspects discussed in the first part, and published
in an article (I) by Marta Antonelli, Andrea Mazzino and Umberto Rizza.

Part III: Toward the turbulence of complex fluids

Everyday experience shows the relevance of understanding the behaviour of
small particles advected by (turbulent or regular) flows. Beside the study of
the evolution of the velocity field itself, and of a passive scalar transported
by it, it is therefore necessary to consider complex, or nonideal, fluids. The
complexity may arise, e.g., from inertial effects, when the particle mass can-
not be neglected also in relation to gravity, or from the internal structure of
such particles, which are often far from being modelled as point masses. The
last word of the title of this manuscript, which refers to its last part, is meant
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to indicate that a different degree of complexity in the physical description
of these phenomena is required; the minimal-complexity approach being the
one used in this work, where any feedback of such particles on the advecting
flow is disregarded. And the word “beyond” also stands to indicate that these
phenomena take place at small scales, even smaller than those described in
the first part of the manuscript: but no other collocation different from a
final one would be possible, in view of the aforementioned refinement needed
in the physical description.

In chapter 5 I will therefore deal with inertial particles, whose non-
negligible mass makes them deviate from the streamlines of the surrounding
flow. On the one side, this can cause aggregation and formation of clusters,
even in incompressible flows. On the other hand, falling velocity in the pres-
ence of gravity is also modified in a non trivial way: this will constitute the
main subject of this chapter, in which use is made of mathematical tools like
multiscale techniques and second-quantization algorithm.

Lastly, I will move to the study of polymers, i.e. long chains of molecules,
inside turbulent flows. In particular I will investigate their dynamics in
terms of probability density functions, both in the stationary state and in
the relaxing toward it, with relation to the characteristics of the flow and
of the modelled particle. As in most of the previous sections, I will analyse
the problem mainly from an analytical point of view, but I will also exploit
numerical facilities to show quantitative results. The material in chapter
6 refers to a published article (J) deriving from a collaboration with Dario
Vincenzi.
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Turbulence at mesoscopic scales





Chapter 1

Is the inertial-range scaling a

genuine property of

turbulence?

The multifractal theory of turbulence uses a saddle-point evaluation in de-
termining the power-law behaviour of structure functions. This could lead
to the presence of logarithmic corrections, thereby violating known exact re-
lations such as the four-fifths law. Using the theory of large deviations and
calculating subdominant terms, I explain here why such corrections need not
be present.

The chapter is organized as follows: in the introduction § 1.1 I recall some
basic features of turbulence, like Kolmogorov’s four-fifths law and its impli-
cations. In section § 1.2 I introduce multifractal and multiplicative models,
related to each other by the concept of cascade. In section § 1.3 I recall some
basic aspects of the large-deviation theory and of the saddle-point approxi-
mation and I provide some results, paradoxes and consequent explanations
deriving from their application to these models. In section § 1.4 conclusions
are provided by summarizing the main results, returning to the general mul-
tifractal formalism beyond the specific random multiplicative model, showing
that the four-fifths law allows one to obtain the first subleading correction
to the usual multifractal probability and rapidly quoting different situations
where logarithms can actually appear. The appendix § 1.5 is devoted to the
analysis of a specific multiplicative model, where analytical calculations can
be performed in order to extend these results up to higher orders.
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1.1 Introduction: the four-fifths law and its

implications

In fully-developed turbulence there is now fairly good evidence for anomalous
scaling, that is scaling exponents which cannot be predicted by dimensional
analysis. Some of this evidence is reviewed in [1]. This reference also con-
tains a detailed presentation of the multifractal formalism in the formulation
of Parisi and Frisch [8, 9], henceforth PF, in which anomalous scaling for
structure functions (moments of velocity increments) is connected by a Leg-
endre transformation to the distribution of singularities of the velocity field.
An earlier and alternative formalism for anomalous scaling was introduced
by the Russian School of Kolmogorov [10, 11, 12]. In its simplest version
it uses random multiplicative models for calculating the statistical fluctu-
ations of the energy dissipation on various scales; the fractal properties of
these models were discovered by Mandelbrot [13]. The bridging of the two
formalisms is discussed in [1] in the light of the theory of large deviations for
the sums of independent identically distributed random variables, discovered
in the thirties by Cramér [14].

It must be stressed that, in its original formulation, PF gives an inte-
gral representation of the structure functions which are then evaluated by
the method of steepest descent through a saddle point. When doing that,
taking the leading contribution for the expression of the probability, P , of
being within a certain distance from a fractal set of singularities, logarithmic
corrections in the scaling relations do appear. This is clearly inconsistent
with the four-fifths law of Kolmogorov [15], one of the very few exact results
in high-Reynolds number turbulence, which imposes a strict constraint on
any turbulent theory by fixing the behaviour of the third-order longitudi-
nal (i.e. involving the component of the velocity v parallel to the separa-
tion) structure function. In homogeneous and isotropic turbulence, defining
∆!v ≡ [v(x+ !)− v(x)]·!/", one has indeed Sp(") ≡ 〈(∆!v)p〉 independently
of the point x and of the direction of !. Namely, the four-fifths law states
that

S3(") = −(4/5)ε"

in the stationary state of fully-developed turbulence, where ε is the mean
energy dissipation per unit mass. On the contrary, a näıve application of the
saddle-point technique would imply that, at small separations, Sp(") varies
as "ζp but with a logarithmic prefactor (ln ")−1/2 stemming from the Gaussian
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integration near the minimum ζp of the PF integrand exponent.
The above-mentioned logarithmic corrections are often sloppily ignored,

or the difficulty is handled writing

lim
!→0

lnSp(")

ln "
= ζp .

Indeed, by taking the logarithm of the structure function, one changes the
multiplicative logarithmic correction into an additive log-log correction which,
after division by ln ", becomes subdominant as " → 0. But if one does not
take the logarithm of the structure function, is there a logarithmic correction
in the leading term, whose presence, for p = 3, would invalidate the standard
multifractal formalism?

It is well established that such logarithmic corrections are definitely ab-
sent also in the random multiplicative model. Actually, the latter will turn
out to give the key allowing one to understand why logarithmic corrections
are unlikely and are definitely ruled out in the third-order structure function.

It is the main aim of the present chapter to resolve the paradox of the
spurious presence of logarithms. In particular, I will compute the first sub-
leading contribution in the expression for the logarithm of the probability
P and show how its incorporation in the exploitation of the saddle-point
method to evaluate the velocity structure functions cancels the leading-order
logarithmic corrections. For a specific multiplicative model it will be shown
that logarithmic corrections actually disappear also at higher orders.

1.2 Multifractal and multiplicative models

Turbulence is one of the main subject areas that has provided the physical
intuition for the development of a theory of multifractals. This is reviewed in
[16], where mention is also made of the strict relationship between multifrac-
tals and other phenomena described by chaotic dynamical systems, such as
rainfall fields, earthquake modelling, global climate and self-similar auxiliary
stochastic processes.

Focusing on turbulence, it is in order to briefly recall some basic phe-
nomenology linking the idea of “cascade” to the one of multifractals [1]. To
do that, consider a given laminar flow, the typical velocity of which is in-
creased till some irregularities in the flow start to appear. This is the very
initial stage of turbulence, which eventually becomes completely developed
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(i.e. exciting many temporal/spatial degrees of freedom) as the typical flow
velocity is further increased. Cascade models have been introduced to pro-
vide a phenomenological description of the latter regime.

These models are based on the assumption that kinetic energy is intro-
duced into the system on large scales, but can only be dissipated in the form
of heat on very small scales, where the effect of viscosity becomes important.
Cascade models moreover assume that energy is driven through a sequence
of eddies of decreasing size (just a cascade), until it reaches sufficiently small
eddies where the energy is dissipated as heat, thus leading the process to a
stationary state. The crucial point is that the rate of energy dissipation per
unit time and volume has a highly-sensitive dependence on space position
and scale of observation. The phenomenological description of this fact and
the important consequences on the phenomena of intermittency and anoma-
lous scaling can be given in terms of multiplicative random cascade models
[1].

These models are based on the hypothesis that, starting from a uniform
nonrandom dissipation ε per unit mass in an initial cube of side "0 (corre-
sponding to the integral scale of the problem), the “local” dissipation per
unit mass in each of the eight cubes with half the previous side is equal to
εW , where W is a random variable (with independent realizations in each
cube) subject to the constraints W ≥ 0, 〈W 〉 = 1 and 〈W p〉 < ∞ for all
p > 0. Repeating the generation process, after n steps the local dissipation
in a cube of side " = 2−n"0 is given by

ε! = εW1 · · ·Wn ,

with independent and identically distributedWi’s. The ensemble average 〈ε!〉
is thus still equal to ε, but the cascade is nonconservative. Since one is inter-
ested in describing the inertial-range scaling properties (" ! "0), attention
will mainly be focused on situations of highly-repeated generation, i.e. on
large values of n. As a consequence, the formalism of multiplicative variables
leads to the presence of very large fluctuations. The parallelism between
multifractality and the probabilistic theory is expressed by the relationship

n = − log2
"

"0
= −

1

ln 2
ln

"

"0
. (1.1)

In other words, expression (1.1) shows the two meanings of n, relating the
number of factorsWi determining the local dissipation to the number of steps
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performed in the generation process, i.e. to the ratio between the current scale
" and the initial “injection” length "0.

The moments of the local dissipation are elementarily given by

Tp(") ≡ 〈εp!〉 = 〈(εW1 · · ·Wn)
p〉 = εp〈W p〉n = εp

(
"

"0

)− log2〈W
p〉

. (1.2)

Following the suggestion originally made by Obukhov [10], one calculates the
velocity structure functions at separation " by the Kolmogorov expression
[15], replacing the mean dissipation by its local random value. A relation
with the Tp’s thus arises by means of the simple dimensional scaling property
∆!v ≈ ("ε!)1/3, so

Sp(") ≈ 〈("ε!)
p/3〉 = "p/3Tp/3(") = εp/3"p/3〈W p/3〉n , (1.3)

and consequently one gets the power law Sp(") ∝ "ζp , with ζp = p/3 −
log2〈W p/3〉. For p = 3 these models satisfy the constraint imposed by the
four-fifths law [1] and none of the structure functions has any multiplicative
logarithmic factor.

For later convenience, the above expression can be rephrased exploiting
the formalism of additive random variables. This is easily done by performing
the substitution W = 2−m. In this way, the moments of the local dissipation
(from which the velocity structure functions can be derived) are expressed
by:

Tp(") = 〈(ε2−m1 · · · 2−mn)p〉 = εp〈2−m1p · · · 2−mnp〉

= εp〈2−nxp〉 = εp
∫

dx e−nxp ln 2Pn(x) , (1.4)

where

x ≡
m1 + . . .+mn

n
(1.5)

is the partial average of n independent and identically distributed random
variables.

In the multifractal language, (1.4) can be rewritten in the form

Tp(") = εp
∫

dµ(h)

(
"

"0

)(3h−1)p+3−D(h)

= εp
∫
dhµ′(h) e[(3h−1)p+3−D(h)] ln(!/!0) ,

(1.6)
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where the exponent 3h−1 corresponds to x, µ(h) is a measure expressing the
weight of a local value of h and ("/"0)3−D(h) plays the role of the probability
density function (PDF), D(h) being the Hausdorff fractal dimension of the
support of the h spectrum.

Equation (1.4) provides an alternative and somewhat roundabout way
of evaluating the moments of the local dissipation, and thus the structure
functions, for the random multiplicative model. Of course, it must give the
same final result (1.2). In order to see whether this is really the case, it is
necessary to recall the main aspects of the large-deviation theory.

1.3 Large-deviation theory and saddle-point

approximation

Starting from the probability distribution for a single random variable m,
P (m), one defines [1]

Z(α) ≡
∫

dm e−αmP (m) = 〈e−αm〉 .

Z(α) is equal to the characteristic function evaluated for an imaginary argu-
ment and exists ∀α if P (m) decreases faster than exponentially for large m.
In this case one is interested in the behaviour of the probability distribution
Pn(x) of the variable x defined in (1.5), when n is large. In way of example,
if P (m) is the Bernoullian distribution in the coin-tossing problem [17], then
Pn(x) can be identified as the probability distribution of the normalized sum
of each result after n trials.
It is easily proved that

Zn(α)≡
∫

dx e−αxPn(x) = 〈e−αx〉 = 〈e−α(m1+...+mn)/n〉

= 〈e−αm1/n · · · e−αmn/n〉 = 〈e−αm/n〉n = Zn
(α

n

)
.

Consequently, inverting the above Laplace transform through a Fourier inte-
gral, one gets the expression

Pn(x) =
1

2π

∫
dα eiαxZn

(
iα

n

)
. (1.7)



1.3 Large-deviation theory and saddle-point approximation 9

The law of large numbers [18] implies that Pn(x) is, for large n, increasingly
concentrated near the mean 〈m〉 = limn→∞ x. The theory of large deviations
[14] roughly states that when x .= 〈m〉 its probability falls off exponentially
with n.
To show this result, (1.7) has to be recast in the exponential form

Pn(x) =
1

2π

∫
dα eiαx+n lnZ(iα/n) =

n

2π

∫
dγ en[iγx+lnZ(iγ)] , (1.8)

with the simple substitution γ = α/n.
This is a generalized Laplace integral of the form

I(n) =

∫
dy f(y)enφ(y) , (1.9)

for which the asymptotic (large n) behaviour can be extracted by means
of saddle-point approximation. More specifically, when the integral is per-
formed in the complex plane and involves complex analytic functions f and
φ, if there exists a saddle point y& (i.e. a point at which φ′(y&) = 0), then
one can exploit the analyticity in order to deform the integration contour
into a φ-constant-phase line passing through y&. In this way, one can restrict
the integration range to a small portion of the new path, from which the
dominant contribution to the integral arises when n is large, after identifying
correctly the steepest-descent curve passing through y&. In particular, if both
the integration path and the functions f and φ are real, then the presence of
a saddle is guaranteed if the function φ(y) is upconvex in the whole integra-
tion range and has a maximum at an interior point y&.
The leading behaviour of the integral for large n is [19]

I(n) =

√
2π

−nφ′′(y&)
enφ(y!)f(y&)

[
1 + O

(
1

n

)]
, (1.10)

provided that neither f(y) nor φ′′(y) vanishes at y&.
Passing to logarithms and dividing by n, one obtains

ln I(n)

n
= φ(y&)−

lnn

2n
+

ln
[
f(y&)

√
−2πφ′′(y&)

]

n
+O

(
1

n2

)
. (1.11)

The latter formulation is very common in thermodynamics [17], where it is
customary to deal with the logarithm of the (very large) number of states.
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Applying (1.11) to expression (1.8), one has

lnPn(x)

n
= s(x) +

lnn

2n
+

ln (−Q/2π)

2n
+O

(
1

n2

)
, (1.12)

where Q is the second derivative of

q(γ) = iγx+ lnZ(iγ) (1.13)

evaluated at the unique stationary point γ& that satisfies q′(γ&) = 0 (see
equation (1.8)). As n does not appear in Q, which is only a function of x,
the right-hand side of expression (1.12) is thus structured as an inverse power
series in n, except for the first subleading term which contains a logarithm.
The (n-independent) dominant contribution,

s(x) ≡ lim
n→∞

lnPn(x)

n
,

usually called Cramér (or rate) function [20], vanishes at x = 〈m〉 together
with its first derivative and turns out to be upconvex, being related to lnZ(α)
through a Legendre transform:

s(x) = inf
α
[αx+ lnZ(α)] .

Back to the thermodynamic context, s(x) can be identified with the entropy,
thus clarifying the meaning of (1.12).
It is important to note that the quantity which goes to a finite limit for large
n is n−1 lnPn(x) (1.12) and that for this quantity the corrections are additive
subleading terms.

1.3.1 Classical multifractal results

It will now be shown that the classical multifractal results are obtained by
applying the saddle-point technique only through its dominant behaviour,
i.e. taking into account the sole n-independent term in (1.11), which corre-
sponds to the exponential appearing in (1.10).
Indeed, for the multiplicative models, keeping only the leading-order contri-
bution for large n in (1.12), one obtains a purely exponential behaviour for
the PDF of the partial average x:

Pn(x) = ens(x) . (1.14)
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Equation (1.14) is strictly connected to the central-limit theorem [21], in
the sense that small deviations from the mean value are well described by a
Gaussian, which results from a second-order Taylor expansion of the expo-
nent around the maximum located at x& = 〈m〉. However, larger deviations
from the mean value do not follow a normal distribution [22, 23]. As (1.14)
also applies to deviations O(1), i.e. much larger than the standard deviation
(which is O(n−1/2)), it is usually referred to as the large-deviation expression
for the probability.
Assuming expression (1.14) for Pn(x), (1.4) becomes

Tp(l) = εp
∫
dx en[s(x)−xp ln 2] . (1.15)

As (1.15) has the form of a Laplace integral (1.9), one can apply the saddle-
point method again. Because of consistency, one has to consider only one
term in expression (1.11), which amounts to say that, in the form (1.10), one
only keeps the exponential. One thus obtains

Tp(l) = εpen[s(x!)−x!p ln 2] ∝
(

"

"0

)x!p−s(x!)/ ln 2

,

or, in the multifractal language (see equation (1.6)),

Tp(l) ∝
(

"

"0

)(3h!−1)p+3−D(h!)

,

where h& is the unique stationary point that satisfies D′(h&) = 0.
It is worth emphasizing that, in the multiplicative models, Pn(x) can be

obtained through a first use of the saddle-point approximation (starting from
the single-variable probability distribution), which then imposes the number
of terms to be considered in the second application of this technique to find
Tp. On the contrary, in the general multifractal formulation [24], the former
above-mentioned step is not possible, so one has to use other arguments to
infer the dominant power-law scaling ("/"0)3−D(h) for the probability in (1.6),
thus having no indication on the number of terms to be retained in the second
approximation.

In the following, it will be shown how an inconsistent application of the
saddle-point method leads to the appearence of spurious logarithmic correc-
tions.
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1.3.2 How spurious logarithmic corrections generate

Assuming the “sloppy” large-deviation expression (1.14) for the PDF, and
consequently equation (1.15) for the moments of the local dissipation, one
can now apply the saddle-point method in the form (1.10) and (at the leading
order) obtain

Tp(l) = εp

√
2π

−ns′′(x&)
en[s(x!)−x!p ln 2] ∝

(
"

"0

)x!p−s(x!)/ ln 2 [
− ln

"

"0

]−1/2

,

(1.16)
or, in the multifractal language (see equation (1.6)),

Tp(l) ∝
(

"

"0

)(3h!−1)p+3−D(h!) [
− ln

"

"0

]−1/2

, (1.17)

where h& is the unique stationary point that satisfies D′(h&) = 0.
As the velocity structure functions are proportional to the Tp’s according to
(1.3), a logarithmic correction to the power law would then appear also for
S3, thus violating the (exact) law of the four fifths.

1.3.3 The way to solve the paradox of logarithmic cor-

rections

To solve the apparent paradox related to the presence of a logarithmic cor-
rection in the structure functions, it is necessary to refine the large-deviation
expression (1.14) for the multiplicative models. In particular, one needs to
take into account also the first (additive) subleading contribution in (1.12).
This operation gives rise to the emergence of a (multiplicative) n-dependent
prefactor (which accordingly should be regarded as subleading) to the expo-
nential form (1.14), namely:

Pn(x) =
√
n ens(x) . (1.18)

When applying equation (1.10) again to obtain the moments of the local
dissipation by means of saddle-point approximation, the presence of

√
n at

the numerator of (1.18) thus cancels the logarithmic correction in (1.16),
which are spurious. This is simply due to the fact that equation (1.10)
also incorporates the second term on the right-hand side of (1.11), so the
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same “precision” must be used in (1.12) to have a cross cancellation of the
corrections.

It is worth noticing that, if the PDF of the single variable m is contin-
uously distributed, then the appearance of

√
n in the PDF of the partial

average x follows from a theorem by Bahadur and Ranga Rao [25], which
is reviewed in [26]. This constitutes the so-called theory of “refined large
deviations”.

Back to the multifractal formalism, the logarithms in (1.17) thus dis-
appear if the “probability” ("/"0)3−D(h) is replaced by the more accurate
expression (

"

"0

)3−D(h) [
− ln

"

"0

]1/2

.

As this represents the main result of this chapter, its implications will be
discussed in the conclusion § 1.4.

1.3.4 Other ways to produce spurious logarithms and

how to rule them out

One may wonder about the effect of the successive terms in (1.12) on the scal-
ing behaviour of the structure functions for random multiplicative models. In
particular, the O(n−1) contribution in (1.12) simply leads to a n-independent
correction in the PDF. Clearly, incorporating it and/or the O(n−1) term in
(1.11) while calculating Tp, does not change the scaling behaviour in n.
The situation is completely different for the fourth term on the right-hand
side of (1.11), corresponding to the additive correction inside square brack-
ets in (1.10). It has already been shown that a prefactor

√
n in Pn(x) leads

to the cancellation of any power-law dependence on n for the quantity Tp.
One can easily understand that a term proportional to

√
n× 1/n = n−1/2 in

Pn(x), by virtue of its additive character, generates an additive contribution
in Tp proportional to n−1 ∝ [− ln("/"0)]−1.
Logarithms thus seem to appear again. But once again, to find Tp, consis-
tency imposes to take into account the same number of terms in the two
saddle points. There is thus the possibility to have a cancellation, with the
final result that, once again, logarithmic corrections disappear, since (1.3) is
an exact expression and has no logarithms.
To show in general that these cancellations really take place at any orders
appears a cumbersome task. For the sake of simplicity, in the appendix
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§ 1.5 attention will be focused on a specific multifractal model: the Novikov–
Stewart model [27].

1.4 Conclusion: back to multifractal turbu-

lence

In multifractal language, the result obtained within the framework of the
random multiplicative model is that the probability P (", h) to be within a
distance " of the set carrying singularities of scaling exponent between h and
h+ dh is not ("/"0)3−D(h)dµ(h) but is actually given, for small ", by

P (", h) ∝
(

"

"0

)3−D(h) [
− ln

"

"0

]1/2

dµ(h) , (1.19)

which has a subleading logarithmic correction. It is important to recall that
it must be qualified “subleading” because the correct statement of the large-
deviation leading-order result involves the logarithm of the probability di-
vided by the logarithm of the scale. The correction is then a subleading
additive term.

It is worth mentioning that the presence of a square root of a logarithm
correction in the multifractal probability density was proposed by Meneveau
and Sreenivasan [28] on the basis of a normalization requirement; they ob-
served that without such a correction the singularity spectrum f(α) comes
out wrong. They also pointed out that a similar correction had been pro-
posed by van de Water and Schram [29] in connection with the measurement
of generalized Renyi dimensions. Related discussions about the presence of
logarithms can be found in [30, 31, 32].

Returning to the multifractal formalism of turbulence, beyond the ran-
dom multiplicative model, it must be observed that the usual multifractal
ansatz as made in PF [8] is only about the leading term of the probabil-
ity, which is easily reinterpreted in geometrical language. Hence, it does
not allow one to determine logarithmic corrections in structure functions.
However, using Kolmogorov’s four-fifths law, one has an additional piece of
information which implies that the multifractal probability should have a
subleading logarithmic correction with precisely the form it has in (1.19).
This improved form then rules out subleading logarithmic corrections in any
of the structure functions.



1.5 Appendix: the Novikov–Stewart model 15

Finally, a comment is required on those physical effects which are known
to be responsible of subleading corrections (logarithmic or not) to isotropic
scaling. There is at least one known instance which has a genuine logarithm
in its third-order structure function, namely the Burgers equation (in the
limit of vanishing viscosity) with a Gaussian random force which is white in
time and has a 1/k spatial spectrum, where k is the wavenumber. As shown
in [33] and [34], the Burgers equivalent of the four-fifths law implies then the
presence of a logarithmic correction. What was less obvious is that another
frequently considered structure function, defined with the absolute value of
the velocity increment, has also a logarithmic correction but accompanied
by a subdominant term (proportional to the separation without a log factor)
which conspires to make this structure function appear to have anomalous
power-law scaling with a non-trivial exponent [34]. This is actually an arti-
fact which would also be present in three-dimensional Navier–Stokes turbu-
lence with 1/k forcing. Particularly noteworthy are the contaminations by
subdominant terms stemming from anisotropy [35].

1.5 Appendix: the Novikov–Stewart model

In the Novikov–Stewart model [27], the random variable W can only assume
two distinct values, 0 and 1/β, with probability 1 − β and β respectively
(0 < β < 1). In order to avoid singularities form = − log2W , it is convenient
to slightly modify the above statement, defining

P (W ) = (1− β)δ(W − χ) + βδ(W − ξ) , (1.20)

where ξ = [1− χ(1− β)]/β, and eventually taking the limit χ → 0+ (which
implies ξ → 1/β).

From (1.20), a straightforward calculation gives

P (m) = P (W (m))

∣∣∣∣
dW

dm

∣∣∣∣

and then Z(α) = (1− α)eα log2 χ + βeα log2 ξ.
Now one has to perform the first saddle-point approximation, coherently with
equation (1.8). According to (1.13), one gets

γ& =
i

log2 ξ − log2 χ
ln

β(x+ log2 ξ)

(1− β)(−x− log2 χ)
,
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and the steepest-descent contour is parallel to the real axis at γ&.
Upon substitution in (1.12), taking into account the correct coefficient of
O(n−2) which results in a O(n−1) term in the expression for Pn(x), the latter
can be written more easily in terms of the variable k = (−x−log2 χ)/(log2 ξ−
log2 χ) as

Pn(k)=Pn(x(k))

∣∣∣∣
dx

dk

∣∣∣∣ (1.21)

=

√
n

2πk(1− k)

(
β

k

)nk (1− β

1− k

)n(1−k) [
1 + g(k)

1

n
+O

(
1

n2

)]
,

where g(k) = (1 − k + k2)/12k(1− k) and k ranges from 0 to 1. Expression
(1.21) is associated to a Cramér function

s(k) = lim
n→∞

lnPn(k)

n
= k ln

β

k
+ (1− k) ln

1− β

1− k
.

In order to calculate the moments of the local dissipation, from (1.4) one has

Tp(l) = εp
√

n

2π

∫
dk enφ(k)

[
F (k) +G(k)

1

n
+O

(
1

n2

)]
. (1.22)

The integral of each addend has the same form of (1.9) with the relationship
φ(k) = s(k) − xp ln 2. The functions F (k) = [k(1 − k)]−1/2 and G(k) =
F (k)g(k) play the role of f(y) in the zeroth- and first-order integrals, respec-
tively. An explicit application of the saddle-point technique for the general-
ized Laplace integrals gives

φ′(k&) = 0 ⇔ k& =
βξp

(1− β)χp + βξp
.

Thus, ∫
dk F (k)enφ(k) =

√
2π

n
enφ(k!)

[
1−H

1

n
+O

(
1

n2

)]
,

taking into account the first-order correction (the explicit form of H is not
reported here for the sake of simplicity), and

∫
dk G(k)enφ(k) =

√
2π

n
enφ(k!)

[
H +O

(
1

n

)]
,
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stopping at the leading-order contribution, with φ(k&) = ln[(1− β)χp+ βξp].
Summing the two integrals to get (1.22) and performing the limit χ → 0+,
one obtains

Tp(l) = εpen ln[(1−β)χp+βξp]

[
1 + O

(
1

n2

)]

χ→0−→ εp
(

"

"0

)(p−1) log2 β
[

1 + O

(
− ln

"

"0

)−2
]

.

Apart from an error pushed to O(n−2), which would vanish if one proceeded
to the following orders in the approximation, this coincides with the exact
result that can be obtained performing the calculation in the discrete for-
malism.

In the latter case, the probability distribution for the (discrete) partial
average x is exactly given by a binomial distribution, which can be written
more easily in terms of another auxiliary variable K = kn assuming only
integer values between 0 and n. Namely,

Pn(K) =

(
n

K

)
βK(1− β)n−K . (1.23)

From (1.4), without introducing any continuum approximation, i.e. perform-
ing a sum instead of an integral, one exactly finds a power-law behaviour for
the moments of the local dissipation:

Tp(l) = εp
n∑

K=0

2−nxpPn(K) = εp
(

"

"0

)− log2[(1−β)χp+βξp]
χ→0−→ εp

(
"

"0

)(p−1) log2 β

.

Consequently, also for the velocity structure functions one has pure power
laws with exponents ζp = p/3 + (p/3− 1) log2 β.
Logarithms are definitely absent: the same result must then hold also for the
analysis performed in the continuum formalism taking into account every
order in the approximation. It is worth noticing that, alternatively to the
saddle-point technique, expression (1.21) can be obtained directly from (1.23)
by means of Stirling’s expansion for the factorial.





Chapter 2

Exact results for nonideal

turbulence

I investigate the behaviour of the two-point equal-time correlation function,
in the context of passive scalars, for forcing ensembles which are allowed to
be, generally speaking, neither homogeneous nor isotropic . Exact analytical
computations can be carried out in the framework of the Kraichnan model for
each anisotropic sector. I will focus my attention on the isotropic sector with
isotropic forcing in order to obtain a description of the influence of purely
inhomogeneous contributions. It is shown how the homogeneous solution is
recovered at separations smaller than an intrinsic typical lengthscale induced
by inhomogeneities, and how the different Fourier modes in the centre-of-
mass variable recombine themselves to give a “beating” (superposition of
power laws) described by Bessel functions. The pure power-law behaviour
is restored even if the inhomogeneous excitation takes place at very small
scales, but is spoilt in the presence of intermediate-scale inhomogeneities.
I will later focus on the point-source problem, carrying out exact analytical
computations for a random-in-time forcing and showing numerical results for
a constant emission.

The chapter is organized as follows: in the introduction § 2.1 I recall the
importance of passive scalar turbulence and, in this context, the relevance
of inhomogeneities and anisotropies. In section § 2.2 I formulate the gen-
eral problem of two-point equal-time scalar correlations, which will be stud-
ied analytically for the Kraichnan ensembles, at first in the homogeneous
isotropic case and then in the absence of invariance under translations and
rotations; the statistical description of the isotropic sector is later provided,
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with particular emphasis on some kinds of physically meaningful inhomo-
geneous forcings. In section § 2.3 I focus on the point-source problem, in
particular on random emission. Conclusions follow in section § 2.4, hinting
the exportability to Navier–Stokes (NS) turbulence. Appendices § 2.5 and
§ 2.6 are devoted to explain some calculation details and to a numerical study
of the constant point-source emission, respectively.
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2.1 Introduction

Since its origin, the turbulence theory has been faced prevailingly in the con-
text of a homogeneous and isotropic model, i.e. in an idealized framework:
the paradigm is the passive scalar model introduced by Kraichnan in 1968
[36, 37]. However, starting from the fundamental work by Kolmogorov in
1941 [1, 2], one of the key points for many theoretical achievements in tur-
bulence research is the (statistical) restoration of homogeneity and isotropy
of fluctuations at small scales [38, 39]. It is clearly impossible to provide a
proper and consistent description of a great variety of systems where “non
idealized” fluctuations are still alive. The characterization of the emission
of a tracer from point-like sources, the study of scalar concentrations along
channels with inhomogeneous boundaries, or in those systems whose large
scales are driven by strong shears, are remarkable examples in which strong
anisotropies [40, 41] and inhomogeneities [42] must be taken into account in
order to obtain a correct picture of the statistical properties of those sys-
tems.
In the last decade a consistent progress in the development of a system-
atic analysis to separate isotropic fluctuations from the anisotropic ones in
real turbulent flows and turbulent transport [35, 43, 44] has been carried
out. It has been understood how to treat and face systems whose rota-
tional symmetries are broken by the presence of an external forcing inducing
anisotropic contributions. In particular, the study of a simplified model for
passive scalar advection in stochastic flows, the Kraichnan model, has pro-
vided a clear understanding of the statistical properties in all anisotropic
sectors of the scalar fluctuations. Indeed, closed equations for the equal-time
correlation functions can be obtained: these are linear partial differential
equations whose unforced solutions (also called zero modes [45]) generally
exhibit anomalous scaling. This is in contrast with the forced solutions that
possess (non-anomalous) dimensional scaling. This has given the insight to
explain the universality in the statistical framework. Indeed, the anomalous
properties of small scale statistics result from a decoupling between the zero
mode scaling and dimensional scaling, and the universality of these properties
naturally emerges because the zero-mode scaling properties are independent
of the forcing mechanism (see [46] for an exhaustive review).
In the present chapter I formulate the concept of the possible small-scale
homogeneity restoration by focusing on the two-point equal-time scalar cor-
relation function for the Kraichnan advection model. The advecting velocity
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is still homogeneous and isotropic but this is not for the scalar injection mech-
anism, which will be allowed to be neither isotropic nor homogeneous. As I
will show, the inhomogeneous forcing induces a new lengthscale "q into the
scalar dynamics, in terms of which quantitative conclusions on the persistence
of small-scale inhomogeneity will be given. The aim of this investigation is
twofold. Firstly, I want to show how the correct homogeneous limit can be
restored going at separations (in the two-point scalar correlation function)
smaller than "q. Secondly, I want to give some analytical insights about the
opposite physical situation represented by the presence of inhomogeneous
fluctuations on scales of the same order of the separation. In the latter
regime the pure power-law behaviour (homogeneous limit) is replaced by the
“beating” in superposition of different power laws originating from the scalar
inhomogeneities.
The superposition can be carried out analytically inside a special context,
provided by the scalar emission from a point source. Very recently, it has
been shown [47, 48] that a new type of zero mode is responsible for the scale-
invariance breakdown in the equilibrium domain, i.e. on scales exceeding
the forcing integral scale. The important remark is that in the point-source
problem this scale is formally put to zero: all dynamical scales thus belong to
this regime. The specific issues that I investigate are the dispersion dynamics
and the study of the stationary regime, related to two different kinds of point
source: constant or random-in-time emission/absorption.

2.2 The two-point equal-time scalar correla-

tion function

2.2.1 Homogeneous isotropic case

The basic equation governing the dynamics of a passive scalar field θ(x, t) in
a turbulent d-dimensional flow (d > 1) is the well-known advection-diffusion
forced equation:

∂tθ(x, t) + v(x, t) · ∂θ(x, t) = κ0∂
2θ(x, t) + f(x, t) . (2.1)

The advecting velocity field v(x, t) is assumed incompressible: ∂ · v = 0.
Scalar fluctuations are injected into the system by the forcing term f(x, t),
acting as an external source, and are dissipated at small scales via the molec-
ular diffusivity κ0.
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The passive character of the scalar field allows one to consider both velocity
and forcing as given fields. Unfortunately, no general analytical solution is
known for a turbulent velocity field, satisfying the (vectorial and nonlinear)
NS equation

∂tv(x, t) + v(x, t) · ∂v(x, t) = ν∂2v(x, t) + g(x, t)− ρ−1(x, t)∂p(x, t) ,

ν, g, ρ and p being the kinematic viscosity, the total force acting per unit
mass, the density and the pressure, respectively. It is thus necessary to
pass to a statistical description of the problem, in spite of the linearity of
(2.1). In particular, it is customary to assume v and f as stochastic fields,
i.e. with assigned statistical properties. The most common way to mimic
real flows with stochastic ensembles is by far constituted by the Kraichnan
advection model [36, 37], in which one specializes to Gaussian, zero-average,
white-in-time velocity and forcing. The field v will be assumed statistically
homogeneous and isotropic throughout this chapter, whereas this condition
is imposed only momentarily for f , which will be later allowed not to be
invariant under translations. The statistics of v is thus fully determined by
its two-point correlation function,

〈vµ(x, t)vν(x
′, t′)〉 = δ(t− t′)D(v)

µν (x− x′) ,

whose spatial behaviour is described by

D(v)
µν (r) = D0δµν − d(v)µν (r) .

The coefficient D0 represents the fuse-point value, while the second-order
increments follow a power law,

d(v)µν (r) = D1r
ξ
[
(d+ ξ − 1)δµν − ξ

rµrν

r2

]
,

in the so-called inertial range of scales, i.e. for separations r = |r| smaller

than the integral scale of the velocity field (Lv), above which d(v)µν (r) saturates
to an almost constant value whose order of magnitude isD1Lξ

v. Consequently,

since the correlation D(v)
µν (r) has to vanish for r → ∞, the relation D0 ∼

D1Lξ
v holds. In what follows, I will always consider r < Lv. The parameter

ξ, lying in the open interval (0, 2), governs the roughness of the velocity field,
whose Hölder exponent is ξ/2. Due to the lack of temporal memory of the
flow, the Kolmogorov value [15] is ξ = 4/3; the limit cases ξ = 0 and ξ = 2
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will be studied apart. The diffusive scale η, at which diffusive and advective
effects are comparable (the former is expected to prevail below it, and vice
versa), is defined by the relation:

η ≡
(

2κ0

(d− 1)D1

)1/ξ

. (2.2)

A convenient choice for f is to momentarily assume a spatial step-like form
for its two-point correlation function

〈f(x, t)f(x′, t′)〉 = δ(t− t′)F (|x− x′|) , (2.3)

i.e.

F (r) = F0Θ(L− r) . (2.4)

Indeed, the details of its behaviour around the forcing (usually large) scale L
are not relevant (see, e.g., [49, 50, 51]), but in the following this choice will
make it possible to perform exact matchings in r = L by defining a precise
upper limit L to the so-called convective range of scales, whose lower bound
is roughly represented by η.
The assumption of δ-correlation in time is of course far from reality, but it
has the remarkable advantage of leading to closed equations for the equal-
time correlation functions C(θ)

n ≡ 〈θ(x, t) · · · θ(x(n), t)〉 of any order n (see,
e.g., [46]). On the contrary, the condition of Gaussianity is not a limiting
factor. One of the most important features in turbulence is indeed provided
by intermittency or anomalous scaling, i.e. the impossibility to deduce the
behaviour of higher-order moments of physical quantities from the knowl-
edge of lower-order ones. In this sense, “intermittent” can be interpreted as
opposed to “Gaussian”, as in the latter situation the statistical distribution
is completely determined by its mean and its variance. Both velocity and
passive scalars are known to be intermittent in real turbulent flows, however
it has also been proved that, even assuming a Gaussian advecting velocity,
the advected passive scalar turns out to be nevertheless intermittent.

In this framework the mean value 〈θ〉 shows trivial dynamics (being uni-
form because of homogeneity). The equation for the two-point equal-time

scalar correlation function C ≡ C(θ)
2 = 〈θ(x, t)θ(x′, t)〉 can be derived an-

alytically, multiplying (2.1) by θ(x′, t), symmetrizing the resulting expres-
sion, averaging over the stochastic fields v and f , and finally exploiting
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Furutsu–Novikov–Donsker’s (FND) rule for Gaussian integration by parts
[52, 53, 54, 1]:

∂tC = d(v)µν

∂2C

∂rµ∂rν
+ 2κ0

∂2C

∂rµ∂rµ
+ F . (2.5)

The stationary version of (2.5), in which the left-hand side vanishes and C is
only a function of the distance r between the two points (r = x−x′), reads

r−(d−1)∂r{rd−1[2κ0 + (d− 1)D1r
ξ]∂rC(r)}+ F (r) = 0

and can be simply solved by splitting the integration interval [55]:

C(r) 2






c′ − k′r2 for r ! η
c− kr2−ξ for η ! r < L
k′′r−(d+ξ−2) for r > L ,

where

c =
F0L2−ξ

(d− 1)(2− ξ)(d+ ξ − 2)D1
, c′ = c−

ξF0η2−ξ

2d(d− 1)(2− ξ)D1
,

k =
F0

d(d− 1)(2− ξ)D1
, k′ =

2− ξ

2ηξ
k , k′′ =

(2− ξ)Ld

d+ ξ − 2
k .

In the limit of small diffusivity, which will be assumed throughout the chap-
ter, the steady-state merged-point value of the correlation is a constant (be-
cause of homogeneity) given by 〈θ2〉 2 c and the stationary second-order
structure function turns out to be a pure power law in the convective range:

S(θ)
2 (r)≡〈[θ(x, t)− θ(x′, t)]2〉 = 〈θ2(x, t)〉+ 〈θ2(x′, t)〉 − 2〈θ(x, t)θ(x′, t)〉

=2〈θ2〉 − 2C(r) = 2kr2−ξ . (2.6)

The exponent 2 − ξ coincides with the predictions based on dimensional
arguments and becomes 2/3 for ξ = 4/3, according to the Kolmogorov–
Obukhov–Corrsin (KOC) scaling [56].
Exact solutions, i.e. far from the perturbative limits ξ → 0 [45], ξ → 2 [57]
and d→∞ [58], are not available for higher-order correlations.

2.2.2 Extension to the inhomogeneous anisotropic case

Inside the Kraichnan model, the hypotheses of homogeneity and isotropy
will still be kept for the velocity, but will now be relaxed for the forcing,
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i.e. expression (2.3) is replaced by

〈f(x, t)f(x′, t′)〉 = δ(t− t′)F (x,x′) . (2.7)

A dependence not only on the relative separation r but also on the centre of
mass z = (x + x′)/2 is thus introduced for the forcing, and the same is to
be expected for the scalar correlation. In the (r, z) frame of reference, the
equation for the two-point equal-time scalar correlation function reads:

∂tC =
[
2κ0δµν + d(v)µν

] ∂2C

∂rµ∂rν
+

(D0 + 2κ0)δµν +D(v)
µν

4

∂2C

∂zµ∂zν
+ F . (2.8)

It is worth noticing that equation (2.8) can be rewritten in a more compact
form introducing a 2d-dimensional variable

1y =

(
r
z

)
.

Thus,

∂tC =
∂

∂yi
Ji + F , (2.9)

where 1J(1y, t) can be interpreted as a current expressed by

Ji = Kij
∂

∂yj
C .

The 2d× 2d matrix K(1y) is made up of two non-zero d× d blocks:

Kij =




2κ0δµν + d(v)µν (r) 0

0
(D0 + 2κ0)δµν +D(v)

µν (r)

4



 . (2.10)

A complete decoupling between the cross dependence of each of the two
blocks on the other coordinate takes place at “small” (or, better, “not too
large”) scales r ! Lv, since here the order of magnitude of dµν(r) ≈ D1rξ is
negligible with respect to D0 ∼ D1Lξ

v. Therefore, Dµν(r) 2 D0δµν and the
matrix becomes:

Kij =




2κ0δµν + d(r)µν (r) 0

0
(D0 + κ0)δµν

2



 . (2.11)
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I shall later exploit this possible simplification and come back to this “2d-
formalism” in section § 2.3.

Back to the (r, z) space, it is worth writing, en passant, the form assumed
by (2.8) for merged points (x = x′ ⇔ r = 0):

∂t〈θ2〉 = −2κ0

〈
∂θ

∂zµ

∂θ

∂zµ

〉
+ (D0 + κ0)

∂2〈θ2〉
∂zµ∂zµ

+ F (0, z) .

The presence of inhomogeneities and anisotropies makes it natural to
work in the basis invariant under translations and rotations. The first step
is performed by Fourier transforming in z and defining

Ĉ ≡ Ĉ(r, q) =

∫
ddz e−iq·zC(r, z) ,

F̂ ≡ F̂ (r, q) =

∫
ddz e−iq·zF (r, z) .

The equation for Ĉ corresponding to (2.8) reads:

∂tĈ =
[
2κ0δµν + d(v)µν (r)

] ∂2Ĉ

∂rµ∂rν
−

(D0 + 2κ0)δµν +D(v)
µν (r)

4
qµqνĈ + F̂ .

(2.12)
This equation is differential only in r and is algebraic in the centre-of-mass
wavenumber q. The second term on the right-hand side of (2.12) represents
the inhomogeneous contribution and coherently vanishes for q = 0, which
is equivalent to average all over the space. It is convenient to rewrite its
r-dependent coefficient in the following way:

−
(D0 + 2κ0)δµν +D(v)

µν (r)

4
=−

[
D0 + κ0

2
−

(d− 1)(d+ ξ)D1

4d
rξ

]
δµν

+
ξD1

4d
rξ

(
δµν − d

rµrν

r2

)
. (2.13)

Substituting it back, it is clear that the last term in (2.13) generates the
only contribution (possibly apart from the forcing) in (2.12) not invariant
under rotations of r, because it gives rise to a scalar product between r
and q that mixes different angular sectors. However, as already pointed
out, at separations r ! Lv a simplification takes place, corresponding to the
reduction of (2.10) into (2.11). It is worth noticing that, when r is of the order



28 Exact results for nonideal turbulence

of (or larger than) Lv, a coupling between anisotropy and inhomogeneity
takes place: I shall later come back to this point. Here, I concentrate on the
sole case r ! Lv in the stationary state with vanishing diffusivity and I can
thus consider the simpler equation

dµν(r)
∂2Ĉ

∂rµ∂rν
−

D0

2
q2Ĉ + F̂ = 0 . (2.14)

A dimensional-analysis balance between the first and the second term in
(2.14) leads to the introduction of a new scale

"q =

[
D0

2(d− 1)D1
q2
]−1/(2−ξ)

, (2.15)

associated to the strength of the scalar inhomogeneities and measuring the
separation above which they become important.
The following aforementioned step consists in performing the decomposition
in d-dimensional spherical harmonics [59]:

Ĉ(r, q) =
√
Ω
∑

l,m

Ĉl,m(r, q)Yl,m(Φ) ,

F̂ (r, q) =
√
Ω
∑

l,m

F̂l,m(r, q)Yl,m(Φ) ,

with Φ denoting the solid angle associated with r and Ω its overall value,
and in studying the behaviour of the correlation function at separations r
smaller than the forcing correlation length L, where F̂ (and consequently
some F̂l,m = F̂l,m(r, q)) is different from zero.
Exploiting definition (2.15), the equation in each anisotropic sector (l, m) for
the correlation function Ĉl,m = Ĉl,m(r, q) reads

r−(d−1)∂r
(
rd+ξ−1∂rĈl

)
−

(d+ ξ − 1)l(d− 2 + l)

d− 1
r−2Ĉl − "−(2−ξ)

q Ĉl

+
F̂l

(d− 1)D1
= 0 (2.16)

where, because of degeneration, the dependence on the subscript m has been
dropped.
The Fourier scale q−1 (mathematically ranging from 0 to ∞) at which phys-
ically relevant effects are expected can be larger or of the same order of L.
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In the latter case one has "q/L ∼ (L/Lv)ξ/(2−ξ) ! 1 and the lengthscale "q
lies inside the convective range. The homogeneous case is recovered when
q−1 % L so as to insure "q/L % 1. An important exception is provided, in
way of example, by the emission of a tracer from a point source, in which
all q’s are excited with the same strength: this case will be investigated in
section § 2.4.

It is easy to verify that the general solution of (2.16) is

Ĉl(r, q) = Ĉ(part)l(r, q) + r−(d+ξ−2)/2 [B1Kνl(w) +B2Iνl(w)] , (2.17)

where

w =
2

2− ξ

(
r

"q

)(2−ξ)/2

, νl =
d+ ξ − 2

2− ξ

[
1 +

4(d+ ξ − 1)l(d− 2 + l)

(d− 1)(d+ ξ − 2)2

]1/2

.

The constants B1, B2 are fixed by the boundary conditions and K, I repre-
sent the Bessel functions [60] of complex argument. The particular solution
Ĉ(part)l(r, q) of (2.16) can be found, for instance, exploiting the method of
variation of constants [61], which leads to

Ĉ(part)l(r, q) = Ar−(d+ξ−2)/2

[
Kνl(w)

∫ w

0

dω ϕl;q(ρ)ω
ν0+1Iνl(ω)

+Iνl(w)

∫ ∞

w

dω ϕl;q(ρ)ω
ν0+1Kνl(ω)

]
,

where

A =

(
2− ξ

2

)ν0

"(d−ξ+2)/2
q , ν0 = νl|l=0 =

d+ ξ − 2

2− ξ
,

ω ≡ w|r=ρ =
2

2− ξ

(
ρ

"q

)(2−ξ)/2

, ϕl;q(r) =
F̂l(r, q)

(d− 1)D1
.

Regularity at r = 0 imposes B1 = 0 since Kνl(w)
w'1∼ w−νl, while the term

with B2 is regular as r → 0 since Iνl(w)
w'1∼ wνl.

An exact solution can also be found for the values r % L. Indeed, in this
case, one has F̂l(r, q) 2 0, as the forcing correlation rapidly decreases for
separations greater than L, and an unforced equation arises:

r−(d−1)∂r
(
rd+ξ−1∂rĈl

)
−

(d+ ξ − 1)l(d− 2 + l)

d− 1
r−2Ĉl − "−(2−ξ)

q Ĉl = 0 .

(2.18)
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The solution of (2.18) reduces to the zero mode,

Ĉl(r, q) = r−(d+ξ−2)/2 [B3Kνl(w) +B4Iνl(w)] , (2.19)

where regularity for r →∞ imposes B4 = 0 as Iνl(w)
w(1∼ w−1/2ew, while the

term with B3 is regular because Kνl(w)
w(1∼ w−1/2e−w.

The correlation of a passive scalar field in the presence of inhomogeneous
fluctuations, whose characteristic length is "q, can be thus computed in the
limits of small (r ! L) and large (r % L) separations with respect to the
scalar integral scale L. One finds a dependence on some unknown constants
(B2, B3) that can be fixed by the boundary conditions upon matching the
behaviour of the solution at small and large scales. Under the assumption of
an analytical forcing correlation function, F̂l(r, q) (and consequently ϕl;q(r))
is a smooth function of r whose asymptotic behaviour as r → 0 is rl. This
clearly makes the determination of B2, B3 dependent on the functional form
of F̂l(r, q). To provide a simple example of how the boundary-condition
constants can be fixed, I propose an illustrative calculation assuming a forcing
whose correlation function is a step function in r in each sector, i.e.:

F̂l(r, q) = F̂l(q)Θ(L− r) . (2.20)

The analyticity of the forcing correlation function is obviously lost (only mo-
mentarily) but, neglecting all the unphysical properties of this statement, the
complete solution can be easily written down, showing how the two constants
can be explicitly calculated. Indeed, in this case, an exact matching can be
performed in r = L comparing the limits (r → L−, r → L+) of both Ĉl and
Ĉ ′

l (prime means derivative with respect to the variable r) deriving from the
two expressions (2.17) and (2.19) (see appendix § 2.6). The final result is

Ĉl(r; "q) =






ϕl;q"
2−ξ
q w−ν0

[
Iνl(w)

∫ W

w

dω ων0+1Kνl(ω)

+Kνl(w)

∫ w

0

dω ων0+1Iνl(ω)

]
for 0 < r < L

ϕl;q"
2−ξ
q w−ν0Kνl(w)

∫ W

0

dω ων0+1Iνl(ω) for L < r <∞ .

(2.21)
where

W ≡ w|r=L =
2

2− ξ

(
L

"q

)(2−ξ)/2

, φl;q = ϕl;q(0)
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(the forcing only appears in the latter r-independent prefactor).
Once one assumes a small-scale description with respect to the velocity inte-
gral scale (i.e. Lv → ∞), the general solution thus depends on three funda-
mental scales r, L and "q. These scales represent the separation, the forcing
correlation scale and the characteristic length of the inhomogeneities, respec-
tively. From the general solution it is important to note (see appendix § 2.5)
that taking the limit "q → ∞ for fixed L and r, (2.21) reduces to the well-
known solution for the homogeneous case. Indeed, the latter solution satisfies
the equation:

r−(d−1)∂r
(
rd+ξ−1∂rĈl

)
−

(d+ ξ − 1)l(d− 2 + l)

d− 1
r−2Ĉl + ϕl;q = 0 . (2.22)

Anyway, in a small scale description with respect to the forcing correlation
(r ! L), the presence of a finite "q can reduce the range of pure power-law
behaviour because of the presence of the Bessel functions in the solution.
This scenario is clearly opposite to the one considered in the homogeneous
limit where a pure power-law behaviour is found.
In order to get a deeper insight about these two different regimes, in the
next section I concentrate on a purely isotropic situation where the forcing
correlation function depends only on q = |q| and the correlation of the scalar
field coincides with its isotropic sector. The previous unphysical assumption
of step-like forcing correlation function is now completely justified in the
isotropic (l = 0) sector, and an immediate comparison can be made with
the homogeneous case forced by (2.4). Moreover, the final results for each
q thus depend on the forcing only through its correlation length L, except
for a prefactor. So, this is the simplest, physically relevant assumption with
a physical meaning that one can consider to obtain a clear and systematic
description of the influence of inhomogeneous contributions.

2.2.3 Analysis of the inhomogeneous isotropic case

I focus here on the isotropic sector (l = 0) for the two-point equal-time scalar
correlation function, Ĉ0. The technical advantage is now that, alternatively
to the method of variation of constants, the particular solution of (2.16) can
be chosen as a constant, since the second term in (2.16) vanishes for l = 0
and the coefficient of the function Ĉ0(r; "q) reduces to a constant. The same
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Figure 2.1: Local slopes of Ŝ(r; !q) = Ĉ0(0; !q)− Ĉ0(r; !q) in the convective range.

Plotted is ζ(r) = d ln Ŝ(r;!q)
d ln r as a function of r/L for different values of the length-

scale !q. From top to bottom, the cases !q/L = 0.1, = 1, = 10 are plotted,
respectively. For comparison, the homogeneous case is also plotted (lowest plot).

arguments given for the general case can be repeated to obtain

Ĉ0(r; "q) =

{
φ0;q"2−ξ

q + A2r−(d+ξ−2)/2Iν0(w) for 0 < r < L
A3r−(d+ξ−2)/2Kν0(w) for L < r <∞ ,

(2.23)

where A2,A3 are known functions of L and "q (see appendix § 2.6). As
discussed in the previous section, the presence of the Bessel functions (the
fingerpoint of the scalar inhomogeneities) makes it impossible to see a clear
power-law behaviour in the convective range when "q/L ∼ 1. This is clearly
seen (figure 2.1) by calculating local-slopes (i.e. the logarithmic derivative,
which would exactly represent the exponent in the presence of pure power
laws) of the difference Ŝ(r; "q) ≡ Ĉ0(0; "q) − Ĉ0(r; "q), strictly related to
the second-order structure function, where Ĉ0(r; "q) is the general solution
(2.23). For a fixed L and ξ (say, ξ = 4/3, corresponding to the KOC scaling
[56]), I can change the ratio "q/L and examine the local slope behaviours
as a function of r/L: the homogeneous case (single power-law behaviour in
the convective range) is recovered only when "q % L, while for "q of the
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same order of L a coexistence of power laws spoils the pure scaling of the
homogeneous case.
To be more precise, I focus on the asymptotic properties of (2.23). First of
all, one can perform the limit r/"q → 0 to obtain

Ĉ0(r; "q)
r'!q
≈ Ĉ(hom)0(r; "q) ≡

{
a("q) + b2("q)r2−ξ for 0 < r < L
b3("q)r−(d+ξ−2) for L < r <∞ ,

(2.24)
where a("q), b2("q) and b3("q) can be obtained from the expansion of Bessel
functions. In the limit L! "q, a, b2 and b3 reduce to the well-known coeffi-
cients of the homogeneous isotropic case α, β2, and β3 (see appendix § 2.6).
If one also takes into account the successive terms of the expansion in (2.23),

Iν0(w) =

(
1

2
w

)ν0 ∞∑

k=0

[k!Γ(k + ν0 + 1)]−1

(
1

2
w

)2k

, (2.25)

no unique scaling exponent is clearly determined. To quantify how quickly
the effect of inhomogeneity is lost as r/"q decreases, one can thus proceed in
the following way. I fix r = golden section of L as a representative point of
the convective range and determine "q such that the sum of the terms with
k ≥ 2 in (2.25) is equal to a fixed fraction of the k = 1 term, from which the
r2−ξ contribution in (2.24) originates (I neglect the k = 0 term, giving rise
to a constant contribution). Percentages of 1%, 2%, 5%, 10% are obtained
respectively for "q/L 2 58, 21, 5.3, 1.96 (with ξ = 4/3 and d = 3).
In the opposite situation ("q ! L) the function Ĉ0(r; "q) approximates the
step function CΘ(L − r), where C 2 φ0;q"2−ξ

q . Thus, if φ0;q = F0/(d − 1)D1

is a constant (I shall call it “forcing of the first kind”), the plot of Ĉ0(r; "q)
collapses on the axis of the abscissas when "q → 0. On the contrary, if one

wanted to keep C finite, a scaling φ0;q = F0"
−(2−ξ)
q /(d − 1)D1 ∝ q2 could

be assumed: the collapse would now take place for "q → ∞; but this sim-
ply suggests that some kinds of forcing are not allowed (e.g. I also rule out
φ0;q’s giving unbounded C’s or a’s, as for example φ0;q ∝ "γ

q with γ > 0 or
< −(2−ξ)). The finiteness of both a and C may thus be guaranteed assuming

e.g. φ0;q = (F!"
−(2−ξ)
q +FLL−(2−ξ))/(d−1)D1 (“forcing of the second kind”),

with F!, FL constants. Of course there would be infinite kinds of allowed
forcing, but I will focus on these two because of their physical relevance (the
random-point-source problem investigated in section § 2.4 may roughly be
seen as a limit of the forcing-of-the-first-kind for vanishing L). The value
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Figure 2.2: Ratios between “actual” (functions of !q) and “homogeneous” (limit
values for !q →∞) coefficients: dashed lines represent a(!q)/α, solid ones b2(!q)/β.
Thin\thick lines are related to the forcing of the first\second kind, respectively.

chosen for ξ is its Kolmogorov value 4/3 and I will focus on d = 3.
Figure 2.2 represents the ratios of the additive and multiplicative coefficients
given by a("q) and b2("q) to the corresponding homogeneous ones α and β2,
as functions of "q/L, for both kinds of forcing. The “actual” values attain
the “homogeneous” ones only for large "q’s.
In figure 2.3 I show the plots of the difference Ĉ0(0; "q)− Ĉ0(r; "q), together
with the respective power-law approximations, for two different values of
"q/L, 102 and 10−2: in the former case the two kinds of forcing substan-
tially give the same result (only the first kind is thus represented) and the
agreement is perfect all over the convective range, while in the latter the
separation takes place for r < "q for both kinds of forcing. One should also
notice that by decreasing "q, besides the slower convergence to the power-law
behaviour (as remarked in figure 2.1), the value Ĉ0(L; "q) tends to decrease
with the first kind of forcing and to increase with the second kind.
Figure 2.4 shows

δĈ(rL; "q) ≡ Ĉ(hom)0(rL; "q)− Ĉ0(rL; "q) ,
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Figure 2.3: Plots of Ŝ(r; !q) = Ĉ0(0; !q)−Ĉ0(r; !q) and of the respective power-law
approximations (dashed lines) for !q/L = 102 and forcing of the first kind (upper
plot) and = 10−2 and both kind of forcings (lower plots). Thin lines are related to
the forcing of the first kind and thick lines are related to the forcing of the second
kind.

i.e. the difference between the approximated and the actual expressions of
Ĉ0(r; "q) as functions of "q/L, calculated for r = rL lying in the convective
range (in this case rL has been chosen as the golden section of L , but similar
plots exist ∀r < L). The presence of a maximum is quite intuitive for the
first kind of forcing, as both expressions vanish for infinitesimal "q, but is
remarkable for the second kind, which means that the “error” of the approx-
imation becomes negligible not only for large but also for small "q’s.
The previous discussion has been carried out in the pseudo-Fourier space
(r, q), but the final results must be expressed in the physical space (r, z)
and a superposition is then needed. It is thus useful to analyse some instruc-
tive cases of superpositions.
Figure 2.5 represents the simplest case of superposition, i.e. the excitation of
two q’s, e.g. q1 and q2, with constant or "q-dependent amplitude. In particu-
lar the upper two plots are the (weighted) sum of the modes "q1/L = 103 and
"q2/L = 1 and show very similar behaviours between each other (departure
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Figure 2.4: Difference between approximated (power-law behaviour with “ac-
tual” coefficients a(!q) and b2(!q)) and actual expressions of Ĉ0(r) for r =
golden section of L. The thin line is related to the forcing of the first kind while
the thick one to the forcing of the second kind.

from the r2−ξ straight line at r’s about one order of magnitude smaller than
the smaller "q), while in the lower two "q1 is kept fixed but "q2 is reduced to
10−3L. In the former case, since the correlation function collapses towards
the step function in the limit "q → 0, the structure function does not “feel”
the smallest "q in the convective range. Obviously the restoration of the cor-
rect power-law behaviour depends on the degree of convergence of Ĉ0(r; "q)
toward the step function (in this case the first kind of forcing converges more
rapidly than the second one).
More realistic cases are connected to the excitation of a finite set of discrete
modes: in this case the correctness of the power-law approximation is guar-
anteed (at least) for r’s sufficiently smaller than the minimum "q, but plots
similar to the previous one, with three or more excited q’s, show the same
behaviour (smaller and smaller "q’s cause at first an increase and then a de-
crease of the separation).
On the contrary, if the forcing has a continuum spectrum, one has to com-
pute the the continuum Fourier antitransformed, which is well defined for
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Figure 2.5: Plots of the superpositions of two Ĉ0(0; !q) − Ĉ0(r; !q) and of the
respective power-law approximations (dashed lines) for !q1/L = 103 and !q2/L = 1
(upper two plots) or = 10−3 (lower two plots). Thin lines are related to the forcing
of the first kind and thick lines are related to the forcing of the second kind.

the forcings I have considered. The result is that an inhomogeneous forc-
ing which takes place at intermediate scales tends to deviate the correlation,
from its homogeneous behaviour, more sensibly than if it was concentrated
at large scales (which is quite obvious) or at small scales.

2.3 Random point-source emission

I shall now focus on the point-source problem, i.e. on the study of the scalar
dispersion in turbulent flows following an emission (or absorption) from a
very concentrated source, located e.g. in the origin of the coordinate system.
Important examples of this problem are very common in everyday life: for
instance, understanding the dispersion in the atmospheric boundary layer of
pollutants released by a chimney is a crucial need for industrial societies.
Two relevant cases can be investigated: constant or random-in-time point-
source emission. The former case will be studied separately in appendix
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§ 2.6, because it requires an approach partially different from the one used
up to now (which, on the contrary, can be applied to the random situation)
and does not allow to carry out computations completely analytical, thus
invoking some numerical shortcut.
Here, I concentrate myself on a Gaussian, zero-average, white-in-time forcing;
namely,

f(x, t) = f0(t)δ(x) (2.26)

with 〈f(x, t)f(x′, t′)〉 = F0δ(t− t′)δ(x)δ(x′), so that (from (2.7)) F (r, z) =
F0δ(r)δ(z). In the present case, the forcing-correlation transformed ap-
pearing in (2.12), F̂ (r, q) = F0δ(r), is independent of the centre-of-mass
wavenumber. The simplifications performed in order to obtain the station-
ary equation (2.14) can be reproduced also in this case, and (at the end of
the present section) it will be possible to quantify the effect of the approxi-
mation r ! Lv, i.e. the relevance of the coupling between inhomogeneity and
anisotropy; attention should, in principle, be paid to the limit of vanishing
diffusivity, but for the rough flows (ξ .= 2) considered here no commuta-
tion problem arises with the limit of vanishing forcing correlation length L.
Upon introduction of the typical inhomogeneous lengthscale "q (2.15) and de-
composition on the spherical harmonics, one obtains equation (2.16), whose
solution, for r .= 0 (in view of the δ character of the forcing) reduces to the
zero mode given by (2.19). To determine the coefficients B3 and B4 in each
sector, one can appropriately simulate the Dirac δ through a Heaviside Θ,
exploiting the vanishing of the rescaled forcing ϕl(r) (where the subscript q
has been dropped for obvious reasons) in all the anisotropic sectors l .= 0:

δ(r) =
r−(d−1)

Ω
δ(r) = lim

L→0

r−(d−1)

ΩL
Θ(L− r)

⇒ ϕ0(r) = lim
L→0

F0r−(d−1)

(d− 1)D1ΩL
Θ(L− r) .

One can thus exploit the results obtained for finite L and consider also the
solution for r < L, given by (2.17). Matching the solution Ĉl and its first
derivative in r = L, imposing regularity for small r and vanishing for large
r, and eventually taking the limit L→ 0, one finds B4 = 0 ∀l and

B3 = A lim
L→0

∫ W

0

dω ϕl(ρ)ω
ν0+1Iνl(ω) = δl,0k†

F0

D1
"−(d+ξ−2)
q ,

where k† = 2(2− ξ)−d/(2−ξ)/(d− 1)ΩΓ(ν0 + 1) (Γ being Euler’s function).
In the pseudospectral space (r, q) the scalar-correlation transformed thus
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coincides with its isotropic projection and depends only on the moduli r and
q (i.e. "q) as

Ĉ(r; "q) = k†
F0

D1
"−(d+ξ−2)/2
q r−(d+ξ−2)/2Kν0(w) .

Back to the physical space, the correlation is thus independent of the angle
between r and z and is a function of r and z only:

C(r, z) = k‡
F0

D1

(
D1

D0

)d/2

rdξ/2−2d−ξ+2

[
1 +

Ω(2− ξ)2

4π

D1

D0
z2r−(2−ξ)

]−
d(4−ξ)
2(2−ξ)

+1

.

(2.27)
For d = 2,

k‡ = k†2
−2
π
−1(2− ξ)(4−ξ)/(2−ξ)Γ

(
2

2− ξ

)
;

for d = 3,

k‡ = k†2
−1
π
−3/2(2− ξ)(7−2ξ)/(2−ξ)Γ

(
3

2
+

1 + ξ

2− ξ

)
.

Recalling that the ratio D1/D0 appearing in (2.27) is of the order of L−ξ
v ,

two opposite developments are meaningful, corresponding to small or large
values of the quantity

s =
(z
r

)2
(

r

Lv

)ξ

. (2.28)

For small s (i.e. small z or large r) the correlation is approximated by a power
law in r,

C ∼ L−dξ/2
v r−d(4−ξ)/2+2−ξ .

On the contrary, for large s, a power law in z is found, and r appears only
in subleading terms:

C ∼ Lξ(d+ξ−2)/(2−ξ)
v z2−d(4−ξ)/(2−ξ)

[
1 + const.× Lξ

vz
−2r2−ξ

]
, (2.29)

Expression (2.29) proves that, for r sufficiently smaller than z, the two-point
equal-time structure function has a behaviour similar to the homogeneous
case (power law in r with exponent 2− ξ), thus a cascade-like mechanism is
expected to take place. In the absence of a large-scale forcing (remember that
L→ 0) like the one assumed in (2.4), this can be explained in the following
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way. The velocity field sweeps the scalar, initially concentrated where it was
released, and generates structures which, ∀x, are correlated on the scale x;
in other words, correlations between each point x and the origin x′ = 0 are
created. In the centre-of-mass frame of reference, this means that in every
point z (= x/2) a local cascade can then take place, starting from separations
r of the order of z, which thus plays the role of a local forcing correlation
length. This can be easily shown in the “2d-formalism” introduced in section
§ 2.2: away from the origin, in the steady state, equation (2.9) takes the form

∂Ji

∂yi
= 0⇐⇒ ∂r · Jr = −∂z · Jz , (2.30)

where the 2d vector 1J is made up of two parts, Jr and Jz, parallel to
the unit vectors r/r and z/z respectively. Only the former survived in the
homogeneous case, giving rise to the convective-range balance

d(v)µν (r)
∂2C

∂rµ∂rν
= −F (r) , (2.31)

which is the analytical expression of the aforementioned constant-flux argu-
ment: the derivative respect to r of the left-hand side of (2.31) vanishes, in
view of the constance of the corresponding right-hand side. In the point-
source case, the right-hand side of (2.30) suggests that the balance is to be
written as

d(v)µν (r)
∂2C

∂rµ∂rν
= −

D0

2

∂2C

∂zµ∂zµ
, (2.32)

but the vanishing of the derivative of the left-hand side of (2.32) still takes
place for r sufficiently smaller than z. This is proved by figure 2.6, which
moreover shows how this interpretation has its validity limit affected by a
change in the ratio r/Lv appearing in the adimensional parameter s (2.28).
One should indeed remember that the three scales r, z and Lv appear in a
nontrivial way in s, whose smallness is the key point for approximation (2.29)
and its consequences.
It is also worth noticing that the r−(d+ξ−2) behaviour, which is typical of the
homogeneous situation for r % L, is never followed in this case (even if L =
0), unless one integrates the correlation on the whole space, thus averaging
out the inhomogeneity; this is equivalent to consider q = 0 ("q →∞) in the
pseudo-spectral space.
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vs z/r for ξ = 4/3 and d = 3. It is evident how the ratio r/Lv, labelling the three
curves, affects the limits of the range in which approximation (2.29) is valid and a
constant flux holds.

A last comment is required about the relevance of the so-called finite-size
effects. In other words, one would like to quantify the error deriving from the
approximation r ! Lv, which was used to simplify (2.10) into (2.11), and
thus to uncouple inhomogeneity from anisotropy. This quantification is now
possible, if one proceeds in the following way. First of all, one should notice
that, after the decomposition into spherical harmonics, no more foliation
takes place. Namely, the equation for the isotropic sector is still a closed one
(with the appearance of a new term),

r−(d−1)∂r
(
rd+ξ−1∂rĈ0

)
− "−(2−ξ)

q

[
1−

(d+ ξ)D1

2d(d− 1)D0
rξ

]
Ĉ0 + ϕ0(r) = 0 ,

and gives

Ĉ0 ∝ r−(d+ξ−2)/2Kν0(w)

[

1 + O

(
r

Lv

)ξ
]

, (2.33)

but Ĉ0 now enters the equation for l = 2 as a forcing term (the l = 1 sector
remains unforced because this procedure only couples even sectors, as can
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be deduced by decomposition (2.13)). A simple power-counting operation is
possible in Fourier space for r ! "q, where (exploiting the development of
Kν0(w) for small arguments)

Ĉ0 ∝ r−(d+ξ−2)

[

1 + O

(
r

"q

)2−ξ
]

, (2.34)

because in this regime one easily obtains

Ĉ2 ∼ L−ξ
v "−(2−ξ)

q r−(d+ξ−4) ∼
(

r

Lv

)ξ ( r

"q

)2−ξ

Ĉ0 . (2.35)

Equation (2.35) shows that the first excited anisotropic sector carries a factor,
with respect to the isotropic solution, given by the product between the
corrections in (2.33) and in (2.34). Its interpretation is thus very simple and
meaningful: at the lowest order, the anisotropic correction derives from the
coupling of finite-size effects (O(r/Lv)ξ) and of inhomogeneities (O(r/"q)2−ξ).
Back to the physical space, such anisotropic corrections are expected to play
an important role only when the scales r and z are comparable, but not when
either is much greater than the other. An example is provided, for z = r/2,
by the comparison between the cases z ‖ r (where one of the two points
in which the correlation is calculated lies on the source) and z ⊥ r (where
both points are

√
2z away from the origin): a difference must clearly exist,

but cannot be caught by the isotropic function C0(r, z) and turns out to be
subdominant.

2.4 Conclusions

The properties of the two-point equal-time scalar correlation function for the
Kraichnan model of advection have been studied in presence of anisotropies
and inhomogeneities. The system can be described by the following three dif-
ferent scales: the separation (r), the forcing correlation length (L, vanishing
in the point-source case) and, finally, the lengthscale of the inhomogeneities
("q). The model can be treated analytically and the properties of both small
and large scales can be related to the typical lengthscale "q. This offers the
possibility to analyse the breaking of translationally invariant properties by
means of an external forcing term and to check if the small scale statistics
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can be regarded as universal in the sense that it does not depend on the de-
tails of the inhomogeneous contribution. This somehow universal property is
strictly connected to the restoration of a homogeneous limit for scales smaller
that the typical inhomogeneous one. This limit (r ! "q, L ! "q) has been
studied and it has been shown how the solution reproduces exactly the one
that can be obtained starting from homogeneous equations. On the other
side, the homogeneous power-law behaviour is completely spoilt when "q is
of the order of the separation r and it can be seen as a “beating” of different
power laws originating from the scalar inhomogeneities.
Summarizing, a pure power-law behaviour exists ∀"q going at sufficiently
small r’s and this is a clear indication of the fact that the statistical descrip-
tion can be seen as the same of the homogeneous case but with a reduced
range of pure scaling law behaviour. When one passes to the physical space,
and if more inhomogeneous modes are excited, the restoration of a convec-
tive range is guaranteed if the excitation takes place only at large scales or
at large scales together with very small scales ("q → 0).
The analysis of the superposition can be carried out analytically in the
framework of the random-in-time point-source problem, where two differ-
ent regimes can be identified. In particular, for r ! z, a local cascade
process takes place, even in the absence of large-scale forcing. Moreover, it
has been possible to analyse the interplay between inhomogeneity, anisotropy
and finite-size effects, which take into account the finiteness of the velocity
integral scale.
The Kraichnan model has always been used in the past to stimulate the study
of small-scale physics in the NS dynamics. In the inhomogeneous situation,
it is likely that a typical lengthscale, "q, should exist also in that case and,
even if it should depend on new and more physical quantities (with respect
to the Kraichnan case), one expects a similar phenomenological behaviour
concerning recovery of homogeneity in the small-scale statistics.

2.5 Appendix on calculation details

Starting from the equation for the projection of two-point equal-time cor-
relation function in the anisotropic sector l, (2.16), and assuming a forcing
whose correlation function is a step function in r, (2.20), one can perform an
exact matching in r = L by comparing the limits of Ĉl(r, q) and of Ĉ ′

l(r, q)
(prime means derivative respect to the variable r) deriving from (2.17) and
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(2.19):






lim
r→L−

Ĉl(r, q) = Ĉ(part)l(L, q) + B2L
−(d+ξ−2)/2Iνl(W )

lim
r→L+

Ĉl(r, q) = B3L
−(d+ξ−2)/2Kνl(W ) ,






lim
r→L−

Ĉ ′
l(r, q) = Ĉ ′

(part)l(L, q) + B2

[
−
d+ ξ − 2

2
L−(d+ξ)/2Iνl(W )

+"−(2−ξ)/2
q L−(d+2ξ−2)/2I ′νl(W )

]

lim
r→L+

Ĉ ′
l(r, q) = B3

[
−
d+ ξ − 2

2
L−(d+ξ)/2Kνl(W )

+"−(2−ξ)/2
q L−(d+2ξ−2)/2K ′

νl
(W )

]

.

The correlation function must be continuous in r = L, and the same is true
for its first derivative. One can thus write the complete solution (for all "q)
as

Ĉl(r, q) =

{
Ĉ(part)l(r, q) + B2r−(d+ξ−2)/2Iνl(w) for 0 < r < L
B3r−(d+ξ−2)/2Kνl(w) for L < r <∞ ,

(2.36)

where the two constants are

B2 = −Aφl;q

∫ ∞

W

dω ων0+1Kνl(ω) , B3 = Aφl;q

∫ W

0

dω ων0+1Iνl(ω) .

Plugging the values of B2 and B3 in (2.36) one can obtain the exact solution
written in terms of w and W :

Ĉl(r, q) =






φl;q"
2−ξ
q w−ν0

[
Iνl(w)

∫ W

w

dω ων0+1Kνl(ω)

+Kνl(w)

∫ w

0

dω ων0+1Iνl(ω)

]
for 0 < r < L

φl;q"
2−ξ
q w−ν0Kνl(w)

∫ W

0

dω ων0+1Iνl(ω) for L < r <∞ .
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In the limit "q →∞ for fixed L and r, one finds the well-known solution for
the homogeneous case. Indeed, in this limit, for r < L one has

φl;q"
2−ξ
q w−ν0Iνl(w)

∫ W

w

dω ων0+1Kνl(ω)
!q→∞−→

2φl;q

(
L2−ξ−ζ+l rζ+l − r2−ξ

)

(2− ξ)2(ν0 − νl + 2)νl

φl;q"
2−ξ
q w−ν0Kνl(w)

∫ w

0

dω ων0+1Iνl(ω)
!q→∞−→

2φl;qr2−ξ

(2− ξ)2(ν0 + νl + 2)νl
,

and, for r > L,

φl;q"
2−ξ
q w−ν0Kνl(w)

∫ W

0

dω ων0+1Iνl(ω)
!q→∞−→

2φl;qL2−ξ−ζ−l rζ−l

(2− ξ)2(ν0 + νl + 2)νl
,

where ζ±l = (−ν0 ± νl)(2− ξ)/2. One finally obtains

Ĉl(r) =






2φl;q

(2− ξ)2(ν0 − νl + 2)νl
L2−ξ−ζ+l rζ+l

−
4φl;q

(2− ξ)2((ν0 + 2)2 − ν2
l )
r2−ξ for 0 < r < L

2φl;q

(2− ξ)2(ν0 + νl + 2)νl
L2−ξ−ζ−l rζ−l for L < r <∞ ,

which is the solution that can be exactly obtained from the homogeneous
equation projected along the anisotropic sector l, (2.22).

In the isotropic case the particular solution of the forced equation can be
chosen as a constant, since the second term in (2.16) vanishes for l = 0 and
the coefficient of the function Ĉ0(r; "q) reduces to a constant. The complete
solution can thus be written in the form (2.23), where the two constants are

A2 = −
2φ0;q

2− ξ
Ld/2"(2−ξ)/2

q Kν0+1(W ) , A3 = −A2
Iν0+1(W )

Kν0+1(W )
.

Performing the limit r, L ! "q and exploiting the expansion of Bessel func-
tions, one easily obtains

Ĉ0(r; "q)
r'!q
≈ Ĉ(hom)0(r; "q) ≡

{
a("q) + b2("q)r2−ξ for 0 < r < L
b3("q)r−(d+ξ−2) for L < r <∞ ,
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where the coefficients can be found after simple but lengthy algebra:

a("q) = φ0;q"
2−ξ
q + A2

(2− ξ)−(d+ξ−2)/(2−ξ)

Γ(ν0 + 1)
"−(d+ξ−2)/2
q ,

b2("q) = A2
(2− ξ)−(d−ξ+2)/(2−ξ)

Γ(ν0 + 2)
"−(d−ξ+2)/2
q ,

b3("q) = A3
(2− ξ)(d+ξ−2)/2Γ(ν0)

2
"(d+ξ−2)/2
q ,

with

a("q)
!q→∞−→ α =

F̂ (0, 0)L2−ξ

(d− 1)(2− ξ)(d+ ξ − 2)D1
,

b2("q)
!q→∞−→ β2 = −

F̂ (0, 0)

d(d− 1)(2− ξ)D1
,

b3("q)
!q→∞−→ β3 =

F̂ (0, 0)Ld

d(d− 1)(d+ ξ − 2)D1
,

that correspond to the well-known homogeneous isotropic case.

2.6 Appendix on constant point-source emis-

sion

In this section I will show some results about the constant-point-source prob-
lem, i.e. a time-independent scalar emission from the origin: equation (2.26)
of section § 2.3 should thus be replaced by f(x, t) = f0δ(x). An immediate
consequence is that the mean value 〈θ〉(x, t) has now a nontrivial dynamics,
ruled by

∂t〈θ〉 = Dκ∂
2〈θ〉+ f , (2.37)

where Dκ = D0/2 + κ0. Equation (2.37) can be solved by a spatial Fourier
transform (x 7→ k) yielding

〈θ̂〉(k, t) = f0

∫ t

0

ds e−Dκk2(t−s) = f0
1− e−Dκk2t

Dκk2
. (2.38)

Back to the physical space, in three dimensions one obtains the asymptotic
mean scalar profile

〈θ〉(x, t) t→∞−→
f0

4πDκx
. (2.39)
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When writing the equation for the two-point equal-time scalar correlation
function (the analogous of (2.8)), one must take into account the nonrandom
character of forcing, therefore F should now be interpreted as the correlator
〈θ(x, t)f(x′, t) + θ(x′, t)f(x, t)〉. Specifically, one has:

∂tC =
[
2κ0δµν + d(v)µν

] ∂2C

∂rµ∂rν
+

(D0 + 2κ0)δµν +D(v)
µν

4

∂2C

∂zµ∂zν

+f0

[

δ
(
z +

r

2

)
〈θ〉

(
z −

r

2
, t
)
+ δ

(
z −

r

2

)
〈θ〉

(
z +

r

2
, t
)]

,

which, after Fourier transforming (z 7→ q), reads (compare with (2.12)):

∂tĈ =
[
2κ0δµν + d(v)µν

]
(r)

∂2Ĉ

∂rµ∂rν
−

(D0 + 2κ0)δµν +D(v)
µν (r)

4
qµqνĈ

+f0
[
eiq·r/2〈θ〉(−r, t) + e−iq·r/2〈θ〉(r, t)

]
.

In the limit of vanishing diffusivity and for separations much smaller than
the velocity integral scale, the steady-state equation corresponding to (2.14)
is:

dµν(r)
∂2Ĉ

∂rµ∂rν
−

D0

2
q2Ĉ +

f 2
0

πD0

cos(q · r/2)
r

= 0 . (2.40)

The correlation Ĉ is thus a function of the moduli r, q and of the angle γ
between q and r. Therefore, (2.40) can be rewritten as:

∂r
(
r2+ξ∂rĈ

)
+

2 + ξ

2
rξ∂cos γ

[
(1− cos2 γ)∂cos γĈ

]
−

D0

4D1
q2r2Ĉ

+
f 2
0

2πD0D1
r cos

(qr cos γ
2

)
= 0 . (2.41)

The decomposition onto spherical harmonics now coincides with a projection
on the Legendre polynomials pl(cos γ). Indeed, writing

Ĉ(r, q) =
∞∑

l=0

ĉl(r, q)pl(cos γ)

and exploiting the plane wave expansion, (2.41) becomes

∂r
(
r2+ξ∂r ĉl

)
−

(2 + ξ)l(l + 1)

2
rξĉl −

D0

4D1
q2r2ĉl

+
(−1)l/2(2l + 1)f 2

0

2πD0D1
rjl

(qr
2

)
= 0 , (2.42)
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jl being the spherical Bessel function. Focusing on the isotropic sector l = 0,
(2.42) simplifies in

∂r
(
r2+ξ∂r ĉ0

)
−

D0q2

4D1
r2ĉ0 +

f 2
0

πD0D1q
sin

(qr
2

)
= 0 ,

which, for 0 < ξ < 2, clearly possesses the same zero modes of the general
inhomogeneous case studied in section § 2.2, involving modified Bessel func-
tions. Unfortunately, no exact complete solution can be found analytically
for every q, which is then needed to perform the Fourier antitransformed.
One can thus focus on the limit case ξ = 2, representing smooth flows, where
the zero modes consist in power laws, and finds:

ĉ0(r, q)=
f 2
0Q−1R−1

πD3/2
0 D1/2

1

{
−
Q(Q−1)/2R(Q−1)/2

2(Q+1)/2
cos

[
π

4
(Q− 1)

]
Γ

[
−
1

2
(Q+ 1)

]

+
1

Q− 1
1F2

(
−
1

4
(Q− 1);

3

2
,−

1

4
(Q− 1) + 1;−

Q2R2

16

)

+
1

Q+ 1
1F2

(
1

4
(Q+ 1);

3

2
,
1

4
(Q+ 1) + 1;−

Q2R2

16

)}
,

F being the hypergeometric function. The adimensional variables are defined
as R = r(D0/D1)−1/ξ and Q = q(D0/D1)1/ξ, with Q = (9 +Q2)1/2.
This expression can then be antitransformed numerically to find the isotropic
behaviour of the correlation function:

C(is)(r, z) =
1

2π2z

∫
dq q sin(qz)ĉ0(r, q) .

An alternative subject of investigation may be represented by the fluctu-
ation field ϑ ≡ θ − 〈θ〉, satisfying

∂tϑ+ v · ∂ϑ = κ0∂
2ϑ− v · ∂〈θ〉 −

D0

2
∂2〈θ〉 .

The resulting equation for the two-point, equal-time, scalar-fluctuation cor-
relation function C(ϑ)

2 ≡ 〈ϑ(x, t)ϑ(x′, t)〉 reads:

∂tC
(ϑ)
2 =

[
2κ0δµν + d(v)µν

] ∂2C(ϑ)
2

∂rµ∂rν
+

(D0 + 2κ0)δµν +D(v)
µν

4

∂2C(ϑ)
2

∂zµ∂zν

+
f 2
0

16π2D2
κ

D(v)
µν

(zµ + rµ/2)(zν − rν/2)

|z + r/2|3|z − r/2|3
.
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It is worth noticing that equation (2.38) does not yield a stationary state
in two dimensions: in simple words, this is due to the the fact the scalar,
continuously pumped by the source, does not have “room enough” to spread,
and therefore continues to accumulate in every point. One could thus modify
the starting equation (2.1) by introducing, on its right-hand side, an additive
linear term simulating deposition:

∂tθ(x, t) + v(x, t) · ∂θ(x, t) = κ0∂
2θ(x, t) + f(x, t)− τ−1θ(x, t) .

It can be shown that equation (2.38) now takes the form

〈θ̂〉(k, t) = f0
1− e−(Dκk2+1/τ)t

Dκk2 + 1/τ
,

which leads to the steady state

〈θ〉(x, t) t→∞−→
f0
Dκ

K0

(
x√
Dκτ

)
.
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Chapter 3

Analytical models for closures

The issue of the parameterization of small scale (“subgrid”) turbulence is
addressed in the context of passive scalar transport. I focus on the Kraich-
nan advection model which lends itself to the analytical investigation of the
closure problem. I derive systematically the dynamical equations which rule
the evolution of the coarse-grained scalar field. At the lowest-order approxi-
mation in l/r, l being the characteristic scale of the filter defining the coarse-
grained scalar field and r the inertial-convective-range separation, the clas-
sical eddy-diffusivity parameterization of small scales is recovered. At the
next-leading order a dynamical closure is obtained. The latter outperforms
the classical model and is therefore a natural candidate for subgrid modelling
of scalar transport in generic turbulent flows.

The chapter is organized as follows: in the introduction § 3.1 I underline
the necessity of coarse-graining processes in turbulence, in particular for the
study of passive scalars. In section § 3.2 I recall the basic equations and I
introduce the filtering process. In section § 3.3 I show an application to a
particular situation which provides an example of exact closure. In section
§ 3.4 I focus again on the Kraichnan advection model and I list some exact
expressions for the coarse-grained fields. Section § 3.5 provides a series of
possible closures, emerging with different degrees of approximation or in dif-
ferent contexts. Conclusions and perspectives follow in section § 3.6. The
three appendices § 3.7, § 3.8 and § 3.9 are devoted respectively to: provide
some exact analytical expressions, study the limit cases of purely diffusive or
smooth flows, quote some results on small-scale quantities.
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3.1 Introduction

One of the most striking characteristics of hydrodynamic turbulence is the
presence of a wide range of active length and time scales. If, on the one
hand, this huge number of active scales is the ideal framework to investigate
“classical” problems in the realm of basic turbulent research (e.g. in relation
to global scale invariance and its violation in the form of intermittency and
anomalous scaling, which was the object of investigation in the previous
part), on the other hand the proliferation of degrees of freedom leaves severe
limitations to the deterministic description of turbulent fields. Moreover,
these scales are strongly and nonlinearly coupled, a fact that makes analytical
approaches, at best, impractical. The situation does not look better for direct
numerical simulations of turbulent systems: to fully resolve a turbulent flow
requires at least L/η grid points in each spatial direction [1], L and η being the
integral scale and the dissipation scale respectively (see also [62] for a possible
reformulation accounting for the temporal degrees of freedom, which leads to
a further increase in the required computational work). In the atmosphere,
for instance, the ratio L/η may become of the order of 109 (η ∼ 10−3m and
L ∼ 106m), thus requiring the dynamical description of 1027 spatial degrees
of freedom. This remains, up to now and probably also in the near feature,
a prohibitive task.

To overcome the problem, “coarse-grained” versions of the original hy-
drodynamic equations are often considered in order to describe large-scale
features of the original full system. As a matter of fact, in many situations of
practical interest (e.g. the description of the evolution of a pollutant emitted
by sources in the atmospheric boundary layer) one is not interested in de-
scribing the details (i.e. small-scale dynamics) of turbulent fields but, rather,
in focusing on their large-scale behaviour. In other words, one passes from
a detailed description of mesoscopic scales, as in the previous part of this
manuscript, to a study of the sole macroscopic scales, which represent the
subject of the present part. The large-eddy simulation (LES) technique is
probably the most popular example [63] of this viewpoint. The success of such
a strategy is however strongly dependent on the realism of the description
of small scales in terms of the large, explicitly resolved, scales. The problem
of representing small unresolved scales in the absence of scale separation —
the long-known closure problem — attracts a great deal of attention in many
domains, ranging from geophysics to engineering [64], and is one among the
many challenges of turbulence theory.
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My goal here is to shed some light on this aspect within the context
of scalar turbulence, where considerable progresses have been achieved in
the last few years [65, 46]. For this purpose I will consider a particular
model of passive scalar transport [36, 37] where the LES strategy can be
formulated and the problem of relating unresolved scales to resolved ones
can be successfully attacked analytically.

In this respect, the Kraichnan model has some characteristics of para-
mount importance. First, exact expressions for relevant statistical observ-
ables can be derived from first principles, that is from equation (3.1): this
amounts to saying that the observables for the “fully resolved case” are
known. An example is expression (3.17) for the two-point equal-time scalar
correlation function, an observable tightly related to the Fourier spectrum
of the scalar field. Moreover, closures for the large-scale dynamics can be
derived in a systematical way (see section § 3.5) and their predictions can
be analytically checked against the exact solution. These features make the
Kraichnan model an ideal playground for studying LES closures.

3.2 Large-eddy simulation for passive scalar

turbulence

3.2.1 Basic equation and phenomenology

According to what stated at the beginning of section § 2.2, the basic equation
governing the dynamics of a passive scalar field θ(x, t) is the well-known
advection-diffusion forced equation

∂tθ(x, t) + v(x, t) · ∂θ(x, t) = κ0∂
2θ(x, t) + f(x, t) . (3.1)

The advecting velocity field v(x, t) is assumed incompressible: ∂ · v = 0.
Scalar fluctuations are injected into the system at a large scale L by the forc-
ing term f(x, t), acting as an external source. Scalar dissipation takes place
at small scales, of order η, and is accounted for by the molecular diffusivity
κ0.
A strong analogy with the NS turbulence holds: the number of active spatial
degrees of freedom [66] rapidly increases with the Péclet number Pe (the
analogous of the Reynolds number) and scales as (L/η)d ∼ Pe3d/4, where d
is the space dimension (≥ 2). The advantage of dealing with (3.1) instead of
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NS consists both in the linearity of the equation and in the scalar character
of the unknown field, and finally in the locality of the physical-space descrip-
tion (i.e. the analogous of the pressure field is absent). Nevertheless, the
importance of scalar turbulence is underlined by the considerable progress
that has been achieved in the last few years in this context [65].

3.2.2 Definition of the filtering process

Coarse-grained fields (denoted with a tilde) are obtained from the original,
fully-resolved fields through a convolution with a low-pass isotropic filter Pl

of characteristic length l, lying in the convective range of scales: η ! l ! L.
In particular, one has

θ̃(x, t) ≡
∫

ddy Pl(x− y)θ(y, t) =

∫
ddsPl(s)θ(x+ s, t) = (Pl 6 θ)(x, t) ,

(3.2)
and similarly for ṽ ≡ Pl6v and f̃ ≡ Pl6f . The filtering process thus defines a
linear operator which commutates with any partial derivative, because of the
structure of the convolution kernel, but which does not factorize when acting
on products (the filtered of a product is not the product of the filtered).
Small-scale fluctuations, denoted with a star, are defined as:

θ∗ ≡ θ − θ̃ , v∗ ≡ v − ṽ , f ∗ ≡ f − f̃ . (3.3)

3.2.3 The problem of closure in the large scale

The large-eddy simulation (LES) strategy is carried out by convolving (3.1)
with the filter Pl, in order to obtain an equation for the coarse-grained fields:

∂tθ̃ + ṽ · ∂θ = κ0∂
2θ̃ + f̃ . (3.4)

Unfortunately, this is not a closed equation in the large scales, as the mul-
tiplicative (in the filtering operation) term still involves a product between
fully-resolved fields. I thus rearrange it in the form

∂tθ̃ + ṽ · ∂θ̃ = κ0∂
2θ̃ + f̃ − ∂ · τ (θ) , (3.5)

where the subgrid scalar flux τ (θ) is given by:

τ (θ) ≡ ṽθ − ṽθ̃ . (3.6)
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The aim of LES closures [63] is to express ∂ · τ (θ) in terms of coarse-grained
fields, in order to get a closed equation describing the large-scale dynamics
autonomously. Once this purpose is accomplished, (3.5) can be integrated
numerically on a mesh of spacing l instead of η, as it would be necessary for
the original equation (3.1). This less-demanding integration means a huge
gain in memory and CPU time requirements and represents the essential
advantage of the LES strategy.
From a general point of view, the perfect closure (i.e. having the “true”
τ (θ)) is able to correctly represent all the observables built by filtering the
“true” field θ. On the contrary, only some observables, and some of them
in principle better than others, can be correctly described by any empirical
closure. It is worth noticing that, which observable is properly reproduced,
can be assessed only a posteriori (e.g. by comparing LES predictions against
experiments).
Unluckily, no general closed expression for ∂ · τ (θ) in terms of θ̃ and ṽ is
available: this is a clear indication of the strong coupling between all scales
which is typical in turbulence. A remarkable exception is provided by the
case where there is a marked scale separation between velocity and scalar
length and time scales. It is then possible to show [67, 68, 69] that the effect
of unresolved scales is just the renormalization of the molecular diffusion
coefficient κ0 to an enhanced eddy diffusivity κeff (generally speaking, an
eddy-diffusivity tensorial field). General expressions for the eddy diffusivity
as a function of the flow properties do not exist, and in most cases κeff can
be determined only numerically.
Here, my aim is to consider the challenging situation where there is no scale
separation [64] between velocity and scalar and to explore, in such a context,
the existence of effective equations for θ̃.

3.2.4 Structure of small-scale contributions

An alternative expression of ∂ · τ (θ) can be obtained, for future purpose,
plugging in (3.6) the decomposition (3.3). One has:

∂ · τ (θ) = L+ C̃ + R̃ , (3.7)

where 




L ≡ ˜̃v · ∂θ̃ − ṽ · ∂θ̃ (Leonard-like term)
C ≡ ṽ · ∂θ∗ + v∗ · ∂θ̃ (cross term)
R ≡ v∗ · ∂θ∗ (Reynolds-like term) .

(3.8)
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3.3 An example of exact closure

I now specialize to stochastic velocities and forcings, i.e. to the case in which
both v and f are fields with assigned statistical properties; I denote with
brackets the average over their statistical distribution: it is then clear that
this ensemble average commutates with the spatial average represented by
the filtering process.
Also in this framework, a renowned example of exact closure exists. Indeed,
for times t larger than the largest velocity time scale, the mean field 〈θ〉
experiences the cumulative effect of velocity via an eddy-diffusivity coefficient
(see equation (2.37), which however arose in another context):

∂t〈θ〉 = κtot∂
2〈θ〉+ 〈f〉 . (3.9)

The expression for κtot (here supposed to be isotropic, as actually is in the
presence of isotropic velocity fields) follows from the well-known Taylor for-
mula:

κtot = κ0 +
1

2d

∫ ∞

0

dτ 〈v(τ) · v(0)〉 . (3.10)

Having accounted for the advective term through a linear diffusive one, in this
particular case the nonlinearity problem faced while passing from equation
(3.1) to (3.4) does not exist any more and the same eddy-diffusivity equation
must then hold also for the averaged coarse-grained field 〈θ̃〉. By virtue of
linearity, from (3.9) one has:

∂t〈θ̃〉 = κtot∂
2〈θ̃〉+ 〈f̃〉 . (3.11)

I now look for an eddy-diffusivity-type closure in the equation for θ̃ such that,
starting from it, (3.11) is recovered. I ask, in other words, that the closure
is able to reproduce the averaged, long-time behaviour of θ̃. The searched
equation is

∂tθ̃ + ṽ · ∂θ̃ = κeff∂
2θ̃ + f̃ , (3.12)

where κeff has to be determined. I can use Taylor’s formula again to obtain

κtot = κeff +
1

2d

∫ ∞

0

dτ 〈ṽ(τ) · ṽ(0)〉 . (3.13)

A simple comparison between equations (3.10) and (3.13) yields:

κeff = κ0 +
1

2d

∫ ∞

0

dτ [〈v(τ) · v(0)〉 − 〈ṽ(τ) · ṽ(0)〉] . (3.14)
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3.4 Kraichnan advection model

3.4.1 Basic properties and known results

I further restrict my attention to the well-known Kraichnan advection model
[36, 37], already described in section § 2.2, whose main features are summa-
rized here. Both velocity and forcing are Gaussian, white-in-time and zero-
mean random fields, statistically stationary, homogeneous and isotropic.
The spatial part of the velocity second-order increments follows an inertial-
range power law:

d(v)µν (r) = D1r
ξ
[
(d+ ξ − 1)δµν − ξ

rµrν

r2

]
, (3.15)

where ξ represents the roughness exponent and lies in the open interval (0, 2);
the limit cases ξ = 0 and ξ = 2 will be studied in the appendix § 3.8.
A convenient choice for f is to assume a step-function form for its two-point
spatial correlation: FL(r) = F0Θ(L− r).

The equation for the two-point equal-time correlation function C(θ)
2 reads

∂tC
(θ)
2 = d(v)µν ∂µ∂νC

(θ)
2 + 2κ0∂

2C(θ)
2 + FL (3.16)

and its stationary version has the following convective-range (η ! r < L)
solution:

C(θ)
2 (r) = c− kr2−ξ , (3.17)

with

c =
F0L2−ξ

(d− 1)(2− ξ)(d+ ξ − 2)D1
, k =

F0

d(d− 1)(2− ξ)D1
.

I recall that in the limit of small viscosity, which will be assumed throughout
the chapter, the merged-point value of the correlation is given by 〈θ2〉 2 c
and the stationary second-order structure function turns out to be a pure
power law in the convective range: S(θ)

2 (r) = 2kr2−ξ.
The equation for the steady-state dissipation, which I write for future pur-
pose, arises from (3.16) evaluated at merged points:

2κ0〈(∂θ)2〉 = F0 . (3.18)

Equation (3.18) is the analytical expression of the so-called dissipative ano-
maly, according to which the scalar average dissipation κ0〈(∂θ)2〉 keeps finite
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also for vanishing diffusivity, as it is only determined by the large-scale scalar
input F0. The latter conservatively cascades through the convective range
(unaffected by the advective term, which has a flux-like structure) toward
smaller and smaller scales, until diffusivity becomes efficient and stops the
cascade process.

3.4.2 Second-order correlation function of the coarse-

grained passive scalar

To provide a benchmark for the various closures, I first evaluate the stationary
coarse-grained correlation function by its definition:

C(θ̃)
2 (r)≡〈θ̃(x, t)θ̃(x′, t)〉

=

∫
ddy

∫
ddy′ Pl(x− y)Pl(x

′ − y′)〈θ(y, t)θ(y′, t)〉 (3.19)

=

∫
dds

∫
dds′ Pl(s)Pl(s

′)C(θ)
2 (|r + s+ s′|) .

Its exact value is reported in the appendix for d = 3 and a top-hat spherical
filter, Pl(s) = 3Θ(l − s)/4πl3 (from now on, unless explicitly stated, I will
confine myself to this situation). Here I only need to express its Taylor’s
expansion in the parameter l/r, with r lying in the convective range:

C(θ̃)
2 (r) = c− kr2−ξ

[

1 +
1

5
(2− ξ)(3− ξ)

(
l

r

)2

(3.20)

+
3

175
ξ(ξ − 1)(2− ξ)(3− ξ)

(
l

r

)4

+O

(
l

r

)6
]

.

Clearly, as the separation r increases and becomes much greater than the fil-
ter scale l, the unfiltered result is recovered. On the other side, a lower limit
for the physical consistence of the latter expansion can be intuitively identi-
fied in r ≥ 2l, because for smaller separations the two integration domains in
(3.19) would partially overlap. Expression (3.20) represents, therefore, the
best result that can be achieved by means of a closure.
For a 3-D Gaussian filter, Pl(s) = (2πl2)−3/2e−s2/2l2 , the coefficient of the
(l/r)2 term in (3.20) is (2 − ξ)(3 − ξ). For a 2-D top-hat filter, Pl(s) =
Θ(l − s)/πl2, it becomes (2− ξ)2/4.
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3.4.3 Properties of the filtered velocity and forcing

At this stage, it is also convenient to analyse the behaviour of the filtered
velocity and forcing. By definition, both ṽ and f̃ are Gaussian, white-in-
time and zero-mean random fields, statistically stationary, homogeneous and
isotropic. The large-scale character of the forcing reflects in the fact that
its two-point correlation 〈f̃(r, t)f̃(0, 0)〉 = δ(t)FL(r) keeps the same spatial
step-like form

FL(r) =

∫
dds

∫
dds′ Pl(s)Pl(s

′)FL(|r + s+ s′|) = FL(r) for r /∈ £ ,

where the interval £ ≡ [L− 2l, L+ 2l] becomes negligible for l ! L.
Second-order increments of the coarse-grained velocity,

〈[ṽµ(r, t)− ṽµ(0, 0)][ṽν(r, t)− ṽν(0, 0)]〉 = 2δ(t)d(ṽ)µν (r) ,

are given by

d(ṽ)µν (r)=

∫
dds

∫
dds′ Pl(s)Pl(s

′)
[
d(v)µν (r + s+ s′)− d(v)µν (s+ s′)

]
(3.21)

=A(r)δµν +B(r)
rµrν

r2
. (3.22)

The exact expressions of the coefficients A(r) and B(r) are quite cumbersome
(see appendix); a much more useful and meaningful quantity is provided by
the following power-series expansion in l/r:

d(ṽ)µν (r)=D1r
ξ

{[
(2 + ξ)δµν − ξ

rµrν

r2

]
−

2ξ48δµν

(4 + ξ)(6 + ξ)

(
l

r

)ξ

+O

(
l

r

)2
}

= d(v)µν (r)

[

1 + O

(
l

r

)2
]

−
2ξ48D1lξ

(4 + ξ)(6 + ξ)
δµν . (3.23)

The latter will be extensively used in the following.
Similar results also hold for both the 3-D Gaussian and the 2-D top-hat filter,
but with different numerical coefficients.

3.4.4 Analysis of the filtered equation

The first step, in order to find closed equations for the large scales, consists
in deriving the exact equations for the two-point correlation function of the
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filtered field. With the same procedure used when passing from (3.1) to
(3.16), starting from equation (3.5) one can write:

∂t〈θ̃(x, t)θ̃(x′, t)〉+ 2〈θ̃(x, t)(ṽ · ∂θ̃)(x′, t)〉 =
= 2κ0∂2〈θ̃(x, t)θ̃(x′, t)〉+ FL(|x− x′|)− 2〈θ̃(x, t)∂ · τ (θ)(x′, t)〉 .(3.24)

This is the starting point for my systematic procedure to construct closure
approximations. The second term on the left-hand side depends on ṽ and θ̃
only, but I cannot transform it (yet) into a contribution with the structure
of the first term on the right-hand side of (3.16) because, at this stage, I
am not able to apply FND’s rule on it, as I do not know the functional
derivative of θ̃ with respect to ṽ explicitly. The last term on the right-hand
side of (3.24), which is not expressed as a function of coarse-grained fields,
is the “disturbing” quantity: my purpose is therefore to find its perturbative
expansion in l/r.
It is not difficult (although quite lengthy) to prove that:

〈θ̃(x, t)∂ · τ (θ)(x′, t)〉 =
2ξ4(3− ξ)F0

(4 + ξ)(6 + ξ)

(
l

r

)ξ

−
ξ2F0

30

(
l

r

)2

+O

(
l

r

)2+ξ

.

(3.25)
More specifically, exploiting decomposition (3.7) and definitions (3.8), one
can show that (3.25) consists of:






〈L(x, t)θ̃(x′, t)〉 = O

(
l

r

)2+ξ

〈C(x, t)θ̃(x′, t)〉 = −
(3− ξ)(ξ2 + 10ξ + 24− 2ξ24)F0

3(4 + ξ)(6 + ξ)

(
l

r

)ξ

−
ξ2F0

30

(
l

r

)2

+O

(
l

r

)2+ξ

〈R(x, t)θ̃(x′, t)〉 =
(3− ξ)(ξ2 + 10ξ + 24− 2ξ12)F0

3(4 + ξ)(6 + ξ)

(
l

r

)ξ

+O

(
l

r

)2+ξ

.

(3.26)
The first line of (3.26) suggests that the Leonard-type term does not con-
tribute, at the lowest two orders, to the equation for the two-point correlation
of the coarse-grained scalar. Since my closures are derived from this equation
up to the second order, it follows that the Leonard-type term will not con-
tribute to small-scale parameterizations. This fact is not a consequence of the
Kraichnan advection model but rather seems to hold for general advection
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models. For standard closure models based on single-point quantities, the
contribution from the Leonard stress in the parameterizations is, generally
speaking, non-zero.
Moreover, it is easy to see that the sum of the last two equations in (3.26)
exactly coincides with (3.25), in spite of the further convolution required in
(3.7) on the cross and Reynolds-like terms. This is in accordance with the
following result, that can be obtained after simple algebra:

〈C(x, t)θ(x′, t)〉+O

(
l

r

)2+ξ

= 〈C(x, t)θ̃(x′, t)〉 = 〈C̃(x, t)θ̃(x′, t)〉+O

(
l

r

)2+ξ

.

The same result holds replacing C with R and has been obtained exploiting
a further identity, holding for any couple of fields f1 and f 2 in the presence
of statistical homogeneity: 〈f̃1(r, t)f 2(0, 0)〉 = 〈f 1(r, t)f̃ 2(0, 0)〉.
It is also interesting to study when the cross term and the Reynolds-like
one dominate over each other. At the lowest order, (l/r)ξ, one should thus
compare the absolute values of the two numerical coefficients (functions of
ξ) appearing on the second and on the last line of (3.26): the result is that
the former prevails for ξ > ξ0, with ξ0 2 0.92, and the latter is dominant
when ξ does not exceed this critical value ξ0. Furthermore, one can easily
prove that the two terms composing C (3.8) give the same contribution to
the parameterization at the lowest order, each being half of the numerical
coefficient appearing on the second line of (3.26).
Once again, expressions with the same structure of (3.25) and (3.26) also
hold for the 3-D Gaussian filter, with different numerical coefficients. On
the contrary, for the 2-D top-hat filter, it turns out that the second-order
coefficient in (3.25) vanishes.

3.5 Examples of analytical closures

3.5.1 Importance of small-scale contributions

I shall now focus on consequences of relation (3.25): it is immediate to realize
that neglecting small-scales effects completely, i.e. assuming ∂ · τ (θ) = 0,
makes equation (3.24) unbalanced at order (l/r)ξ. In other words, if one
assumes a closure of the kind

∂tθ̃ + ṽ · ∂θ̃ = κ0∂
2θ̃ + f̃ ,
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starting from it one would obtain a non-analytical expansion for the coarse-

grained scalar correlation, C(θ̃)
2 (r) = c−kr2−ξ[1+O(l/r)ξ], clearly in contrast

with the exact result (3.20).

3.5.2 Constant-eddy-diffusivity closure

The first issue thus consists in finding a way to take order (l/r)ξ into account
properly. For this purpose it is sufficient to notice that the diffusive contri-
bution in (3.24), or equivalently (at this order of approximation) in (3.16),
turns out to be proportional to r−ξ, precisely

κ0∂
2C(θ)

2 = −
(3− ξ)F0κ0

6D1rξ
. (3.27)

It is then clear that an effective-diffusivity term, like the one proposed in
(3.12), must be able to correctly reproduce the lowest-order contribution of
(3.25). More specifically, writing κeff = κ0 + κ1, the equation

∂tθ̃ + ṽ · ∂θ̃ = κeff∂
2θ̃ + f̃ (3.28)

is balanced at order (l/r)ξ if

κ1 =
2ξ24

(4 + ξ)(6 + ξ)
D1l

ξ (3.29)

(to prove this, it is sufficient to replace κ0 with κ1 in (3.27) and to compare the
result with (3.25)). It is worth noticing that expression (3.29) also follows
from the integral in (3.14), which substantially amounts to compute the
difference between total and large-scale kinetic energies in the presence of
δ-correlated flows. This is in accordance with equation (3.23), from which
one deduces

κ1δµν = lim
r→∞

d(v)µν (r)− d(ṽ)µν (r)

2
. (3.30)

Two more remarks about this kind of closure, which I will call “constant
eddy diffusivity” (CED), emerge from the consideration that the fraction
(function of ξ) in (3.29) always stands between 1 and 2. First, reminding
that from (2.2) one has κ0 = D1ηξ, a remarkable increase in the transport
coefficient is found (l % η ⇒ κeff 2 κ1 % κ0): this is a typical effect in
turbulence. Second, an effective dissipative scale comparable to the filtering
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length l arises for θ̃: the analogy is evident between the roles played by l for
θ̃ and by the molecular dissipative scale η for the original field θ.
The equation for the coarse-grained scalar correlation arising from (3.28) has
exactly the same structure of the fully-resolved corresponding (3.16):

∂tC
(θ̃)
2 = d(ṽ)µν ∂µ∂νC

(θ̃)
2 + 2κeff∂

2C(θ̃)
2 + FL . (3.31)

The stationary solution of (3.31) in the convective range is:

C(θ̃)
2 (r) = c− kr2−ξ

[

1 +
1

5
(2− ξ)(3 + ξ)

(
l

r

)2

+O

(
l

r

)4
]

. (3.32)

A comparison with the exact result (3.20) shows that the CED closure is able
to capture the correct order of the deviation from the fully-resolved scalar
correlation (3.17), i.e. (l/r)2, but with a wrong coefficient. It can be proved
that the maximum error takes place at ξ = 1.
From (3.31) one derives the following equation for the steady-state dissipa-
tion:

2κeff〈(∂θ̃)2〉 = F0 . (3.33)

Owing to the fact that κeff % κ0, the comparison of (3.18) with (3.33) proves
that the average of the square gradient of the scalar is much smaller for the
filtered field than for the original one, as one would intuitively expect.
For the 3-D Gaussian filter or the 2-D top-hat filter, expression (3.29) be-
comes

κ1 =
21+ξ

3
√
π
(3 + ξ)Γ

(
3 + ξ

2

)
D1l

ξ

or

κ1 =
2 + ξ

2

Γ(2 + ξ)

Γ(2 + ξ/2)Γ(3 + ξ/2)
D1l

ξ

respectively. Consequently, the ratio κ1/D1lξ stands between 1 and 10 in the
former case and between 1/2 and 1 in the latter. Plugging these values of
κ1 in equation (3.28) or (3.31) and computing the coarse-grained correlation,
for the 3-D Gaussian filter one obtains a result similar to (3.32), without
the 1/5 factor in the (l/r)2 term. However, for the 2-D top-hat filter, the
second-order coefficient is (2 − ξ)2/4 and exactly coincides with its “true”
value, i.e. one gets the remarkable result that the error in the approximation
is automatically pushed at higher orders.
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3.5.3 Improved closure

My aim is now to improve the constant-eddy-diffusivity closure, exact at or-
der (l/r)ξ, by introducing a new closure which is accurate up to order (l/r)2.
At this stage, one has no hint of how to implement this closure, differently
from what happens with the intuitive emergence of the eddy diffusivity; a
trivial Taylor expansion on the turbulent fields would actually prove wrong
[70, 71].
However, one knows that a term proportional to l2, in the equation for the
coarse-grained scalar correlation, has to be reproduced: it is then reasonable
to add, on the right-hand side of the equation for θ̃, a new contribution pro-
portional to some power of l. The minimal guess could be represented by the
addition of a term linear in l, which would be able to generate a quadratic
correction in the equation for the correlation when applying FND’s rule. This
guess is however ruled out by symmetry considerations, because one would
need to introduce some additional field (with the dimensions of the vorticity)
which cannot appear in the equation for θ̃ for parity conservation.
The next possibility is thus to add a term quadratic in l, in which the coarse-
grained fields must appear in the tensorial form ṽ∂θ̃. Dimensional consider-
ations then require the presence of a square length at denominator, but no
scales other than the filter width can appear, because I am dealing with a
single-point equation and neither L nor η are relevant. A second derivative
is thus required. If one completely neglects higher orders in l (it is important
to underline that this ansatz is not trivial at all, because they would give rise
to spurious contributions at lower orders), then the searched equation must
have the following form:

∂tθ̃+ ṽ ·∂θ̃ = κeff∂
2θ̃+ f̃+ l2

(
α∂2ṽ · ∂θ̃ + β∂ṽ : ∂∂θ̃ + γṽ · ∂∂2θ̃

)
. (3.34)

The coefficients α, β and γ can be uniquely found by imposing the correct
description of order (l/r)2 and, at the same time, the vanishing of any spu-
rious modification to order (l/r)ξ, which has already been captured by the
CED closure. In other words, one asks that the value of κeff previously found
remains unchanged in (3.34) (alternative conditions will be shown later in
this section). With these hypotheses, one has α = 0 and β = γ = −ξ/15, so
that (3.34) can be written as:

∂tθ̃ + ṽ · ∂θ̃ = κeff∂
2θ̃ + f̃ −

ξ

15
l2∂µ∂ν(ṽµ∂ν θ̃) (3.35)
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(for a comparison with the corresponding nonlinear closure in NS turbulence
see, e.g., [72, 73]).
It is worth noticing that this closure, which has been obtained through Eu-
lerian considerations, has no Lagrangian counterpart, differently from CED.
Indeed, an expansion in the spirit of Kramers–Moyal would yield a term with
the same structure of the one introduced on the right-hand side of (3.34),
but it turns out that my triplet of coefficients α, β, γ appearing in (3.35)
does not satisfy the constraints imposed by Pawula’s theorem [74, 75]. This
fact is also related to the breaking of Galilean invariance in (3.35), which has
been obtained in the frame of reference where the velocity is zero-mean and
is not exportable. Moreover, the universality of κeff is no more present in the
triplet, whose value has been determined exploiting the explicit solution for
C(θ)

2 .
The equation for the two-point equal-time correlation function arising from
(3.35) has now a different structure:

∂tC
(θ̃)
2 = d(ṽ)µν ∂µ∂νC

(θ̃)
2 + 2κeff∂

2C(θ̃)
2 + FL +

2ξ

15
l2∂λ

[
d(ṽ)µν ∂λ∂µ∂νC

(θ̃)
2

]
+

+
ξ

225
l4
{
∂κ∂λ

[
d(ṽ)µν ∂κ∂λ∂µ∂νC

(θ̃)
2

]
+ Vκλµν∂κ∂λ∂µ∂νC

(θ̃)
2

}
, (3.36)

where Vκλµν satisfies 〈ṽµ(0, t)∂κ∂λṽν(0, 0)〉 = δ(t)Vκλµν .
The stationary solution of (3.36) in the convective range is:

C(θ̃)
2 (r) = c− kr2−ξ

[

1 +
1

5
(2− ξ)(3− ξ)

(
l

r

)2

+O

(
l

r

)2+ξ
]

. (3.37)

Comparing (3.37) with (3.20), one concludes that this new kind of closure is
able to reproduce the exact structure of the coarse-grained scalar correlation
up to the second order with the correct value of the coefficient, differently
from what happens in (3.32). One also notices that the error is now O(l/r)2+ξ

instead of O(l/r)4: in order to balance also this contribution in the proper
way, one would have to add other terms on the right-hand side of (3.35), pay-
ing attention to take unmodified the lower orders which have already been
captured.
A last comment on (3.35) is worthwhile. It turns out that the same dissipa-
tion equation (3.33) generated from CED still holds. This is in accordance
with the flux-like structure of the last term on the right-hand side of (3.35),
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which gives no contribution to the equation for the dissipation. Exploiting
homogeneity (H) and incompressibility (I), one has indeed:

〈θ̃∂µ∂ν(ṽµ∂ν θ̃)〉
I
= 〈θ̃∂ν(ṽµ∂µ∂ν θ̃)〉

H
= −〈(∂ν θ̃)ṽµ∂µ∂ν θ̃〉

I
= −〈(∂ν θ̃)∂µ(ṽµ∂ν θ̃)〉

H
= 〈(∂µ∂ν θ̃)ṽµ∂ν θ̃〉 .

Comparing the third and the last member of this chain of equalities, I deduce
that all terms must vanish; in particular, also the first one is thus zero, which
proves my assertion.
For the 3-D Gaussian filter, the correct values of the triplet are α = 0 and
β = γ = −ξ/3. The closed equation for θ̃ has thus the same structure
of (3.35) and leads to a coarse-grained correlation expressed by (3.37) but
without the 1/5 factor near (l/r)2, which is exact up to the second-order. The
same accuracy is obtained for the 2-D top-hat filter with α = β = γ = 0,
coherently with what stated at the end of subsections § 3.4.4 and § 3.5.2.
Before proceeding, I would like to stress the conditions I specified when
(uniquely) fixing the values of α, β and γ in equation (3.34) in order to
obtain (3.35): 1) correct description of O(l/r)2, 2) complete neglection of
terms containing powers of l higher than 2, and 3) absence of any modification
of O(l/r)ξ i.e. of κeff .

3.5.4 An alternative closure

I am now going to show an example of what happens if the possibility of tak-
ing filters of (slightly) different length between scalar and velocity is allowed.
In particular, if one defines a new coarse-grained velocity as v̄ ≡ Pal ∗ v
(with a =

√
(3− ξ)/(3 + ξ), i.e. slightly less than unity), then I assert that

an equation with the same structure as in (3.28),

∂tθ̃ + v̄ · ∂θ̃ = κeff∂
2θ̃ + f̃ ,

is able to reproduce for the correlation the same degree of approximation
of (3.37), with an error pushed again at O(l/r)4 and without any need of
introducing additive terms like on the right-hand side of (3.34). The same
expression (3.14) for the eddy diffusivity still holds, with ṽ replaced by v̄; this
amounts to perform the same replacing in expression (3.30) for κ1 = κeff−κ0,
whose numerical value is now aξ times the value given by (3.29), in accordance
with the substitution l 7→ al.
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3.5.5 Absence of eddy diffusivity

I now present some other possible closures, which emerge if one pursues aims
different from those specified previously.
From another point of view, the condition 3) fixed at the end of section
§ 3.5.3 could be modified into: 3bis) modification of O(l/r)ξ such that κeff is
restored to its original value κ0. In other words, one would now like to pass
from equation (3.5) directly to

∂tθ̃+ṽ ·∂θ̃ = κ0∂
2θ̃+f̃+l2

(
α′∂2ṽ · ∂θ̃ + β ′∂ṽ : ∂∂θ̃ + γ′ṽ · ∂∂2θ̃

)
, (3.38)

imposing that the contribution in parentheses on the right-hand side of (3.38)
is able to correctly balance both O(l/r)ξ and O(l/r)2. This goal can be
accomplished for

α′ =
ξ + 2

ξ(3 + ξ)(6 + ξ)
, β ′ =

−ξ4 − 9ξ3 − 18ξ2 + 120ξ + 240

15ξ(3 + ξ)(6 + ξ)
,

γ′ =
−ξ4 − 9ξ3 − 18ξ2 + 60ξ + 120

15ξ(3 + ξ)(6 + ξ)
.

It is worth noticing that, in this way, the term proportional to l2 in (3.38)
has no more an overall flux-like structure, differently from what happened in
(3.35). Consequently, it gives rise to a non-zero contribution in the equation
for the dissipation.
Conditions 3) and 3bis) represent two completely different points of view: in
the first one the diffusive term captures O(l/r)ξ completely, in the second
one it gives no contribution. Of course, there exists an infinite range of
intermediate possibilities if one considers both the renormalized diffusivity
and the triplet as unknowns.

3.5.6 Absence of second-order correction

Suppose now to be interested to measure “pure” convective-range scaling
behaviour by means of a LES strategy. More specifically, referring to (3.17),

my aim here is to reproduce the asymptotic behaviour C(θ)
2 (r) ∼ r2−ξ even

in the presence of finite-size effects, i.e. induced by the filter cut-off l, which
would imply the additive corrections in powers of l/r shown in (3.20). In
plain words, one renounces to describe the actual coarse-grained correlation
function (3.20), with the aim of isolating the scaling behaviour which would
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be observed at higher-Reynolds-number (and thus higher-resolution) numer-
ical simulations.
Assuming the conditions 2) and 3) mentioned at the end of section § 3.5.3,
this amounts to modify condition 1) into: 1bis) absence of second-order cor-
rection in the coarse-grained correlation. This aim is accomplished simply
assuming α = 0 and β = γ = −(3 + ξ)/30.
It can be shown indeed that, starting from the equation

∂tθ̃ + ṽ · ∂θ̃ = κeff∂
2θ̃ + f̃ −

3 + ξ

30
l2∂µ∂ν(ṽµ∂ν θ̃) ,

the coarse-grained correlation turns out to be:

C(θ̃)
2 (r) = c− kr2−ξ

[

1 + O

(
l

r

)2+ξ
]

.

The deviation from the fully-resolved correlation is pushed at a higher order:
I have thus obtained a better recovery of the original field in its two-point
correlation function.

3.6 Conclusions

Summarizing, a systematic procedure to derive closed dynamical equations
for a coarse-grained passive scalar field in the statistical steady-state has been
obtained in the framework of the Kraichnan advection model.

The question that naturally arises, is whether those results are relevant
to realistic advection models. The answer is given by the outcome of the
procedure itself. Two well-known closures that are commonly used in ap-
plications are recovered from first principles: the constant eddy-diffusivity
parameterization of small-scales, and the passive scalar version of the non-
linear eddy-viscosity closure used in hydrodynamic turbulence. Of course,
the values of the effective diffusivity and of the triplet of coefficients that
appear in these closures can be analytically computed only in the Kraich-
nan model. However, it is believed that the form of the parameterization
can be exported without modifications to real situations as well. Clearly, in
this case the free parameters have to be determined a posteriori by some
empirical procedure.

The validity of this approach has been checked by direct numerical simu-
lations (DNS). In order to test my LES closures I focused on two dimensions
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S 2(r
) Eq. (3.1)
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Eq. (3.28)

Figure 3.1: DNS vs LES for S2(r). Notice how accurately the improved clo-
sure (3.35) reproduces the DNS prediction (dashed curve) from (3.1). Constant-
eddy-diffusivity closure given by (3.28) is clearly insufficient to capture the correct
convective-range scaling.

and I simultaneously integrated (on a biperiodic lattice) the NS equation
together with (3.1) for the “true” field θ, and both (3.28) and (3.35) for the
coarse-grained field θ̃. The lattice for the equation for v and θ is formed by
1024 × 1024 grid points, while θ̃ is solved with solely 64 × 64 grid points.
The field ṽ appearing in the LES equation has been obtained by filtering the
actual DNS field v with a Gaussian filter. In figure 3.1, the actual second-
order structure function (dashed line) S2(r) = 〈[θ(r)− θ(0)]2〉 and the LES
counterparts 〈[θ̃(r) − θ̃(0)]2〉 (full lines) are shown for both the improved
and the standard eddy-diffusivity closure. DNS simulation accurately repro-
duces the expected KOC scaling r2/3. It is quite impressive as, despite the
small resolution, the improved closure is able to accurately reproduce both
the actual 2/3 exponent and the relative prefactor. On the contrary, there
is no signature of convective range for the constant-eddy-diffusivity closure.
Details on the method to numerically integrate the system can be found, e.g.,
in [76].

I conclude by mentioning a possible generalization of this work. My
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analysis has been carried for the second-order correlation function of the
scalar field. There are two reasons for this choice. First, the second-order
correlation function is the Fourier transform of the spectrum of scalar vari-
ance, a statistical indicator widely used to characterize most of the statistical
properties of scalar turbulence. Second, for the Kraichnan model only the
second-order correlation function has a simple, closed analytical expression.
For higher-order correlation functions only perturbative expressions (for ex-
ample in the limit of small ξ) are available [46]. However, should one focus
on a higher-order correlation function, how would these results change? Al-
though the analysis appears much more cumbersome than the one presented
here, the procedure described in § 3.5 can be completed as well: it is still
possible to obtain a closed equation for the coarse-grained correlation func-
tion at any order in l/r, from which one can identify the corresponding
dynamical equations for the large-scale scalar field. The question is: will
the latter dynamical equation have the same structure of the coarse-grained
scalar equation derived from the second-order correlation? And if this is the
case, will the coefficients be the same? Even if the functional form of the
closure is preserved, a modification of the effective coefficients would mean
that strong small-scale fluctuations — associated to higher-order correlation
functions — must be described by parameters different from the ones used
for less intense fluctuations. That would question the applicability of closure
models to the description of the statistics of turbulent fields as tempera-
ture or concentration, which are characterized by a wide range of fluctuation
intensities. This challenging issue is left for future research.

3.7 Appendix on exact analytical expressions

In this section I show the exact analytical expressions of some quantities, of
which I have only reported perturbative expressions throughout the chapter.

3.7.1 Coarse-grained passive scalar

The correlation of the coarse-grained passive scalar mentioned in (3.20) is:
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C(θ̃)
2 (r)= c−

3F0

8(2− ξ)(4− ξ)(5− ξ)(6− ξ)D1l6

{
−

l

7− ξ

[
R7−ξ

+ − R|R−|7−ξ
]

−
l2

(7 − ξ)r

[
R7−ξ

+ +R|R−|7−ξ − 2r7−ξ
]
+

l

(8− ξ)r

[
R8−ξ

+ − |R−|8−ξ
]

+
1

(7− ξ)(8− ξ)

[
R8−ξ

+ + |R−|8−ξ − 2r8−ξ
]
+

l

(7− ξ)(8− ξ)r

[
R8−ξ

+

−|R−|8−ξ
]
−

1

(7− ξ)(9− ξ)r

[
R9−ξ

+ +R|R−|9−ξ − 2r9−ξ
]}

,

where R± = r ± 2l and R = sgn(R−). The fuse-point value is given by

〈θ̃2〉 = c−
48F0l2−ξ

2ξ(2− ξ)(4− ξ)(5− ξ)(6− ξ)D1
,

i.e. 〈θ̃2〉 < 〈θ2〉 = c.
Keeping (2.6) and (3.20) into account, this leads to the following expression
for the two-point coarse-grained scalar structure function in the convective
range:

S(θ̃)
2 (r) ≡ 〈[θ̃(r, t)− θ̃(0, t)]2〉 = 2〈θ̃2〉 − 2C(θ̃)

2 (r) =

= 2

[
c−

48F0l2−ξ

2ξ(2− ξ)(4− ξ)(5− ξ)(6− ξ)D1

]

−2

{

c− kr2−ξ

[

1 + O

(
l

r

)2
]}

= S(θ)
2 (r)

[

1 + O

(
l

r

)2−ξ
]

. (3.39)

Expression (3.39) shows that spurious corrections O(l/r)2−ξ, which are absent
in the correlation, appear in the structure function when filtering. In other
words, it is not true that the coarse-grained structure function is obtained by
performing a double convolution on the fully-resolved corresponding quantity
(this result is in accordance with the integral expression of the coarse-grained
velocity structure function in (3.21)). Of course, this fact does not spoil my
closures at all, but it makes it easier to deal with correlation functions.
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3.7.2 Coarse-grained velocity

The coefficients A(r) and B(r) appearing in (3.22) are uniquely determined
by the system {

2rB′(r)− 6B(r) = −rG(r)
3A(r) + B(r) = G(r) ,

with B(0) = 0 and

G(r)=−
2ξ144D1lξ

(4 + ξ)(6 + ξ)
+

9D1

2(2 + ξ)(4 + ξ)l6

{
−

l

5 + ξ

[
R5+ξ

+ − R|R−|4+ξ
]

−
l2

(5 + ξ)r

[
R5+ξ

+ +R|R−|5+ξ − 2r5+ξ
]
+

l

(6 + ξ)r

[
R6+ξ

+ − |R−|6+ξ
]

+
1

(5 + ξ)(6 + ξ)

[
R6+ξ

+ + |R−|6+ξ − 2r6+ξ
]
+

l

(5 + ξ)(6 + ξ)r
×

×
[
R6+ξ

+ − |R−|6+ξ
]
−

1

(5 + ξ)(7 + ξ)r

[
R7+ξ

+ +R|R−|7+ξ − 2r7+ξ
]}

.

A series expansion in l/r gives

A(r) = D1r
ξ

[

(2 + ξ)−
2ξ48

(4 + ξ)(6 + ξ)

(
l

r

)ξ

+
1

5
ξ2(3 + ξ)

(
l

r

)2

+O

(
l

r

)4
]

and

B(r) = D1r
ξ

[

−ξ +
1

5
ξ(3 + ξ)(2− ξ)

(
l

r

)2

+O

(
l

r

)4
]

.

3.8 Appendix on limit cases

The values ξ = 0 and ξ = 2 have been excluded from my analysis up to now,
because they represent two limit cases: a purely diffusive flow and a smooth
flow, respectively. It is however interesting to analyse them, as in the former
case an exact closure can be found, and in the latter a logarithmic law arises.

3.8.1 Purely diffusive flow

In the case ξ = 0 the definition of η (2.2) is meaningless, but physically it
corresponds to a diffusive range extending to infinity. This can be understood
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very simply noticing that the velocity field reduces to a white noise, as its
second-order moment (3.15) takes a diagonal form completely independent

from the separation: d(v)µν (r) = (d− 1)D1δµν .
Consequently, the overall effect of the advective term is barely of diffusive
type and consists in an addition of the quantity (d − 1)D1 to the original
contribution 2κ0 in (3.16). As there is no more need to split the integration
interval in (3.17), the correlation is exactly expressed by

C(θ)
2 (r) = c− kr2 for r < L ,

with

c =
F0L2

2(d− 2)[2κ0 + (d− 1)D1]
= 〈θ2〉 for d .= 2

and

k =
F0

2d[2κ0 + (d− 1)D1]
.

By definition, an exact calculation in 3-D yields:

C(θ̃)
2 (r) = c− kr2

[

1 +
6

5

(
l

r

)2
]

= c′ − kr2 ,

with

c′ = c−
F0l2

10(κ0 +D1)
= 〈θ̃2〉 .

In this case, the structure functions of the coarse-grained field and of the

original one turn out to be identical: S(θ̃)
2 (r) = 2kr2 = S(θ)

2 (r).
The interesting point is that CED closure (3.28) is now exact also for the
correlation function, as it happened in (3.12) only for the mean value. This
is in accordance with the vanishing of the last term on the right-hand side of
(3.35). From the analytical point of view, the exactness of the eddy-diffusivity
closure is due to the vanishing of the second-order structure function of the
coarse-grained velocity, d(ṽ)µν (r) = 0, which imposes an exact balancing be-
tween the forcing and the diffusive terms in (3.31).

3.8.2 Smooth flow

If ξ = 2, the second-order spatial increments of the velocity (3.15) scale with
r2, so v is a differentiable field. The passive-scalar correlation is exactly given
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by

C(θ)
2 (r) = c− k ln

r2 + η2

L2 + η2
for r < L , (3.40)

where

k =
F0

6(d− 1)D1

and

c = −
F0

d2(d− 1)D1
2F1

(
1,

d

2
; 1 +

d

2
;

2κ0

(d− 1)D1L2

)
.

Exploiting its definition, for d = 3, the coarse-grained scalar correlation
shows a second-order correction in l/r with respect to its fully-resolved cor-
responding value (3.40),

C(θ̃)
2 (r) = C(θ)

2 −
F0

30D1

(
l

r

)2

+O

(
l

r

)4

, (3.41)

while no difference exists for the velocity structure function: d(v)µν = d(ṽ)µν .
The key point is that O(l/r)ξ and O(l/r)2 obviously coincide, so CED closure
cannot be introduced by itself because it is intimately entangled with the
improved closure (3.35). The latter captures the second-order correction in
(3.41) correctly.

3.9 Appendix on small-scale correlations

The equation for the subgrid field θ∗ is easily obtained by subtracting (3.4)
from (3.1):

∂tθ
∗ +

(
v · ∂θ − ṽ · ∂θ

)
= κ0∂

2θ∗ + f ∗ ,

If one rewrites equation (3.24) in the form

∂t〈θ̃(x, t)θ̃(x′, t)〉 = 2κ0∂2〈θ̃(x, t)θ̃(x′, t)〉+ FL(|x− x′|)

+

∫
ddy

∫
ddy′ Pl(x− y)Pl(y − y′)d(v)µν (y − y′)∂µ∂ν〈θ(y, t)θ(y′, t)〉 ,

it can be shown that the two-point equal-time correlation of the subgrid field,
C(θ∗)

2 ≡ 〈θ∗(x, t)θ∗(x′, t)〉, satisfies

∂t〈θ∗(x, t)θ∗(x′, t)〉 = 2κ0∂2〈θ∗(x, t)θ∗(x′, t)〉 (3.42)

+

∫
ddy

∫
ddy′Ql(x− y)Ql(x

′ − y′)d(v)µν (y − y′)∂µ∂ν〈θ(y, t)θ(y′, t)〉 ,



3.9 Appendix on small-scale correlations 77

and that the cross-correlation between the coarse-grained and the subgrid

scalar, C(θ̃,θ∗)
2 ≡ 〈θ̃(x, t)θ∗(x′, t)〉, obeys to

∂t〈θ̃(x, t)θ∗(x′, t)〉 = 2κ0∂2〈θ̃(x, t)θ∗(x′, t)〉 (3.43)

+

∫
ddy

∫
ddy′ Pl(x− y)Ql(x

′ − y′)d(v)µν (y − y′)∂µ∂ν〈θ(y, t)θ(y′, t)〉 .

Unfortunately, neither (3.42) nor (3.43) represents an equation closed in its
unknown, because both involve the fully-resolved correlation (it is also worth
noticing that the forcing term completely disappears in both of them). How-
ever, exploiting expressions (3.17) and (3.20), in the stationary state and for
convective-range separations it can easily be proved that:

C(θ̃,θ∗)
2 (r)= kr2−ξ

[
1

10
(2− ξ)(3− ξ)

(
l

r

)2

+
19

1400
ξ(ξ − 1)(2− ξ)(3− ξ)

(
l

r

)4

+O

(
l

r

)6
]

,

C(θ∗)
2 (r)=−kr2−ξ

[
1

100
ξ(ξ − 1)(2− ξ)(3− ξ)

(
l

r

)4

+O

(
l

r

)6
]

.





Chapter 4

Numerical results for the

statistics of large excursions

The large-eddy simulation technique is exploited to investigate statistics
of temperature fluctuations, ∆rθ, in atmospheric boundary layers (ABL)
with different degrees of convection. Statistical characterizations were found
for both strong and weak fluctuations. In terms of PDF’s of ∆rθ, weak
and strong fluctuations reflect themselves in different rescaling properties
of PDF cores and tails, respectively. For the cores, the observed rescal-
ing is P (∆rθ) = r−αP(∆rθ/rα), while for the tails the data are compatible
with P (∆rθ) ∝ rζ∞. Such two rescaling properties are equivalent to saying
〈|∆rθ|n〉 ∼ rζn , with ζn = αn for small n’s and ζn = ζ∞ = const. for large n’s.
Both α and ζ∞ turn out to be z-independent within the mixed layer and,
more importantly, they do not vary appreciably by changing the degree of
convection in the ABL. Also addressed is the question related to the geomet-
rical structure of temperature jumps contributing to large |∆rθ|. Finally, the
possible relevance of these results to the long-standing problem of subgrid
scale parameterizations is discussed.

The chapter is organized as follows: introductory section § 4.1 recalls the
question about scale invariance in temperature fluctuations. In section § 4.2
I present the basic statistical tools I shall exploit in the present work to char-
acterize, from a statistical point of view, both weak and strong temperature
fluctuations. In sections § 4.3 and § 4.4, I introduce two statistical indicators
through which information on the geometrical structure of both weak and
strong temperature fluctuations can be easily extracted. In section § 4.5 I
give a short presentation of the LES model used in the present study. The
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three case studies here simulated are described in section § 4.6. Results and
discussion are reported in section § 4.7. The results of two sensitivity tests
at higher resolution are reported in section § 4.8. Finally, discussions and
perspectives are reserved to the concluding section § 4.9.
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4.1 Introduction

One of the key challenges in turbulence research is to find statistical features
of turbulent systems that remain unchanged at different scales. This is also
one of the main aim of the present chapter. The aforementioned property is
known as scale invariance and attracts a great deal of attention both from
theoretical points of view (see, e.g., [65]) and for applicative purposes re-
lated, e.g., to the well-known problem of parameterizing small-scale motion
in large-eddy simulation models of turbulence (see, e.g., [63]). Indeed, the
key point of the LES strategy is that turbulence fields at scales larger than
the spatial resolution of the model, say l, are dynamically described during
the simulation while smaller scales (subgrid scales, SGS) are filtered out and
need to be parameterized in terms of large scales. It is now clear that the
exploitation of scale invariance permits to “replicate” statistical properties
of large (resolved) scales to the smallest (unresolved) scales, thus becoming
an important tool for the problem of SGS parameterizations [63].
When following such an approach for SGS modelling, the accurate knowl-
edge of the possible presence of scale-invariance in the system and, if any,
the precise form through which it is manifest become crucial. To be more
specific, classical theories of turbulence à la Kolmogorov (see [1] for a modern
presentation) use (global) scale-invariance in the so-called inertial range of
scales (i.e., scales of motion far from both the region where energy is injected
into the system and the region where it is dissipated) as a central assump-
tion. Focusing, from now on, on passive scalar turbulence, the result is that
the scalar field, say the (virtual potential) temperature θ, is scale-invariant
of exponent 1/3. Namely,

∆rθ ∼ χ1/2ε−1/6r1/3 , (4.1)

ε and χ being the energy flux and the dissipation rate of temperature vari-
ance, respectively.
In terms of PDF of temperature differences, relation (4.1) means the simple
rescaling

P (∆rθ) = r−1/3P(∆rθ/r
1/3) .

Following such a theory, the sole exponent 1/3 is thus sufficient to collapse
all PDF’s for different separations r. Note that the rescaling property (4.1)
is equivalent to saying that all moments 〈|∆rθ|n〉 behave as a power law rζn

with ζn = n/3, a linear function of the order n.
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Exploiting now scale-invariance as a tool for SGS parameterizations, features
of the field θ at large scales, r, can be interpolated at the small unresolved
scales following fractal interpolation techniques similar to that implemented
by Scotti and Meneveau [77].

The open question here is related to the estimation of the possible de-
parture from the scaling (4.1) for the temperature field in convective at-
mospheric boundary layers. There, the issue of SGS parameterizations is a
central problem as far as either LES or ensemble-averaged models of turbu-
lence are concerned. To be more specific, a very weak departure from (4.1)
would suggest the success of fractal interpolation techniques (see again [77])
for SGS parameterizations of temperature fields. On the contrary, a strong
departure from (4.1) would strongly motivate to adopt the recently proposed
multifractal interpolation scheme [78], where the entire set of scaling expo-
nents ζn, a nonlinear function of n, must be known to implement the SGS
parameterization strategy. Answering the above question is one of the main
goals of the present chapter.
Before proceeding along this line, I recall some recent results related to the
issue of scale-invariance and its possible violation in scalar turbulence. If,
on the one hand, results supporting the breakdown of the concept of global
scale-invariance have been known for a long time (see e.g. [65] and references
therein), on the other hand a precise characterization of its violation has
been provided, at least in idealized models of scalar turbulence, just very re-
cently. The key result is related to the evidence of the so-called intermittency
saturation, that amounts to saying the saturation to a constant value, ζ∞,
of the high-order moments of temperature differences: 〈|∆rθ|n〉 ∼ rζ∞ for n
large enough. Large moments n being involved in such a behaviour, intermit-
tency saturation represents the statistical characterization of strong events,
i.e. large jumps |∆rθ|, with respect, e.g., to the root mean square (RMS), σ,
of the temperature field, a typical fluctuation of the system. I shall denote
such events as “fronts” (see section § 4.3 for a precise definition).
Intermittency saturation in passive scalar turbulence has been proved ex-
ploiting field theory methods (see [79]) by Balkovsky and Lebedev [80] for
the problem of scalar advection by Gaussian, short-correlated-in-time veloc-
ity in the limit of high dimensions of the physical space. For this model,
exploiting the Lagrangian method described in [49], strong evidences of in-
termittency saturation have been provided [50, 51, 76]. Numerical evidences
in scalar turbulence in less idealized contexts (but still very far from reality)
have been provided for the passive case [81] and for an active scalar model
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mimicking convection [82]. There, the numerical results have been obtained
exploiting DNS in two dimensions. The first, preliminary, numerical evidence
of intermittency saturation in “realistic” situations has been given in [83] in
a convective boundary layer simulated by a LES model. In such preliminary
investigation, the authors reported results relative to the sole simulation B
by Moeng and Sullivan [84] without addressing, e.g., the question on whether
their conclusions change by varying the characteristics of the ABL.
Answering this question is important from both theoretical and practical
viewpoints. On the theoretical side, it would permit both to assess the ro-
bustness of the new found statistical characterization and also to shed some
light on the possible existence of ubiquitous properties shared by different
types of ABL. This point is related to the long-standing problem of identi-
fying “universal” properties of complex systems, an aim shared with many
other research fields including, e.g., statistical mechanics and field theories.
As far as applicative issues are concerned, the knowledge of the dependence
of scaling exponents (and in particular of the saturation exponent ζ∞) on the
degree of convection is essential information that must be available to apply
multifractal interpolation schemes (which use scaling exponents) in a LES.
Such essential information was not available in [83].
Another important point left open in [83] is related to the geometrical char-
acterization of the intense jumps which lead to the observed intermittency
saturation. In particular on whether the leading contribution to saturation is
given by jumps concentrated on the smallest resolved length scales or, on the
contrary, by “large-scale” objects. Apart the per se interest, answering this
question is important because it provides a quantitative justification for the
use of LES strategies to investigate large fluctuations of temperature fields.
The above issues, together with many other aspects left open in [83], will be
addressed in the present chapter, which substantially represents an applica-
tion of the technique analysed in chapter 3 (closures are assumed as already
given, here) to practical situations, in order to answer — from the numeri-
cal point of view — to some of the questions issued in the first part of the
manuscript.

4.2 Global scale invariance and its violation

In this section I define the concept of scale invariance and I also give the
statistical characterization of its violation in scalar turbulence. The concept
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of intermittency saturation will also be introduced both from the point of
view of rescaling properties of the PDF of temperature differences and in
terms of behaviour of the exponents of high-order moments.

By definition, scale invariance means reproducing itself on different time
or space scales. More quantitatively, focusing on space scales, a statistical
observable Sn(r) (e.g., a moment of the temperature difference, ∆rθ, at the
scale r: Sn(r) = 〈(∆rθ)n〉 where ∆rθ ≡ θ(r, t) − θ(0, t)) is scale invariant
under the transformation r 7→ λr if there exists a number µ(λ, n) such that
Sn(λr)/Sn(r) = µ(λ, n), i.e. such ratio does not depend on the scale r.
It is immediate to check that the class of functions satisfying such relation
are the power laws:

Sn(r) = Anr
ζn ,

where An is some prefactor and µ = λζn (or, equivalently, ζn = log µ/ logλ).
If ζn is a linear function of the order n (e.g., ζn = αn), one speaks of
global scale invariance. Physically speaking, the latter property means that
scale invariance holds for each type of fluctuation, from the smallest to the
largest ones. Indeed, defining the typical fluctuation as [Sn(r)]1/n, the ratio
[Sn(λr)]1/n/[Sn(r)]1/n does not depend either on the scale r or on the order
n.
When ζn is a nonlinear function of n, a situation named local scale invari-
ance (also known as intermittency or anomalous scaling) arises. One has
[Sn(λr)]1/n/[Sn(r)]1/n = λζn/n, i.e. the ratio does not depend on the scale r
but it does depend on the order n. Fluctuations having the same strength
(i.e., captured by the same exponent n) thus reproduce themselves at smaller
scales in a self-similar fashion, but this is not for fluctuations with different
intensity.
From general inequalities in probability theory (known as Hölder inequalities
[1] the function ζn must be a convex function of the order n. This means
that, focusing on even orders (odd orders could vanish due to symmetries of
the system), the ζn curve for n > n0 must lie below the straight line joining
ζn0−2 and ζn0

. A generalization of the argument presented in [1] indicates
that a decreasing ζn would entail arbitrarily large temperature differences at
very small scales, sometimes unlikely, given the maximum principle for the
advection-diffusion equation. The curve ζn thus lies in between the linear
behaviour and the constant, i.e. ζn = ζ∞ for n large enough. The latter
possibility is known as intermittency saturation.

The concept of scale invariance and its violation can be easily character-
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ized also in terms of PDF. Focusing on the global scale invariance, one can
consider again ∆rθ and its PDF P (∆rθ). It is immediate to verify that global
scale invariance (a linear behaviour vs n for the exponent ζn) is equivalent
to the following rescaling property of the PDF:

P (∆rθ) = r−αP(∆rθ/r
α) . (4.2)

This means that, for each scale r, all fluctuations ∆rθ are controlled by the
same function P(∆rθ/rα). Scale information is factorized out in the power
law with exponent α.
For the case of local scale invariance, the rescaling (4.2) does not hold and,
more generally, it is impossible to find a global (i.e. valid for the whole PDF)
rescaling.
In the presence of intermittency saturation, the PDF again admits a sim-
ple rescaling, which is however restricted on the tails. To be more specific,
intermittency saturation is equivalent to the PDF taking the following form:

P (∆rθ) =
rζ∞

σ
Q

(
∆rθ

σ

)
for |∆rθ| > λσ (λ > 1) , (4.3)

where Q is some function which does not depend on the separation r and σ
is the RMS of the temperature field.
The factorization in (4.3) has a simple physical interpretation in the convec-
tive boundary layer (CBL). It states that the probability of having a large
temperature fluctuation can be thought of as due to the following two events:
1) the separation r must cross the plume interface; 2) the temperature jump
across the plume interface must be larger than the typical fluctuation σ. The
first event occurs with probability ∝ rζ∞ , while the second with probability
∝ Q.

In terms of cumulative probabilities, i.e. the sum (integral) of the PDF
over the large temperature excursions (i.e. for |∆rθ| > λσ, with λ > 1),
defined as:

Prob[|∆rθ| > λσ] ≡
∫ −λσ

−∞

d(∆rθ)P (∆rθ) +

∫ +∞

λσ

d(∆rθ)P (∆rθ) ,

it is immediately checked from (4.3) that saturation is equivalent to the
following power-law behaviour, holding for different values of λ > 1:

Prob[|∆rθ| > λσ] ∼ rζ∞ . (4.4)

The scaling exponents, ζ∞, can be thus easily extracted by measuring the
slope of log {Prob[|∆rθ| > λσ]} vs log r.
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4.3 Fronts: mature vs nonmature objects

As shown in the preceding section, the concept of intermittency saturation
involves large temperature fluctuations. Indeed, the condition |∆rθ| > λσ
selects the sole fluctuations belonging to the tails of the PDF of temperature
differences. The problem is now to understand the geometrical structure
of such strong events, in particular focusing on the size on which they are
concentrated. I shall start from a simple nontrivial example which provides
a first clue that strong temperature jumps might be “large-scale” objects.
Such first conclusion (that I shall corroborate in the following sections by
several numerical evidences) suggests that large fluctuations of temperature
can be properly described by coarse-grained models of turbulence, as is the
LES strategy.

4.3.1 An example from passive scalar advection

The example I report here is relative to the passive transport of temperature
field in the Kraichnan advection model [36, 37], which has already been
introduced in the previous chapters. In such an idealized model of scalar
transport, the phenomenon of intermittency saturation has been proved both
analytically and by means of direct numerical simulations and Lagrangian
methods [46]. The latter strategy also permitted to highlight the role of
fronts in the observed intermittency saturation.
Simple physical considerations suggest that strong temperature gradients
would occur along the direction of compression, while weak temperature
gradients should preferentially occur along the stretching directions. More
quantitatively, one should expect (averages are with respect to the velocity
statistical ensemble)

〈e(v)µν ∂µθ∂νθ〉 < 0 . (4.5)

By virtue of the above considerations, the negative sign is apparent by trans-
forming (4.5) to the principal coordinates which diagonalize the strain-rate

tensor e(v)µν ≡ (∂µvν + ∂νvµ)/2.
The above heuristic arguments become rigorous within the Kraichnan model,
where (4.5) can be analytically proved.

I shall now pass to the crucial point which is of interest here. If strong
temperature gradients arose from temperature jumps concentrated on the
dissipative lengthscale, the negative sign in (4.5) would disappear when the
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coarse-grained fields (i.e. the LES fields) θ̃ and ṽ replace the fully-resolved
fields θ and v, because of the smoothing produced by the filtering operation
defining the coarse-grained fields. On the contrary, if strong temperature
gradients are large-scale objects, then one should have:

〈e(ṽ)µν ∂µθ̃∂ν θ̃〉 < 0 ,

where e(ṽ)µν ≡ (∂µṽν + ∂ν ṽµ)/2. Such inequality has been proved within the
Kraichnan model, thus providing a first quantitative motivation to use LES to
investigate large fluctuations of temperature fields. Also such a preliminary
conclusion will be confirmed a posteriori from my data analysis of realistic
ABL’s.

4.3.2 A quantitative definition of mature and nonma-

ture fronts

In figure 4.1 I sketched two possible situations, both of them leading, in
principle, to intermittency saturation. The first option (figure 4.1 (a)) is
that strong jumps are preferentially concentrated on the smallest scales. If
one describes the full range of scales (e.g. exploiting a DNS), this amounts
to stating the existence of large fluctuations concentrated on the dissipative
length scale, η, of the system. Below η the dynamics is intimately diffusive
and disturbances necessarily disappear. Within a LES scheme the smallest
scale is larger than η, and the latter is thus replaced by an artificial small-
scale cut-off (I shall continue to denote it by η), below which fluctuations
are dissipated due to the action of SGS terms. I shall denote such strong
fluctuations as mature fronts.
The second possibility (figure 4.1 (b)) is that, for a strong event occurring
in the interval [x,x + r], one does not observe excursions concentrated on
η. This means that the strong jump has the whole length r as a support. I
shall denote such strong fluctuations as nonmature fronts.

More formally, I introduce the event “front” in the interval [x,x+ r] as

front ≡ {|θ(x+ r)− θ(x)| > σ}

and the probability of its occurrence

Prob({front}) ≡ Prob{|θ(x+ r)− θ(x)| > σ} ,
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Figure 4.1: A schematic view of (a) a mature front; (b) a nonmature front.

where I fixed, in way of example, λ = 1.

Such a probability can be viewed as the sum of the probabilities associated
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to the two events:

{front, mature} ≡ {|θ(x+ r)− θ(x)| > σ} ∩
{∃x′ ∈ [x,x+ r] : |θ(x′ + η)− θ(x′)| > σ} ,

{front, nonmature} ≡ {|θ(x+ r)− θ(x)| > σ} ∩
{∀x′ ∈ [x,x+ r] |θ(x′ + η)− θ(x′)| < σ} .

Namely,

Prob({front}) = Prob({front, mature})+Prob({front, nonmature}) . (4.6)

In section § 4.7.2 I shall exploit (4.6) to address the question on the geomet-
rical shape associated to strong events.

4.4 Weak events: cancelled vs uncancelled

objects

In the preceding section I introduced probabilistic tools which are used to
investigate the relation between geometry and large temperature excursions.
I proceed now in a similar way in order to characterize, from a geometrical
point of view, weak temperature fluctuations.
Once a weak (e.g., less than σ) temperature excursion is identified between
two points x1 and x2, one of two possibilities may occur: 1) within the interval
connecting x1 to x2 there exist successive front structures that cancel each
other, in a way to reproduce a weak jump between points x1 and x2 (for a
schematic view see figure 4.2 with A ≡ x1 and B ≡ x2); 2) there are no fronts
in such interval (see figure 4.2, with C ≡ x1 and D ≡ x2).
I shall call such two options “weak event with cancellation” and “weak event
without cancellation”, respectively.
To proceed more formally, I introduce the smooth event in the interval [x,x+
r] as

{smooth event} ≡ {|θ(x+ r)− θ(x)| < σ}

and the probability of its occurrence

Prob({smooth event}) ≡ Prob{|θ(x+ r)− θ(x)| < σ} ,
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Figure 4.2: A schematic view on how a weak fluctuation can emerge. In between
points A and B, one has a weak fluctuation originated from cancellation of two
strong events; in between points C and D, the weak fluctuation arises because the
temperature field is smooth within the interval.

where I fixed, as in section § 4.3, λ = 1.
Such a probability can be viewed as the sum of the probabilities associated

to the two events:

{smooth event, with cancellations} ≡ {|θ(x+ r)− θ(x)| < σ} ∩
{∃x′ ∈ [x,x+ r] ∃δ ∈ [η, r] : |θ(x′ + δ)− θ(x′)| > σ} ,

{smooth event, without cancellations} ≡ {|θ(x+ r)− θ(x)| < σ} ∩
{∀x′ ∈ [x,x+ r] ∀δ ∈ [η, r] |θ(x′ + δ)− θ(x′)| < σ} ,

with the associated probability.
One thus has:

Prob({weak event})=Prob({weak event, with cancellation})
+Prob({weak event, without cancellation}) .

In section § 4.7.4, I shall exploit the above indicators to have insights on the
geometrical structure (e.g., the size) of thermal plumes in the CBL.
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4.5 The large-eddy simulation model

In order to investigate the structure of temperature fluctuations in CBL’s,
I used the NCAR LES model described in [85] and [86]. Such a model has
been widely used and tested to investigate basic research problems in the
framework of boundary layer flows (see, e.g., [87, 88, 84], among the others).
The LES strategy is an intermediate technique between the DNS, where
all turbulent scales of motion are dynamically described, and the Reynolds-
averaged Navier–Stokes equations (RANS) in which the flow variables are
decomposed into a mean and a fluctuating part via some more-or-less com-
plex turbulence models and only the mean part is described in a dynamical
way. The LES consists in computing (according to the dynamical equations)
the dynamics of the large eddies, while modelling the smallest, unresolved,
ones. Such an approach is based on the well-known cascade scenario à la
Kolmogorov [1], where small eddies originate from instabilities of the largest
eddies. The intimate chaotic character of this process makes small eddies
more universal, as well as more isotropic and homogeneous, than the largest
ones. It thus turns out that the modelling of subgrid scales is considerably
simpler and more accurate than that of the largest, nonuniversal, anisotropic
and inhomogeneous scales.

The LES equations used here are obtained by filtering the governing (full-
scale) equations with a Gaussian filter of variance equal to the grid mesh l,
the role of which is to average out fluctuations on scales smaller than l.
For the sake of clarity, I report hereafter the NS and the continuity equa-
tions for an incompressible flow, together with the advection-diffusion forced
equation for the potential temperature θ:

∂tvµ + v · ∂vµ= ν∂2vµ +

(
g
θ

θ0
δµ3 − hεµν3vν + f (v)

µ

)
−

1

ρ0
∂µp (4.7)

∂ · v=0 (4.8)

∂tθ + v · ∂θ= κ0∂
2θ + f (θ) (4.9)

where h is the Coriolis parameter, f (θ) and f (v)
µ represent the effect of external

forcing mechanism and g(θ/θ0)δµ3 is the buoyancy term (in the Boussinesq
approximation, which also accounts for the presence of ρ0), because of which
the temperature turns out to be an active scalar in this case.
Upon introduction of the coarse-grained fields (3.2) and of the respective sub-
grid components (3.3), applying the three-dimensional Gaussian filter oper-
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ator to equations (4.7), (4.8) and (4.9) gives the following filtered equations:

∂tṽ + ṽ · ∂ṽµ = ν∂2ṽµ +

(

g
θ̃

θ0
δµ3 − hεµν3ṽν + f̃ (v)

µ

)

−
1

ρ0
∂µp̃− ∂ντ

(v)
µν

∂ · ṽ=0

∂tθ̃ + ṽ · ∂θ̃=κ0∂
2θ̃ + f̃ (θ) − ∂ · τ (θ) ,

where τ (v)
µν = ṽµvν − ṽµṽν is the SGS flux of momentum (its correspondent

for heat, τ (θ), has already been defined in (3.6)).
SGS terms must be expressed in terms of resolved, large-scale, fields in order
to have closed equations for ṽ and θ̃. In the present LES, SGS fluxes are
related to the resolved fields via the downgradient diffusion assumption:

τ (v)
µν = ˜̃vµṽν − ṽµṽν − 2KMSµν

τ (θ)= ˜̃
vθ̃ − ṽθ̃ −KH∂θ̃ ,

where Sµν is equal to e(ṽ)µν plus the modification introduced in [86], leading to
the so-called “two-part eddy viscosity”. KM and KH are the eddy-diffusion
coefficients of momentum and heat, respectively, which are related to dy-
namical quantities in empirical ways. The choice in the present LES model
is:

KM = 0.1l
√
ẽ∗ , KH =

(
1 +

2l

DS

)
KM ,

where
√
ẽ∗ is a typical velocity constructed from the SGS turbulence en-

ergy, ẽ∗, whose equation is solved in the present LES model. For negative
stratifications (the main concern of the present study), one has l = DS ≡
(DxDyDz)1/3, Dx, Dy and Dz being the grid spacing in x, y and z, respec-
tively.
More details on the used LES model can be found in [85] and [86] and refer-
ences therein.

4.6 The simulated convective boundary lay-

ers

In the next sections, I shall report results relative to the analysis of four
different convective boundary layers simulated by a LES model with different
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Sim. L
(km)

Lz
(km) Res. τ∗

(s)
T
(τ∗)

Q∗
(mK s−1)

Ug
(m s−1)

−zi/LMO

B 5 2 1283 510 36 0.24 10 18
1 5 2 1283 500 8 0.29 5 200
SB1 3 1 1283 530 24 0.05 15 1.6
B2 5 2 2563 510 36 0.24 10 18

Table 4.1: The relevant parameters characterizing simulations Sim. B, Sim. 1,
Sim. SB1 and Sim. B2. In this table, L and Lz are the domain extension along the
horizontal and vertical directions, respectively; Res. is the number of grid points,
τ∗ is the turnover time, T is the duration of the quasi-steady state inside which
statistical analysis has been performed,Q∗ is the heat flux from the bottom bound-
ary, Ug is the geostrophic wind and −zi/LMO is the stability parameter (zi and
LMO being the mixed-layer depth and the Monin-Obukhov length, respectively).

spatial resolutions (1283 and 2563 grid points). The simulations performed
at the higher resolution 2563, and the relative results, will be discussed in
section § 4.8. This high-resolution simulation serves as a sensitivity test on
the model resolution and also permits to address the question on the possible
effect of SGS parameterizations on the large-scale, resolved, dynamics and
thus on the results I am going to show in the next sections.

Three of these analysed simulations are well-known in literature: I repro-
duced the simulations B (see also [83] for a preliminary investigation) and
SB1 (hereafter referred to as Sim. B and Sim. SB1) by Moeng and Sullivan
[84] and simulation 1 (Sim. 1) by Nieuwstadt and Brost [89]. At variance
of [89] (which is a decaying simulation), I maintained a constant heat flux
from the bottom boundary for the entire duration of the simulation. A quasi-
steady state was thus reached in my Sim. 1.
Note that, with respect to Moeng–Sullivan’s and Nieuwstadt–Brost’s simu-
lations, I increased the spatial resolution to 1283 grid points. I performed
one more simulation, Sim. B2, which is similar to Sim. B but with higher
resolution.

All simulations reproduce a convective boundary layer but with different
ratios between buoyancy production and shear production (see table 1 for
a list of the relevant parameters of the simulations). As is well known, the
stability parameter −zi/LMO (where zi is the mixed-layer height and LMO

is the Monin-Obukhov length) provides a measure of the atmospheric sta-
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bility. This amounts to saying that in the turbulent-kinetic-energy equation
the buoyancy production is larger then the contribution associated to the
shear term [90] when −zi/LMO ! 1. According to Deardorff [91], a convec-
tive regime is encountered for −zi/LMO > 4.5. From the values of zi/LMO

reported in table 4.1, Sim. 1 is relative to a pure buoyancy-dominated convec-
tive regime (−zi/LMO = 200); Sim. B is still relative to a convective regime
(−zi/LMO = 18) but it is also affected by a relatively small shear. Finally,
Sim. SB1 represents an intermediate case (−zi/LMO = 1.5) between a pure
shear and a pure buoyancy-dominated boundary layer.

4.6.1 The quasi-steady state for the simulated bound-

ary layers

My statistical analysis was carried out after the quasi-steady state had been
reached. The latter corresponds to a linear behaviour of the potential-
temperature flux with the elevation from the bottom boundary, or, equiva-
lently, to the linear-in-time growth of potential temperature averaged in the
mixed layer. In my simulations, the presence of quasi-steady states has been
assessed in both ways.

Sim. B

The quasi-steady states has been reached, as in [84], after about six large-
eddy turnover times, τ∗ (defined as τ∗ = zi/w∗, where w∗ is the convective
velocity scale). After that time, the simulation has been advanced in time
for 36τ∗ more and the simulated potential-temperature field saved at 0.5τ∗
intervals for the analysis. My data set was thus formed by 72 (almost inde-
pendent) potential temperature snapshots.

Sim. 1

The quasi-steady state has been reached after about 5τ∗. After that time,
the simulation has been advanced in time for 8τ∗ more and the simulated
potential-temperature field saved every 0.5τ∗, thus forming a data set of 16
independent snapshots.
I was unable to perform a longer integration because of the rapid growth of
the mixed layer, progressively invading the whole boundary layer.
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Sim. SB1

The quasi-steady state has been reached after about 10τ∗. After that time,
the simulation has been advanced in time for 24τ∗ more and the simulated
potential-temperature field saved every 0.5τ∗, forming a data set of 48 inde-
pendent snapshots.

Sim. B2

The quasi-steady state has been reached after about 8τ∗. After that time,
the simulation has been advanced in time for 24τ∗ more and the simulated
potential-temperature field saved every 0.5τ∗, forming a data set of 48 inde-
pendent snapshots.

4.7 Analysis of results and discussions

4.7.1 Statistics of large temperature fluctuations

I shall start this statistical analysis from the large temperature fluctua-
tions. With a small change in the notation, with respect to section § 4.2,
I shall denote the PDF of temperature differences as P (∆r;zθ). The same
z-dependence will be added also in α, ζ∞ and σ (again defined in section
§ 4.2). This is meant to stress that such quantities might depend on the
vertical coordinate z spanning the entire mixed layer. The CBL being ho-
mogeneous in the x-y planes, no dependence on x and y is expected (which
is actually confirmed, a posteriori, from the analysis).

In order to verify the presence of intermittency saturation, one has to
verify whether or not the laws (4.3) and (4.4) emerge from the data analysis.
Starting from (4.4), for the saturation to occur, I recall that such cumulative
probability has to behave as a power law with exponent ζ∞. Such behaviour
is indeed observed and shown in figures 4.3 (Sim. B), 4.4 (Sim. 1) and 4.5
(Sim. SB1) for different elevations within the mixed layer. From these figures
one can easily identify the inertial range of scales (which extends over about
half decade) where I measured the best-fit slopes, ζ∞ (straight lines). For
all simulations and analysed elevations, I found ζ∞ ∼ 0.6. I can provide an
estimation of the error bar on such an exponent by comparing, for Sim. B,
best fits at the two resolutions 1283 and 2563. The maximum variation (from
1283 to 2563) of ζ∞ found within the mixed layer is about 30% of its value.
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Figure 4.3: For Sim. B, the cumulative probabilities Prob[|∆r;zθ| > λσ(z)] for two
values of λ are shown for (a): z/zi = 0.3, (b): z/zi = 0.45 and (c): z/zi = 0.6.
The slopes of these curves (continuous line) are compatible with the exponent
ζ∞ ∼ 0.6.
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Figure 4.4: As in figure 4.3 but for Sim. 1
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Figure 4.5: As in figure 4.3 but for Sim. SB1



4.7 Analysis of results and discussions 99

I now pass to corroborate the above scenario by searching for the scaling
behaviour given by (4.3). In figures 4.6, 4.7 and 4.8 I reported the behaviour
of P (∆r;zθ) (with and without rescaling) relative to Sim. B, for three different
elevations from the bottom boundary (z = 0.3zi, z = 0.45zi and z = 0.6zi).
Pictures (a) are relative to the PDF’s without rescaling while in pictures (b)
the rescaling (4.3) has been exploited (pictures (c) will be described later).
The data collapse occurring on the PDF tails means the validity of (4.3),
which amounts to prove the presence of intermittency saturation. The expo-
nent ζ∞, found to obtain the best data collapse for all separations r falling
in the inertial range of scales, is, within the error bar, ζ∞ ∼ 0.6.
A similar good-quality tail data collapse is also observed for the other sim-
ulations Sim. 1 and Sim. SB1. Results are reported in figures 4.9, 4.10 and
4.11 (for Sim. 1), and in figures 4.12, 4.13 and 4.14 (for Sim. SB1).
In both simulations, the value of ζ∞ used to obtain the best data collapse of
the tails is compatible with ζ∞ ∼ 0.6. Within the error bars, such value is
the same of Sim. B.

It is worth observing that, for all simulations, the measured ζ∞ shows
only very slight (order of 10%) variations with the elevation, z, within the
mixed layer. It thus appears to be a property of the entire mixed layer. As
I shall show later, the dependence on the elevation is contained in the sole
function Q.
The fact that ζ∞ does not show appreciable variations with z can be easily
explained as a consequence of the efficient mixing characterizing the layer
under investigation. In the strong convective case (Sim. 1) the mixing is due
to the action of buoyancy forces, in the less convective case (Sim. SB1) it
is induced preferentially by shear. Both mechanisms are present (although
shear production is weaker than buoyant production) in Sim. B. Such results
seem to be a reminiscence of the universality scenario presented in [81, 76, 92]
with respect to the mechanisms sustaining turbulent activity into the system.

What seems to change both with the elevation and by changing the degree
of convection is the strength (with respect to σ at that elevation) of the tem-
perature jumps across a plume. The function Q, related to the probability of
having a strong jump on a separation r, provided that the latter is crossing
a plume (see discussions following (4.3)), shows indeed variations both with
z and from one simulation to the other. The behaviour of the function Q
is shown in figures 4.15 ((a): Sim. B, (b): Sim. 1, (c): Sim. SB1). In each
figure I reported two curves which are relative to the elevations z = 0.3zi
and z = 0.6zi, respectively. Note that Q is defined on the sole tails of the
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Figure 4.6: The PDF’s P (∆r;zθ), for two values of r inside the inertial range of
scales (r/L = 0.22 and r/L = 0.11, L being the side of the (squared) simulation
domain) and z/zi = 0.3, zi being the elevation of the mixed-layer top. (a): PDF’s
are shown without any r-dependent rescaling; (b) PDF’s are multiplied by the
factor σ(z)r−ζ∞ with ζ∞ ∼ 0.6: the collapse of the curve indicates the asymptotic
behavior P (∆r;zθ) ∼ rζ∞ for large ∆r;zθ, that means saturation of temperature
scaling exponents. (c): PDF’s are multiplied by the factor rα while ∆r;zθ by r−α:
the collapse of PDF cores indicates the validity of (4.2) that is equivalent to the
linear behaviour of low-order temperature scaling exponents.
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Figure 4.7: As in figure 4.6 but for z/zi = 0.45.
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Figure 4.8: As in figure 4.6 but for z/zi = 0.6.
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Figure 4.9: As in figure 4.6 but for Sim. 1.
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Figure 4.10: As in figure 4.7 but for Sim. 1.
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Figure 4.11: As in figure 4.8 but for Sim. 1.
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Figure 4.12: As in figure 4.6 but for Sim. SB1 and separation r/L = 7×10−3 and
r/L = 3× 10−3.
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Figure 4.13: As in figure 4.7 but for Sim. SB1 and separation r/L = 7×10−3 and
r/L = 3× 10−3.
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Figure 4.14: As in figure 4.8 but for Sim. SB1 and separation r/L = 7×10−3 and
r/L = 3× 10−3.
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Figure 4.15: The function Q defined in (4.3) are shown, for the three simulations,
for two different values of z within the mixed layer: z/zi = 0.3 and z/zi = 0.6.
Differences in the shape of these two curves reveal that Q contains a dependence
both on the elevation, z, and on the degree of convection.
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PDF. Although reported in the figures, the region corresponding to small
fluctuations (i.e. the cores) is thus meaningless.
From the inspection of these figures it stems how the dependence on z is
practically absent for the most convective simulation (Sim. 1) and more pro-
nounced for the case of weakest convection (Sim. SB1) and in the presence of
a relatively small shear (Sim. B). This seems to suggest that the function Q
is sensitive to the different degrees of mixing eventually present in different
ABL’s.

To conclude this section, I note that with the method exploited here to
extract the value of ζ∞ (i.e. via the PDF rescaling) I do not have access to
the order of the structure function at which saturation takes place. To have
this information, I looked at the structure function scaling exponents and I
found evidence of saturation at an order between six and eight. With the
present statistics, it turns out very difficult to have insights on the possible
dependence on the degree of convection of the order at which saturation
occurs.

4.7.2 Dominance of nonmature fronts

In section § 4.3 I addressed the question on the geometrical structure of the
fronts responsible for the observed intermittency saturation. As explained in
that section, the decomposition of the probability of observing a front in an
interval of size r expressed in the form

Prob({front}) = Prob({front, mature}) + Prob({front, nonmature})

permits to answer the question on whether intermittency saturation is due
to steep objects (i.e. mature fronts) or, rather, to fluctuations present on all
scales, where the dominant contribution is carried by temperature excursions
having just r as a support.
Which of these two options takes place can be perceived from figure 4.16,
where the three probabilities are reported (in log-log scale) vs the ratio r/L
for the three simulated boundary layers. The fact that the scaling exponent
(i.e. the slope inside the scaling region) relative to the total probability and
the one relative to the probability of nonmature fronts are approximately
the same, is the footprint of dominance of nonmature fronts for the intermit-
tency saturation. Such a conclusion is in agreement with recent experimental
results of turbulent convection by Zhou and Xia [93].
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Figure 4.16: For the three analysed simulations, the three cumulative probabilities
Prob[|∆r;zθ| > λσ(z)], for λ = 5, are shown for mature fronts, nonmature fronts
and both of them. The two slopes correspond to the exponent ζ∞ ∼ 0.6. Such an
exponent is carried by nonmature fronts, mature fronts being clearly subdominant.
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4.7.3 Statistics of weak temperature fluctuations

I shall now pass to investigate the statistics of well-mixed regions of the tem-
perature field, corresponding to the inner parts of plumes that are likely to
be present in CBL’s.
In these regions, fluctuations turn out to be very gentle and, as an immediate
consequence, statistics is expected to be characterized by single-scale fluctua-
tions (see section § 4.2). The best candidate for a statistical characterization
of weak fluctuations is thus the rescaling form given by (4.2).
To investigate whether or not this is the case, I search for the exponent α
(a priori dependent on the elevation z within the mixed layer) such that,
looking at rαP (∆r;zθ) vs ∆r;zθ/rα for different values of r, all curves collapse
one on the other for each value of z. This would amount to prove the validity
of the rescaling law (4.2).
My data turned out to be compatible with such a behaviour. This can be
seen for Sim. B in figures 4.6 (c), 4.7 (c) and 4.8 (c); for Sim. 1 in figures 4.9
(c), 4.10 (c) and 4.11 (c); for Sim. SB1 in figures 4.12 (c), 4.13 (c) and 4.14
(c). In all cases, results are relative to three different elevations, z, from the
ground, well inside the mixed layer.
The values of α giving the best overlapping of PDF’s relative to different
separations r turn out to be z-independent and indistinguishable from one
simulation to the others. My estimated values is α ∼ 0.2 with a relative error
of about 15%. As for ζ∞, such an error bar has been estimated by comparing
best fits of Sim. B at the two resolutions 1283 and 2563. Note that the value
of α is surprisingly close to the well-known Bolgiano scaling [94]. At the
present stage of knowledge, it is not known if this is just a coincidence or a
signal of something of physically interesting.
Also note that, similarly to what was observed for ζ∞, the exponent α ap-
pears weakly dependent on the degree of convection (at least in the range
of degrees of convection analysed here) and also seems to characterizes the
entire mixed layer.

4.7.4 Characterizing weak temperature excursions

In this section I focus my attention on the geometrical structure of weak
scalar excursions which characterize the PDF cores of scalar differences.
As discussed in section § 4.4 the probability of having a weak temperature
jump between two points separated by a distance r, can be decomposed in
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the form:

Prob({weak event})=Prob({weak event, with cancellation})
+Prob({weak event, without cancellation}) . (4.10)

The point is now to understand whether or not there exists a typical sepa-
ration, rp, below which

Prob({weak event, with cancellation})
< Prob({weak event, without cancellation}) .

If this is the case, rp should provide a measure for the typical horizontal
size of the plumes. For r < rp, temperature excursions can be associated
to fluctuations occurring in the inner part of the plume, while for r > rp
weak events are formed via successive cancellations of fronts whose support
is smaller than r.
In order to answer this question, I computed the three probabilities involved
in (4.10) for the three analysed simulations. Results, relative to the elevation
z = zi/2, are reported in figure 4.17. A rough estimation of rp is rp ∼ L/5,
in qualitative agreement with what one can estimate from the analysis of
snapshots of temperature fields at different times (not shown).

4.8 Sensitivity test at higher resolution

In this section I address the question relative to the possible influence of SGS
terms on the obtained results. Two different tests might be performed for
such a purpose. The first consists in performing simulations with different
closure schemes; the second is to increase the resolution and thus to push the
effect of SGS parameterizations at smaller and smaller scales. The second
option has been chosen, also in view of the fact that with an increased res-
olution one can control other spurious effects as, e.g., those induced by the
used numerical methods.
To be more specific, I repeated Sim. B at the increased resolution 2563 (I
shall refer to it as Sim. B2), maintaining the full set of parameters (geomet-
rical and dynamical) as in Sim. B performed at the resolution 1283. On the
SP4-IBM SP Power4 platform, the time necessary to advance in time one
hour of simulation was around one hour. With the augmented resolution
such time became around eight times larger.
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Figure 4.17: For the three analysed simulations, the three cumulated probabilities
Prob[|∆r;zθ| < λσ(z)], for λ = 1, are shown for the weak events with cancellation
(canc) and those without cancellation (uncanc). The two curves cross each other
for a certain distance, which defines the typical size of the plumes.
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Figure 4.18: For Sim. B simulated at the resolution 2563, the cumulative proba-
bilities Prob[|∆r;zθ| > λσ(z)] for two values of λ are shown for z/zi = 0.45. The
slopes of these curves (continuous line) are compatible with the exponent ζ∞ ∼ 0.6
measured at the lower resolution (see, for comparison, figure 4.3).

The results are reported in Fig. 4.18 where the cumulative probabilities are
shown. As in the corresponding lower-resolution simulations, they present a
power-law behaviour which defines the inertial range of scales. The maxi-
mum deviation (within the entire mixed layer) of the best-fit exponents with
respect to the low resolution simulation, Sim. B, is about 30% of the esti-
mated value ζ∞ ∼ 0.6. Such a variability has been taken as a definition of
the error bar on the saturation exponent.

To have a further confirmation of the reliability of the results obtained
with the lower resolution 1283, in figure 4.19 I show the behaviour of the
PDF’s for strong and weak fluctuations at the elevations, taken, in way of
example, z = 0.45zi. All PDF’s in the mixed layer exhibit, for all separa-
tions belonging to the inertial range of scales, the same rescaling properties
of Sim. B without significant differences in the rescaling exponents.
The exponent α ∼ 0.2 is measured from such a simulation. The maximum de-
viation, of about 15% of its value, from the low-resolution simulation Sim. B,
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Figure 4.19: As in figure 4.6 but for z/zi = 0.45 and resolution 2563.
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defines the error bar.
In the above sensitivity test I fixed the geometrical parameters which

characterize Sim. B and I increased the resolution. The robustness of these
results can be actually argued by means of the following simple considera-
tions.
The first point is that the uncertainties produced in a LES model owing to
the SGS terms contaminate the LES fields in regions where small eddies dom-
inate. This happens, e.g., near a wall boundary and in the entrainment zone
of the planetary boundary layer. On the contrary, in regions where energy-
containing eddies are well-resolved (e.g., within the mixed layer, where the
present analysis has been focused), LES fields are known to be weakly de-
pendent on the particular SGS parameterization scheme. Such a dependence
becomes even weaker in the case of convective boundary layer, as the one here
investigated, where the SGS motion acts as a net energy sink that drains en-
ergy from the resolved motion. This is another way to say that energy flows
from large scales of motion toward the smallest scales and the cumulative
(statistical) effect of the latter can be successfully captured by means of sim-
ple eddy-diffusivity/viscosity SGS models.
Moreover, I focused on scales of motion always larger than six/eight grid
points, i.e., sufficiently far from the lowest (still resolved) scales that (a pri-
ori) might be dependent on SGS parameterization schemes. Finally, my
conclusions on the dominance of nonmature fronts (i.e. large-scale objects)
as the responsible for the intermittency saturation is a further indication of
the poor role played by the spatial resolution on these results.

4.9 Conclusions and perspectives

The statistical properties of temperature fluctuations have been analysed in
convective boundary layers simulated by means of large-eddy simulations.
Three different numerical simulations have been considered, corresponding
to different degrees of convection: Sim. 1 is relative to a pure buoyancy-
dominated convective regime (−zi/LMO = 200); Sim. B is still relative to a
convective regime (−zi/LMO = 18) but it is also affected by a relatively small
shear. Finally, Sim. SB1 represents an intermediate case (−zi/LMO = 1.5)
between a pure shear and a pure buoyancy-dominated boundary layer.
The main aim of this chapter was to characterize, from a statistical point
of view, the fluctuations (weak and strong) of the temperature field within
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the mixed layer, where an efficient mixing is guaranteed by the combined
action of buoyancy and shear. In this chapter the term “fluctuation” was re-
ferred to the occurrence of a temperature jump between points separated by
a distance, say, r. The presence of thermal plumes chaotically moving within
the CBL makes the strength of such fluctuations strongly sensitive to space
and time coordinates. For a fixed instant one thus observes a distribution of
values of temperature fluctuations spread over five/six times the RMS of the
temperature field. Such a spreading provides a strong justification for the
use of probabilistic tools to disentangle the intimate structure of temperature
fluctuations within the CBL.
The first point to emphasize is that the PDF’s of such temperature fluctua-
tions are strongly non Gaussian. As is well known, the Gaussian distribution
has the remarkable property to be completely determined by its mean and
its variance. The latter thus provides a typical, representative, fluctuation
of the system. On the contrary, non Gaussian PDF’s need the whole set of
moments in order to be completely defined. The latter situation is the one
occurring in the analysed CBL’s. From a physical point of view, the lack of
Gaussianity means that the concept of typical fluctuation does not apply. In
defining a fluctuation, one has to define which part of the PDF is currently
being sampled.
The emergence of many (in principle infinite) “typical fluctuations” has im-
portant applicative consequences related to the long-standing problem of SGS
parameterizations. In constructing the latter schemes utilizing probabilistic
approaches, one usually assumes the existence of a unique representative
fluctuation as a central hypothesis to extrapolate features of the large-scale,
resolved field to small scales. One of the best example is the so-called fractal-
interpolation technique [77] which uses the sole fractal dimension as a relevant
parameter.

My conclusions strongly suggest to exploit, for the SGS modelling of
temperature fields, the so-called multifractal-interpolation schemes recently
implemented in [78]. Indeed, my results show that for separations in the
inertial range of scales one has:

〈(∆rθ)
n〉 = Anr

αn for small n (4.11)

〈(∆rθ)
n〉 = Bnr

ζ∞ for large n . (4.12)

For both small and large orders (which capture weak and strong fluctuations,
respectively) one thus has power-law behaviours with (different) exponents
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behaving linearly with the order. Rather than a fractal structure (which
should be characterized by a unique power law with an exponent linearly
behaving with the order), relations (4.11) and (4.12) suggest the simplest
form of multifractality to model small-scale motion: a bifractal structure
controlled by the two exponents α and ζ∞. The question is now on the de-
pendence of the above parameters on the dynamical characteristics of the
ABL. This is a practical need if one uses multifractal interpolations for SGS
purposes. Indeed, scaling exponents enter in the multifractal analysis and
they might, in principle, depend on dynamical properties of the ABL, as
for instance the degree of convection. In the present chapter, I addressed
such a question in the context of convective boundary layers, by varying the
degree of convection. From −zi/LMO = 1.5 to −zi/LMO = 200, I did not
find appreciable variations of scaling exponents, which also turned out to be
independent on the elevation from the ground, within the mixed layer. They
thus appears intrinsic properties of the CBL. A possible explanation of this
property might be sought in the zero-mode mechanism (see [46]) invoked
in passive scalar turbulence to explain the observed universality of scaling
exponents. Whether or not such mechanism is present also in active scalar
turbulence is however one among the many open problems in turbulence re-
search.
Dependence on detailed properties of the CBL and on the elevation are con-
tained in the prefactors An and Bn, which are thus nonuniversal. Also this
point appears to be compatible with a zero-mode mechanism.

An interesting issue left for future research is on whether the same scenery
highlighted here in convective boundary layers is present also in neutrally or
stably stratified boundary layers. In that case the LES approach appears to
be quite questionable. Laboratory experiments or field experiments seem to
be the proper strategy to answer such a question.

Once I identified the statistical role played by ζ∞, I addressed the question
relative to the connection of such an exponent with thermal plumes. Despite
the fact that sharp interfaces are likely to be present, and across such in-
terfaces high temperature fluctuations occur, the dominant contribution to
large fluctuations is carried by what I called nonmature fronts, i.e. objects
still affected by the steepening process. My conclusion is in agreement with
recent experimental results of turbulent convection by Zhou and Xia [93].
The open problem to be addressed is on whether the cliff structures re-
cently observed in the velocity field of a uniformly sheared turbulence [95]
are present also in a stable, shear dominated, ABL, and if this is the case,
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on whether such structures [95] lead to the intermittency saturation of the
velocity field.

As far as the exponent α is concerned, I showed that this is related to the
weak fluctuations of the temperature field. Such fluctuations may occur in
the inner plume region as well as across the plumes. This amounts to saying
that a weak fluctuation between points separated by a certain distance, r,
may arise from the cancellation of strong temperature jumps occurring inside
r or, alternatively, just because the field is really smooth within the interval
of size r. For small r the second possibility is the most frequent. When r is
large enough the first scenery dominates. The length r where the change of
behaviour occurs furnishes a natural definition for the size of the plume.

Finally, the main conclusions drawn in the present paper has been con-
firmed by the test case performed at the larger resolution 2563.
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Toward the turbulence of

complex fluids





Chapter 5

The role of inertia: heavy

particles and bubbles

In this last part of the manuscript, I describe some features of the dynamics of
complex fluids. Specifically, I focus on advection properties of small particles
(massive or polymeric), disregarding their feedback on the flow. In this
chapter, inertial-particle motion is studied in the Stokes regime. Exploiting
multiscale techniques, the long-time behaviour is shown to be of diffusive
type, in the frame of reference moving with the particle mean falling velocity.
The latter quantity is then investigated by means of a second-quantization
algorithm, which allows to write exact analytical equations at any order in
the Stokes (response) time. Such equations have been, and still are, object
of numerical simulations, showing that the falling velocity, for a specific flow,
is increased by inertial effects for heavy particles.

The chapter is organized as follows: in the introductory section § 5.1 I
recall the importance of inertial particles and their main features. In section
§ 5.2 I introduce multiscale techniques and apply them to the basic equations
ruling the dynamics of inertial particles. In section § 5.3 I focus on the
equation for the particle density in phase space and I recast it by means
of a second-quantization algorithm. In section § 5.4 I show the equations
resulting from the application of the aforementioned mathematical techniques
to the study of falling velocity. Partial conclusions and, above all, future
perspectives follow in section § 5.5.
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5.1 Introduction

In most of real situations, tracers suspended in fluids cannot be modelled as
simple massless point particles. Both drops in gases and bubbles in liquids,
and also solid powders in fluids, have a finite size and their density is, gener-
ally speaking, different from the one of the advecting fluid. The description
of their movement must then take into account the effects of inertia: this is
why such objects are usually called inertial particles. Understanding he dy-
namics of these impurities is very relevant in several domains, ranging from
geophysics [96, 97, 98, 99, 100] to astrophysics [101, 102], and from industry
to biology [103, 104].

Beside the Eulerian approach used in the previous chapters, I will exploit
the Lagrangian description of the particles, which analyses their evolution not
in terms of fields but rather by following their trajectories. I will moreover
consider dilute solutions of inertial particles of very small size, such that
their feedback on the advecting velocity field can be considered negligible.
The flow can thus be assumed as fixed, and I will consider both laminar and
turbulent situations. For example, the velocity may be assumed steady and
periodic in space, or as a Gaussian random field in space and time. Focusing
on incompressible flows, a key difference with the study of passive tracers
(whose density is equal to the one of the fluid and inertial effects are therefore
absent) consists in the dissipative character of the dynamics: now the particle
density is not a Lagrangian invariant (i.e., it is not conserved along the
trajectories) and clustering effects can take place despite incompressibility.
This phenomenon of preferential concentration can be recast, in the presence
of gravity, by studying the deviation of falling velocity from its original value,
and by analysing how this deviation depends on the flow characteristics and
on the space dimension: this will represent the main issue of the present
chapter.

It is often the case that the velocity field of interest is active at vari-
ous length and time scales. Consequently, the equations which govern the
particle motion are very hard to analyse directly. In such cases an effective
equation which governs the behaviour of the particles at long times and large
scales compared to those of the fluid velocity is sought. The derivation of
such an effective equation is based on multiscale homogenization techniques
[105]. This problem has been studied extensively over the last thirty years for
passive tracers. It has been shown that, for periodic or random velocity fields
with short range correlations, the particles perform an effective Brownian mo-
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tion, whose covariance matrix, the effective diffusivity, has been investigated
in its various properties. In particular, it has been proved that the diffu-
sivity is always enhanced, over bare molecular diffusion, for incompressible
(i.e. solenoidal) flows and generally depleted for potential (i.e. irrotational)
flows [106]. It has also been shown that the presence of inertia usually en-
hances, or depletes, the diffusivity beyond the corresponding enhancement,
or depletion, for the passive tracers [107, 108]. However, strong gravity effects
are known to reduce heavy-particle diffusion as compared to fluid particles
(i.e. particles which follow streamlines), which generally disperse more ef-
ficiently: heavy particles or bubbles [109, 110, 111, 112] have indeed their
diffusion reduced by the drift along the gravity direction. Extensions of the
above results to the case where the molecular diffusivity is modelled as col-
ored noise have also been analyzed [113].

5.2 Basic equations and multiscale technique

Let me consider a small rigid spherical particle of radius b inside an incom-
pressible flow v(x, t), which will be assumed periodic or stationary (in the
deterministic sense if laminar, or in the statistical one if turbulent). I shall
restrict my attention to the so-called Stokes regime, in which the surround-
ing flow is differentiable on scales of the order of b (either because turbulence
is not present, or because b is much smaller than the turbulent Kolmogorov
scale, under which viscosity prevails and smooths the flow) and the mean free
path is negligible. Because of the small size of the particle, I will moreover
neglect its feedback on the surrounding flow, which is therefore given. The
motion of the particle is thus influenced by gravity, buoyancy and viscous
drag [114], to which Brownian noise should be added in order to take into
account the thermal fluctuations of the fluid. The key difference with passive-
scalar transport, i.e. with fluid particles (ruled by a differential equation of
the first order in time), is that Newton’s law must now be written in its full
form as a second-order differential equation for the particle trajectory X(t):

Ẍ(t)− βv̇(X(t), t) = −
1

τ
[Ẋ(t)− v(X(t), t)] + (1− β)g +

√
2κ

τ
η(t) , (5.1)

where g is the gravity acceleration and η(t) represents the standard white
noise associated to the particle diffusivity κ:

〈ηµ(t)〉 = 0 , 〈ηµ(t)ην(t
′)〉 = δµνδ(t− t′) .
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Indicating with ρp and ρf the densities of the particle and of the fluid,
respectively, the adimensional coefficient appearing in (5.1) is defined as
β ≡ 3ρf/(ρf +2ρp), and the so-called Stokes time has also been introduced as
τ ≡ b2/3νβ. According to the ratio between the two densities, β ranges from
0 (when ρf ! ρp: heavy particles, like drops in gases) to 3 (when ρf % ρp:
light particles, like bubbles in liquids) and becomes 1 when the two densities
are equal (and inertial effects absent). The latter term on the left-hand side
of (5.1) represents the so-called “added-mass contribution”, while analysing
the right-hand side one deduces that τ constitutes a response time of the
particle motion to the surrounding flow: when τ , appearing at denomina-
tor, is negligible, the same must be for the numerator; in particular, for
fluid particles, τ = 0 and Ẋ equals v, immediately adjusting itself to follow
any external perturbation and thus reducing (5.1) from a second-order to a
first-order differential equation. For finite τ , it is customary to recast (5.1)
as a system of two first-order differential equations, but, in order to avoid
dealing with the derivative of the fluid velocity (v̇), one often introduces the
covelocity U ≡ Ẋ − βv(X(t), t) and obtains:






Ẋ = U + βv(X(t), t)

U̇ =
(1− β)v(X(t), t)−U

τ
+ (1− β)g +

√
2κ

τ
η .

(5.2)

The study can be carried on in the corresponding phase space (x,u, t). Let
me consider the propagator p(x,u, t|x0,u0, 0), which satisfies the forward
Kolmogorov equation deriving from (5.2):

∂

∂t
p=−L∗

βp (5.3)

≡−
{

∂

∂xµ
[uµ + βvµ(x, t)] +

∂

∂uµ

[
(1− β)vµ(x, t)− uµ

τ
+ (1− β)gµ

]

−
κ

τ 2

∂2

∂uµ∂uµ

}
p .

I now introduce a multiscale expansion [105] for the space and time variables,
i.e. I define a set of slow variables x̌ = εx, ť = ε2t, which are to be considered
independent from the corresponding fast variables x and t; thus, ∂xµ 7→
∂xµ + ε∂x̌µ and ∂t 7→ ∂t + ε2∂ť. Such a rescaling is meant to catch a diffusive
behaviour at timescales much longer than those typical of the flow. Moreover,



5.2 Basic equations and multiscale technique 127

the variable u is considered exclusively fast. Developing also

p(x, x̌,u, t, ť) =
∞∑

m=0

εmpm(x, x̌,u, t, ť)

and substituting in (5.3), the zeroth order reads:
(

∂

∂t
+ L∗

β

)
p0 = 0 .

As the operator L∗
β only involves fast variables, it is convenient to perform

the variable separation p0(x, x̌,u, t, ť) = ρ(x,u, t)P (x̌, ť), thus obtaining
(

∂

∂t
+ L∗

β

)
ρ = 0 . (5.4)

The first order (in ε) gives:
(

∂

∂t
+ L∗

β

)
p1 = −

∂

∂x̌µ
{[uµ + βvµ(x, t)] p0} . (5.5)

One must now impose the solvability condition, by integrating (5.5) over the
fast variables:

∫
dt

1

T

∫
dx

∫
du

∂

∂x̌µ
{[uµ + βvµ(x, t)] p0} = 0

=⇒
∂

∂x̌µ
P (x̌, ť)

∫
dt

1

T

∫
dx

∫
du [uµ + βvµ(x, t)] ρ(x,u, t) = 0

=⇒
∫
dt

1

T

∫
dx

∫
duv(x, t)ρ(x,u, t) + (1− β)gτ = 0

where T represents the period of v (the temporal integration is not performed
if v is time-independent).
Such a condition is automatically verified by substituting the coordinate u
with u− u&, where

u& =

∫
dt

1

T

∫
dx

∫
du [u+ βv(x, t)] ρ(x,u, t) (5.6)

is called renormalized terminal velocity and, in general, may be different from
the “bare” velocity, (1− β)gτ , for the quantity:

δu ≡ u& − (1− β)gτ =

∫
dt

1

T

∫
dx

∫
duv(x, t)ρ(x,u, t) . (5.7)
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In this frame of reference, one thus has
(

∂

∂t
+ L∗

β

)
p1 = − [uµ + βvµ(x, t)] ρ(x,u, t)

∂

∂x̌µ
P (x̌, ť) ,

which simplifies to the so-called auxiliary equation
(

∂

∂t
+ L∗

β

)
χµ(x,u, t) = − [uµ + βvµ(x, t)] ρ(x,u, t) , (5.8)

after another variable separation:

p1(x, x̌,u, t, ť) = χµ(x,u, t)
∂

∂x̌µ
P (x̌, ť) .

At the second order in ε one gets:
(

∂

∂t
+ L∗

β

)
p2 = −

∂

∂x̌µ
{[uµ + βvµ(x, t)] p1} −

∂

∂ť
p0 .

The corresponding solvability condition reads:

∂

∂ť
P (x̌, ť)=−

∫
dt

1

T

∫
dx

∫
du [uµ + βvµ(x, t)]

∂

∂x̌µ
p1

=−
∫

dt
1

T

∫
dx

∫
du [uµ + βvµ(x, t)]χν(x,u, t)

∂2

∂x̌µ∂x̌ν
P (x̌, ť) .

An effective-diffusion matrix, satisfying

∂

∂ť
P (x̌, ť) = Keff

µν

∂2

∂x̌µ∂x̌ν
P (x̌, ť) ,

thus arises, and is given by

Keff
µν = −

1

2

∫
dt

1

T

∫
dx

∫
du {[uµ + βvµ(x, t)]χν(x,u, t) + symm.} .

5.3 Second-quantization algorithm

I shall now focus on the equation (5.4) for the phase-space density ρ(x,u, t)

0=

(
∂

∂t
+ L∗

β

)
ρ (5.9)

=

{
∂

∂t
+

∂

∂xµ
[uµ + βvµ(x, t)] +

∂

∂uµ

[
(1− β)vµ(x)− uµ

τ
+ (1− β)gµ

]

−
κ

τ 2

∂2

∂uµ∂uµ

}
ρ
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and I introduce the adimensional variable y =
√

τ/2κu. In the space
(x,y, t), the operator acting on the density in equation (5.9) becomes:

(
∂

∂t
+ L∗

β

)
=

∂

∂t
+

√
2κ

τ
yµ

∂

∂xµ
+ βvµ(x, t)

∂

∂xµ
+

√
1

2κτ
(1− β)vµ(x, t)

∂

∂yµ

−
1

τ

∂

∂yµ
yµ +

√
τ

2κ
(1− β)gµ

∂

∂yµ
−

1

2τ

∂2

∂yµ∂yµ

=−τ−1A0 + τ−1/2A1 + τ 0A2 + τ 1/2A3 .

The operators A0, A1, A2 and A3 are defined as:





A0 =
∂

∂yµ
yµ +

1

2

∂2

∂yµ∂yµ

A1 =
√
2κyµ

∂

∂xµ
+

1√
2κ

(1− β)vµ(x, t)
∂

∂yµ

A2 =
∂

∂t
+ βvµ(x, t)

∂

∂xµ

A3 =
1√
2κ

(1− β)gµ
∂

∂yµ
.

At this point a Hermitian reformulation is convenient. I define ρ0(y) such
that

A0ρ0 = 0⇔ ρ0 = e−y2

and I decompose ρ in

ρ(x,y, t) = ρ1/20 (y)ψ(x,y, t)⇔ A0ρ = −ρ1/20 K0ψ ,

where

K0 =
1

2

(
y2 −

∂2

∂yµ∂yµ
− d

)
.

A second-quantization algorithm thus spontaneously appears. One can in-
deed introduce the operators of creation and annihilation

a±µ = yµ ∓
∂

∂yµ
,

in terms of which

yµ =
1

2
(a+µ + a−µ ) ,

∂

∂yµ
=

1

2
(a−µ − a+µ ) ,
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and

K0 =
1

2
a+µ a

−
µ = N

can be interpreted as the occupation number. The following commutation
relations hold:

[K0, a
±
µ ] = ±a±µ , [a−µ , a

+
ν ] = 2δµν , [a+µ , a

+
ν ] = 0 = [a−µ , a

−
ν ] .

One can also analogously rewrite

A1ρ = −ρ1/20 K1ψ , A2ρ = −ρ1/20 K2ψ , A3ρ = −ρ1/20 K3ψ ,

where

K1 = αµa
+
µ + γµa

−
µ , K2 = −

∂

∂t
− βvµ(x, t)

∂

∂xµ
, K3 = δµa

+
µ

and

αµ =
1√
2κ

(1−β)vµ(x, t)−
√

κ

2

∂

∂xµ
, γµ = −

√
κ

2

∂

∂xµ
, δµ =

1√
2κ

(1−β)gµ .

The following step consists in a development at small τ , i.e. I consider par-
ticles deviating little from the fluid-particle behaviour. In particular, I write

ψ(x,y, t) =
∞∑

n=0

τn/2ψn(x,y, t)

and I study the equation arising at every (integer and half-odd) order in τ :

K0ψn =






0 for n = 0
K1ψn−1 for n = 1
K1ψn−1 +K2ψn−2 for n = 2
K1ψn−1 +K2ψn−2 +K3ψn−3 for n ≥ 3 .

(5.10)

Such relations can be solved recursively by exploiting the simple inversion
formula

K0Ξ = a+µk
· · ·a+µ1

|0〉 ⇒ Ξ =
1

k
a+µk

· · ·a+µ1
|0〉 ,

|0〉 representing the empty state. Therefore, one obtains

ψn(x,y, t) = ψ∅
n(x, t)|0〉+ψµ1

n (x, t)a+µ1
|0〉+ . . .+

1

n!
ψµ1···µn
n (x, t)a+µn

· · ·a+µ1
|0〉 ,
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where

ψµ1···µk
n (x, t) =






αµk
ψ

µ1···µk−1

n−1 +
2

k
〈γµk+1

ψ
µ1···µk+1

n−1 〉+ δµk
ψ

µ1···µk−1

n−3

−
1

k

[
∂

∂t
+ βvµ(x, t)

∂

∂xµ

]
ψµ1···µk
n−2 for k = 1, . . . , n− 2

αµk
ψ

µ1···µk−1

n−1 for k = n− 1, n
(5.11)

and 〈. . .〉 implies a symmetrization on the repeated index (i.e. the sum of
the possible permutations of the repeated index, divided by the number of
such terms). At each step one must also impose the corresponding solvability
condition, which forbids the presence of states proportional to |0〉 on every
right-hand side of expressions (5.10), in order to avoid inversion problems.
These constraints give:

2γµψ
µ
n −

[
∂

∂t
+ βvµ(x, t)

∂

∂xµ

]
ψ∅
n−1 = 0 ∀n ≥ 1 . (5.12)

Together with the normalization condition
∫
dxψ∅

n ∝ δn0, expressions (5.12)
are to be interpreted as equations for the quantities ψ∅

n, which can be solved
recursively (analytically or numerically) once the incompressible flow v(x, t)
is given. I write hereafter some of these equations, considering only velocity
fields possessing odd parity with respect to reflections in the vertical direc-
tion. In other words, indicating with x̆ the point having the same coordinates
of x except for the vertical one (which is its opposite), I focus on velocities
satisfying g · v(x̆, t) = −g · v(x, t). Such flows are significant to analyse the
particle fall velocity (or, better, its deviation from the bare value (1− β)gτ)
because no mean contribution is present and every (eventual) nonzero result
is to be interpreted as due to preferential concentration in areas of rising or
falling fluid. Considering the “even” and “odd” parts of the scalar fields ψ∅

n

(i.e. their symmetric and antisymmetric parts for reflections in the vertical
direction), here are the first few equations deriving from (5.12):

[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅
0 = 0⇒ ψ∅

0 = const. =

(∫
dx

)−1

[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅
1 = 0⇒ ψ∅

1 = const. = 0
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[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅
2 = (1− β)2

∂vµ
∂xν

∂vν

∂xµ
ψ∅
0 ⇒ ψ∅

2 = ψ∅(even)
2

[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅
3 = (1− β)2

∂vµ
∂xν

∂vν

∂xµ
ψ∅
1 = 0⇒ ψ∅

3 = 0






[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅(odd)
4 = −(1− β)gµ

∂

∂xµ
ψ∅
2

[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅(even)
4 = . . .






[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅(odd)
5 = −(1− β)gµ

∂

∂xµ
ψ∅
3 = 0

[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅(even)
5 = . . . = 0

=⇒ ψ∅(even)
5 = const. = 0 & ψ∅(even)

5 = const. = 0 ,=⇒ ψ∅
5 = 0 .






[
∂t + vµ(x, t)

∂

∂xµ
− κ

∂2

∂xµ∂xµ

]
ψ∅(odd)
6 = . . .

. . .

5.4 Equations for the falling velocity

In this section I focus on heavy particles, i.e. β = 0. The terminal velocity
(5.6) is thus given by:

u&
µ=

∫
dt

1

T

∫
dx

∫
du uµρ(x,u, t) =

√
2κ

τ

∫
dt

1

T

∫
dx

∫
dy yµρ(x,y, t)

=

√
2κ

τ

∞∑

n=1

τn/2

∫
dt

1

T

∫
dxψµ

n(x, t) , (5.13)

where the last equality has been obtained by exploiting the orthogonality
relation of Hermite polynomials and shows that, at any order n, the corre-
sponding function ψn(x,u, t) enters only via its one-index coefficient ψµ

n(x, t).
Analysing the structure of these latter functions (5.11), it is easy to show that
the integrals in (5.13) vanish for n = 1, for all even orders and for any non-
vertical component µ. The first nonzero contribution thus comes from n = 3
and gives u& = gτ + O(τ 2), as one would expect. The deviation from the
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bare velocity gτ (5.7) is thus expressed by

δu =
∞∑

m=0

τ 2+m

∫
dt

1

T

∫
dxv(x, t)ψ∅(odd)

4+2m (x, t) ,

therefore one reduces to compute the spatial integral (and possibly the tem-
poral average) of the odd parts of the even-order functions ψ∅

n, which satisfy
the equations listed at the end of section § 5.3. In particular, the first cor-
rection (involving ψ∅(odd)

4 ) has been computed numerically, by solving the

coupled system for ψ∅
2 and ψ∅(odd)

4 , for two special situations of stationary,
incompressible, cellular flows: the three-dimensional so-called ABC flow [67],






v1 = A sin(2πx3) + C cos(2πx2)
v2 = B sin(2πx1) + A cos(2πx3)
v3 = C sin(2πx2) + B cos(2πx1) ,

and its two-dimensional restriction (BC flow)
{

v1 = C cos(2πx2)
v2 = B sin(2πx1) .

In the former case, I obtained a hint of increased falling velocity (with respect
to gτ), but this result still has to be verified accurately. However, the same
indication arose in the latter case, where it was possible to simulate some low-
Péclet-number flows. Specifically, considering the unit-side cubic cell with
B = C = 1 and g = 9.8, I simulated κ = 1 (Pe 2 1) and κ = 0.1 (Pe 2 10)
and I obtained downward deviations from the bare velocity of 0.031 and 15.89,
respectively. Some higher-Péclet-number flows were also simulated, showing
a further increase in falling velocity, but also such results still have to be
verified, because of limited computation power: this prevented the simulation
from reaching times long enough to be considered steady states, and from
using a spatial resolution sufficient for correctly capturing all oscillations.

5.5 Future work

The results of section § 5.4 provide a hint in the direction of falling-velocity
enhancement by inertial effects for heavy particles, but I stress again that
more accurate simulations have to be performed with more powerful comput-
ers. Moreover, it would be interesting to take into account also the second
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correction away from the bare velocity, i.e. the one due to ψ∅(odd)
6 . The equa-

tion for the latter quantity has already been found (it has not been written

here for the sake of simplicity) and it involves both ψ∅(odd)
4 and ψ∅(even)

4 as
source terms. A system of four equations should thus be solved, for ψ∅

2,

ψ∅(odd)
4 , ψ∅(even)

4 and ψ∅(odd)
6 . Such an issue has already been attacked by La-

grangian simulations, and this will constitute future work. An interesting
(and unavoidable) extension of the previous results to the opposite situation
of very light particles is also in order.

In the second part of this chapter I focused exclusively on the analysis
of the falling velocity. However, it was shown, at the end of section § 5.2,
that at the following order in ε an effective-diffusivity equation holds. Such
a subject could represent the object of a future analysis in the same spirit
of the one presented here. The starting point, instead of (5.4), would be
provided by the auxiliary equation (5.8).

A completely different approach would be needed if, on the contrary, one
wanted to investigate the feedback of the particles on the surrounding fluid,
thus considering them as active. However, such an issue is not pertinent
with the guideline of the present work. Therefore, in the next chapter, I will
move to the study of polymers, but, for the sake of continuity, always from
a “passive” point of view.



Chapter 6

Polymer relaxation time in

FENE model

Polymer stretching in random smooth flows is investigated within the frame-
work of the FENE dumbbell model. The advecting flow is Gaussian and
short-correlated in time. The stationary PDF of polymer extension is de-
rived exactly. The characteristic time needed for the system to attain the
stationary regime is computed as a function of the Weissenberg number and
the maximum length of polymers. The transient relaxation to the stationary
regime is predicted to be exceptionally slow in the proximity of the coil-
stretch transition.

The chapter is organized as follows: introductory section § 6.1 recalls the
main features of polymers. In section § 6.2 I introduce the model and present
the main results. The stationary PDF of the elongation and the transient
relaxation time are computed in sections § 6.3 and § 6.4, respectively. In the
concluding section § 6.5 I discuss the relevance of these analytical results for
experiments and numerical simulations.
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6.1 Introduction

Polymers are (usually very long) chains of simple molecules, called monomers.
Their structure may be very complex, as is the case for the DNA. The ability
of polymers to considerably change the large-scale statistics of the advecting
flow has important practical applications, drag reduction being one of the
most relevant ones [115]. It is known indeed, and actually exploited for
industrial purposes (like oil transport in submarine ducts), that adding small
quantities of polymers (few parts per million in mass) can reduce the drag
up to 80%. Polymers affect the dynamics of the advecting velocity field only
if they are highly elongated. Understanding how a single polymer chain is
stretched by a random flow is thus the first issue to address in the study of
hydrodynamical properties of polymer solutions.

At equilibrium, the radial shape of coiled polymers is spherical due to
their entropy. When placed in an inhomogeneous flow, polymers are deformed
and stretched by the gradients of the velocity. The product of the longest
relaxation time of polymers and the characteristic rate of deformation is
called the Weissenberg number Wi. For small Wi, the entropic force prevails
and polymers are in the coiled state. When Wi exceeds a critical value,
the molecules become highly elongated and their extension sharply increases.
This phenomenon is called coil-stretch transition and the critical Weissenberg
number is known to be approximately one.

I investigate the statistics of polymer extension in the finite extensible
nonlinear elastic (FENE) dumbbell model [116]. Such a model looks appro-
priate to describe synthetic molecules above all, while biological ones (like
DNA) are usually modelled as “worm-like chains” [117]. In FENE, a poly-
mer is described as two beads joined by an elastic spring. This model can
be seen as a restriction of the Rouse model, which takes into account several
small masses connected by springs: analysing the motion in terms of linear
oscillation modes, I substantially focus on the fundamental mode. However,
the elastic force diverges as the elongation of polymers attains its maximum
value, Rm, and this gives a large-extension cutoff. Consequently, the station-
ary regime exists however strong the velocity gradients are.

Since attention is directed only to the dynamics of a single molecule, the
feedback on the advecting flow is disregarded. It is worth noticing that, in
the highly-stretched state, the energy exchange between the flow and the
polymer (kinetic and elastic energies, respectively), which is responsible for
drag reduction and similar effects, is very strong and can be taken into ac-
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count by considering an additional term in the stress tensor appearing in NS
equation: this is the domain of non-Newtonian (or viscoelastic) fluids, whose
study is not among the aims of the present work.

Anyway, no matter how stretched the polymer is, its end-to-end separa-
tion is always much smaller than the turbulent Kolmogorov scale (at which
viscous and advective effects are comparable), thus a strict analogy with the
previous chapter holds, in the sense that the flow is still assumed differen-
tiable on scales typical of the polymer. In particular, to allow analytical
progress, the random flow is chosen to have the Batchelor–Kraichnan (BK)
statistics. This means that the considered flow is Gaussian, white in time and
linear in space. The BK model is a fully-solvable model for passive turbu-
lent transport which can provide useful connections between theory and real
behaviours (for a review on the applications to scalar and magnetic fields,
see [46]). The results should be intended as a qualitative description of real
polymer dynamics. I derive the complete form of the stationary PDF of poly-
mer extension and describe how the statistics of polymer stretching changes
with increasing velocity gradients. Concerning the statistics at finite times,
I compute the typical time needed for the system to reach the steady state
and predict how this depends on the maximum length of polymers and on
the stretching by the flow. My analysis shows that the coil-stretch transition
of polymers is characterized by an anomalous dynamics in time.

The coil-stretch transition was predicted in 1974 for shear and hyper-
bolic flows [118] and has been widely studied experimentally for such flows
[119, 120, 121, 122]. In contrast, the experimental study of polymer dynam-
ics in random flows is a very recent achievement. This is due to the difficulty
in generating a flow that is random at scales comparable with the size of
polymers (about 100µm). This difficulty can be overcome thanks to the
elastic turbulence discovered by Groisman and Steinberg [123]; the flow of
a highly elastic polymer solution at low Reynolds numbers, but large Wi,
has all the main properties of fully-developed turbulence. Therefore, in solu-
tions of sufficiently elastic polymers it is possible to excite turbulent motion
in exceedingly small volumes. Exploiting elastic turbulence in polymer so-
lutions, the stretching and the deformation of a single DNA molecule in a
three-dimensional random flow was thus investigated [124].

Theoretical studies concerning the coil-stretch transition in random flows
focused mainly on the Hookean dumbbell model [125, 126, 127]. This model
is suitable only for the coiled state (Wi < 1), since the linear force, in prin-
ciple, allows infinite extensions and for large Wi polymers can become more
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and more elongated under the action of velocity gradients. For Wi ≥ 1 a
stationary PDF of the extension no longer exists and this behaviour was
conjectured to coincide with the coil-stretch transition. To overcome this
oversimplification, the maximum length of polymers must be taken into ac-
count. One possibility is to replace the Hookean force by a nonlinear elastic
force. The large-value tail of the stationary PDF of the extension, for a gen-
eral inharmonic force, was obtained by Chertkov [125]; such an approximate
analysis was subsequently applied by Thiffeault to the FENE model [128].
Here I exactly derive the complete statistics of polymer stretching within the
context of the FENE dumbbell model at general Wi.

Concerning the statistics at finite times, preliminary results were obtained
for the Hookean model in [127]. There, the relaxation time to the stationary
regime could be defined only in the coiled state, so the behaviour of the
relaxation time for very small Wi was derived and a divergence for Wi = 1
was observed; this suggested a critical behaviour close to the coil-stretch
transition. I present the first prediction of the complete dependence of the
transient relaxation time onWi and Rm with the more realistic FENE model.

6.2 Coil-stretch transition

In elastic dumbbell models a polymer is described as two beads connected by
a spring. The beads represent the ends of the molecule and their separation
is a measure of the extension. The beads experience: (a) a hydrodynamic
drag force modelled by the Stokes law; (b) a Brownian force due to thermal
fluctuations of the fluid; (c) an elastic force due to the spring connecting
one bead to the other. I consider two-dimensional and three-dimensional
flows indifferently, the dimension of the flow being denoted by d. Since
in physical applications the elongation of polymers is always smaller than
the viscous scale of the flow, the dumbbell is assumed to move in a linear
velocity field v(r, t) = v0(t) + r · ∂v(t). Inertial effects and hydrodynamic
interactions between the beads are neglected. Consequently, the separation
vector between the beads, R, evolves according to the stochastic differential
equation [116]

dR = (R · ∂v)dt−
F (R)

τ
dt+

√
2R2

0

τ
dW , (6.1)
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where R0 is the equilibrium length of the polymer, τ is its relaxation time
in the absence of flow, and W is a d-dimensional Brownian motion which
accounts for thermal noise. In the FENE dumbbell model, the elastic force
F (R) takes the form F (R) = R/(1− R2/R2

m), where Rm denotes the max-
imum extension of the molecule. In physical applications the ratio Rm/R0

usually lies between 10 and 100 [116]. The length of the vectorR is a measure
of the extension of the polymer.

Within the Kraichnan model [36, 37], I recall that v(x, t) is a statistically
stationary, homogeneous and isotropic Gaussian field with zero mean and
second-order correlation

〈vµ(x, t)vν(x+ r, t′)〉 = δ(t− t′)D(v)
µν (r) .

In the so-called Batchelor regime, the flow is assumed to be smooth in space.
If one further imposes incompressibility, the tensor D(v)

µν (r) must take the
form [56]

D(v)
µν (r) = D0δµν −D1r

2
[
(d+ 1)δµν − 2

rµrν

r2

]
.

In random flows the Weissenberg number can be defined as Wi = λτ , where
λ is the maximum Lyapunov exponent of the flow, that is the average log-
arithmic growth rate of nearby fluid particle separations. The maximum
Lyapunov exponent of the BK flow has asymptotically a Gaussian PDF with
mean value λ = d(d− 1)D1 and variance ∆ = 2λ/d [129].

6.2.1 Stationary regime

The statistics of polymer elongation is described by the PDF of the norm of
R averaged over velocity realizations1: P(R, t) =

∫
dΦ 〈P (R, t)〉Rd−1, where

dΦ denotes integration over angular variables. When the flow v has the
BK statistics, P(R, t) obeys a one-dimensional Fokker–Planck (FP) equation
with nontrivial drift and diffusion coefficients (see section § 6.3). Under
reflecting boundary conditions (the probability does not flow outside the
domain of definition) the system reaches a steady state for all Wi : this
should be contrasted with the Hookean model, where the stationary regime
does not exist for Wi ≥ 1 [125, 126, 128, 127]. The stationary PDF of the

1Because of the statistical homogeneity of v, the average PDF of the elongation does
not depend on the point of application of the vector R.
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Figure 6.1: Stationary PDF of polymer elongation for the three-dimensional
FENE model at different Weissenberg numbers Wi (Rm/R0 = 50).

elongation, Pst(R) = limt→∞P(R, t), has the form (see section § 6.3)

Pst(R) = NRd−1

(
1 +

Wi

d

R2

R2
0

)−h (
1−

R2

R2
m

)h

0 ≤ R ≤ Rm , (6.2)

where h = [2(R2
0/R

2
m +Wi/d)]−1 and N is the normalization coefficient (see

equation (6.8) below). The stationary PDF is shown in figure 6.1 for differ-
ent Wi. For elongations small if compared to the equilibrium length, Pst(R)
scales as Rd−1; this result holds for a general elastic force since the left tail
of Pst comes from the events where the elastic force dominates and equation
(6.1) reduces to a d-dimensional Langevin equation (for physically meaning-
ful elastic interactions F (R) should scale as R for R→ 0). For intermediate
extensions, R0 ! R! Rm, the stationary PDF is proportional to the power
law Rd−1−2h in accordance with the prediction of [126]. For large elonga-
tions, Pst(R) scales as (R2

m − R2)h and vanishes for R = Rm. In practical
applications, R0/Rm ! 1, the exponent h is approximatively d/(2Wi), as
predicted in [128]. Obviously, when Rm → ∞ and Wi < 1, Pst(R) tends to
the stationary solution of the Hookean model [127].

The maximum of the PDF, R&, determines the fraction of polymers which
are highly stretched. The graph of R& as a function of Wi is shown in
figure 6.2. When Wi is smaller than one, R& is of the order of R0 and most
of polymers have the coiled equilibrium configuration. With increasing Wi
the most probable elongation R& grows slowly until Wi exceeds d/(d − 1).
Then, a sharp transition occurs to a strongly elongated state. This can
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Figure 6.2: Left: most probable rescaled elongation R&/Rm and average rescaled
extension µ/Rm as functions of the Weissenberg number Wi (d = 3, Rm = 50,
R0 = 1). Right: first derivative of R&/Rm with respect to Wi.
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Figure 6.3: Left: normalized root mean square σ/µ as a function of the Weis-
senberg number Wi (d = 3, Rm = 50, R0 = 1). Right: skewness y vs Wi for the
same values of the parameters.

be appreciated from the behaviour of the first-order derivative of R& as a
function of Wi (figure 6.2). As Wi becomes very large, R& approaches Rm.
The same analysis holds for the average extension µ, apart from the fact
that it starts increasing for a smaller Wi and its limiting value is (3/4)Rm

(see figure 6.2). It is worth noticing that the coil-stretch transition becomes
sharper and sharper with increasing Rm (not plotted).

The normalized RMS value of the extension, σ/µ, with σ2 =
∫
dR (R −

µ)2Pst(R), is represented in figure 6.3. It increases at low Wi until it reaches
a maximum value; then σ is compensated by the sharp increase in µ and at
large Wi the rescaled RMS eventually relaxes to the constant value 1/

√
15.

The skewness y = [
∫
dR (R − µ)3Pst(R)]/σ3 is positive for small Wi and

becomes negative at large Wi (figure 6.3) accordingly with the qualitative
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behaviour of the stationary PDF (figure 6.1). The maximum of skewness in
the neighbourhood of the coil-stretch transition can be easily understood as
follows. At low Wi the PDF is peaked at R0 and the skewness is positive.
With increasing Wi the right tail starts raising, but µ is still of the order
of R0: the skewness, therefore, increases and achieves is maximum value.
Beyond the coil-stretch transition, µ starts moving towards the maximum
extension and the skewness decreases until it becomes negative at large Wi,
that is when the PDF has a long left tail. The limiting value of y forWi→∞
is −(2/3)

√
5/3.

6.2.2 Relaxation to the stationary regime

I now turn to the time dependence of the PDF of the elongation. Starting
from an initial condition peaked at R0, the system relaxes to the stationary
regime described by (6.2). The time needed to reach the stationary regime,
T , is solution of a transcendental equation which involves continued fractions
(see section § 6.4).

For small Weissenberg numbers, 0 ≤Wi " d/(d+4), the transient relax-
ation time T behaves according to the prediction of the linear model [127]:

T/τ = (1/2)[1−Wi(d+ 2)/d]−1 , (6.3)

independently of Rm (see inset in figure 6.4). In the proximity of the coil–
stretch transition T displays a maximum as a function of the Wi. The re-
laxation is exceptionally slow in this range of Wi because the stationary
regime results from the competition between the coiled state and the highly-
stretched state. The position and the value of the maximum relaxation time,
Tm, depend on the cutoff Rm (figure 6.4). As the maximum allowed exten-
sion of polymers increases, Tm is closer and closer to Wi = 1 and grows; at
large Rm, the FENE model should indeed match the Hookean model, where
T diverges as Wi tends to one [127].

For very large Weissenberg numbers, the stretching time is small, if com-
pared to τ , and the molecules are expected to rapidly reach the highly
stretched configuration. Hence, T vanishes as Wi tends to infinity. A numer-
ical fit shows that T scales as Wi−1 at large Wi.

In the next sections I explicitly derive (6.2) and the equation for T .
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Figure 6.4: Left: rescaled time of relaxation to the stationary regime, T/τ , as a
function of the Weissenberg numberWi for three different values of Rm/R0 (d = 3).
The inset shows the linear-model approximation given by equation (6.3) (dashed
line) for Rm/R0 = 50: the agreement is good up to d/(d+4) 2 0.4. Right: depen-
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6.3 Fokker–Planck equation

For a fixed realization of the velocity field, the PDF of the end-to-end vector,
P (R, t), satisfies the FP equation associated with (6.1) [74]:

∂tP + ∂ ·
[(

R · ∂v −
F (R)

τ

)
P

]
=

R2
0

τ
∂2P . (6.4)

To obtain an equation for P(R, t), one has to average the above equation
over the velocity realizations and to integrate the result over angular vari-
ables. The terms of the type 〈viP 〉, in general, do not lead to a closed form
for the mean PDF and a closed equation cannot be deduced from ((6.4)).
The Gaussianity and the δ-correlation in time of the BK model provide an
exact closure. Exploiting FND’s formula [130], one obtains: 〈(∂µvν)P 〉 =
Cµνκλ∂Rλ

[Rκ〈P 〉], with Cµνκλ = D1[(d+1)δµκδνλ − δµνδκλ − δµλδνκ]. One can
thus derive, from (6.4), a one-dimensional FP equation for P(R, t):

∂sP(R, s) = −∂R[A(R)P(R, s)] + ∂2
R[B(R)P(R, s)] , (6.5)

where time has been rescaled with τ , s = t/τ , and the drift and diffusion
coefficients have the form

A(R) =
(d+ 1)Wi

d
R− F (R) + (d− 1)

R2
0

R
, B(R) =

Wi

d
R2 +R2

0 . (6.6)
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The coefficients A and B are time independent, due to the stationarity of
the advecting flow. If R0 is set to zero, then equation (6.5) reduces to the
approximate equation for the large-value tail of the PDF derived by Chertkov
[125].

To solve (6.5), reflecting boundary conditions must be imposed, which
amounts to saying that the probability current associated with the solution,
J(R, s) = A(R)P(R, s) − ∂R[B(R)P(R, s)], vanishes in R = 0 and R = Rm

for all s ≥ 0. This means that there is no flow of probability through the
boundaries of the domain. Under these conditions the stationary PDF of the
elongation takes the form [74]

Pst(R) =
C

B(R)
e
∫R
R1

dxA(x)/B(x) , (6.7)

where the constant C and the lower integration limit R1 are fixed by the
normalization condition. The above formula holds for a general elastic force
of the form F (R) = f(R)R. Replacing the force of the FENE model into
(6.7), one thus obtains (6.2) with

N =
2Γ(d/2 + h + 1)

Rd
mΓ(d/2)Γ(h+ 1)2F1(d/2, h; d/2 + h+ 1;−WiR2

m/dR
2
0)

. (6.8)

6.4 Relaxation time

The time-dependent solution of the FP (6.5) can be obtained by separation
of variables [74]. In other words, P(R, s) can be sought in the form

P(R, s) = Pst(R) +
∞∑

k=1

cke
−µkspk(R) , (6.9)

where the coefficients ck are fixed by the initial condition P(R, 0) and µk,
pk(R) are respectively the eigenvalues and the eigenfunctions of the ordinary
differential equation

d2

dR2
[B(R)pk(R)]−

d

dR
[A(R)pk(R)] + µkpk(R) = 0 (6.10)

(without sum over k). The above equation should be solved with reflecting
boundary conditions: Jk(0) = limR→Rm

Jk(R) = 0, Jk being the probabil-
ity current associated with the eigenfunction pk. It can be shown that the
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eigenvalues µk are real and non-negative, Pst(R) belonging to the eigenvalue
µ0 = 0 [74]. As it will be seen, the eigenvalues form a countable set and may
be arranged in ascending order: 0 < µ1 < µ2 < . . .. The reciprocal of µ1,
therefore, is the time of relaxation to the stationary regime rescaled by τ .

Equation (6.10) is a second-order linear differential equation with four
regular singularities in the complex plane. By the change of dependent and
independent variables z = (R/Rm)2, pk(z) = z(d−1)/2(1−z)hwk(z), this equa-
tion can be transformed into a standard Heun equation for the function wk(z)
[131]:

d2wk

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dwk

dz
+

αβz − q

z(z − 1)(z − a)
wk = 0 , (6.11)

where

a = −
d

Wi

R2
0

R2
m

, q =
d

2

(
h+

µk

2Wi

)

α = h+
d

4
−

1

4

√

d

(
d−

4µk

Wi

)
, β = h+

d

4
+

1

4

√

d

(
d−

4µk

Wi

)

γ =
d

2
, δ = h , ε = 1 + h ,

with h = [2(R2
0/R

2
m +Wi/d)]−1. Reflecting boundary conditions for pk map

into the following limiting conditions for wk:

lim
z→0

zγ−1wk(z) = 0 , lim
z→1

(1− z)δ−1wk(z) = 0 . (6.12)

The Heun equation is the general Fuchsian equation with four singularities.
In the standard form (6.11), the singular points are 0, 1, a and∞. Let z0 be a
generic singularity of (6.11). From the theory of Fuchsian equations, the local
behaviour of wk(z) near z0 is specified by the characteristic exponents ρ1 and
ρ2 associated with z0 [132]. If ρ1 − ρ2 is not integer, in a neighbourhood of
z0 (which excludes the nearest other singularity) wk(z) can be written in the
form b1(z − z0)ρ1Ψ(z − z0) + b2(z − z0)ρ2ψ(z − z0), where b1, b2 are constant
and Ψ, ψ are analytic functions such that Ψ(z0) .= 0 .= ψ(z0). If ρ1 − ρ2
is integer and ρ1 ≥ ρ2, the function ψ can be no longer analytic in z0 and
involve the function log(z − z0).

The singularity z = 0 has characteristic exponents 0 and 1−γ; the singu-
larity z = 1 has characteristic exponents 0 and 1−δ. In physical applications,
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one can exclude the situation where δ is integer. On the contrary, 1 − γ is
zero when d = 2.

Consider first the case d = 3, where there are not logarithmic singularities
in z = 0. To fulfill conditions (6.12), wk must be simultaneously a local
solution about z = 0 and z = 1, in both cases belonging to the exponent
0. Such a solution is called a Heun function of class I relative to the points
0 and 1, and exists only for a countable set of values of q and hence of µk

[131]. The condition for the aforementioned Heun function to exist leads to
a transcendental equation for the eigenvalues µk [133]:

L0 −
M0K1

L1 −
M1K2

L2 − . . .

= 0 , (6.13)

where

Ki =
(i+ α− 1)(i+ β − 1)(i+ γ − 1)(i+ ω − 1)

(2i+ ω − 1)(2i+ ω − 2)
,

Li = q + a< −
ε<(γ − δ) + [< + αβ][2< + γ(ω − 1)]

(2i+ ω − 1)(2i+ ω + 1)
,

Mi =
(i+ 1)(i+ ω − α + 1)(i+ ω − β + 1)(i+ δ)

(2i+ ω + 1)(2i+ ω + 2)
,

with ω = γ + δ − 1 and < = i(i + ω). The rescaled relaxation time T/τ
is then the reciprocal of the lowest non-zero solution of (6.13). In the case
d = 2 the conclusions are unchanged since the solution involving a logarithm
in the neighbourhood of z = 0 should be discarded.

I solved (6.13) numerically: the continued fraction was computed by the
modified Lentz method and the first non-zero solution was evaluated by the
“root false position” method (better known as regula falsi) [134].

6.5 Summary and discussion

The goal of this chapter was to investigate polymer stretching in a turbulent
flow within the context of a fully-solvable model. The statistical features of
the BK flow allow one to derive the complete form of the stationary PDF of
polymer elongation for a general elastic force. When specializing to finitely
extensible polymers, I recover the main properties of polymer dynamics in
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real turbulent flows and compute the time of relaxation to the stationary
regime.

It should be noted that the velocity field considered here is statistically
isotropic. Together with the δ-correlation in time, this is a key assumption in
order to derive a fully-analytical solution of the problem. In the experimental
setup of [124] the elastic turbulent flow is superimposed to a mean shear flow.
The long-time statistics of polymer extension in the presence of a mean shear
has been recently considered [135, 136, 137, 138].

The main result of my study is the behaviour of the relaxation time to
the steady state as a function of Wi. The transient relaxation time is an
increasing function of Wi at low Wi, is maximum close to the coil-stretch
transition and eventually tends to zero with increasing Wi. Knowing the
dependence of the transient time on Wi is relevant both for numerical simu-
lations and experiments. For example, in the former case, the time required
for uncorrelated polymer chains that are suddenly exposed to the same flow
to correlate is (implicitly) related to the sharpness of stress gradients one can
expect in the flow. Hence, the prediction of the transient time in my study is
useful to estimate the required grid spacing to fully resolve those gradients.
In the latter case, the fact that the transient relaxation time is especially
long just below the coil-stretch transition implies that, within such a range
of Wi, experimental measures are more sensitive to statistical fluctuations.

Experiments concerning the transient relaxation to the stationary regime
can investigate the time dependence of the conditional PDF P(R, t|R0, 0),
which corresponds to the initial condition peaked at the equilibrium size:
P(R, 0|R0, 0) = δ(R−R0). Such an initial condition can be fixed experimen-
tally as follows. The PDF of the extension is constructed by following the
motion of different polymer molecules and collecting R(t) for each molecule:
one should then start counting time only when the length of the correspond-
ing polymer is approximatively R0. This is equivalent to selecting the initial
state where all molecules have the equilibrium extension, R(0) = R0.

As for the transient relaxation time, this can be measured directly from
the time behaviour of the conditional moments of the extension: Rn(t) =∫
dRRnP(R, t|R0, 0), where n is a positive integer. The conditional PDF can

indeed be expanded as in (6.9) and the order of series and integral can be
interchanged in the definition of Rn due to the integrability of Rnpk(R) and
to the uniform convergence of series (6.9) [139]. Therefore, all the moments
of the extension converge to their stationary value with the same rate as the
PDF of the extension.
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To conclude, it is believed that the results obtained for the nonlinear
dumbbell model are relevant for the comprehension of polymer dynamics
in turbulent flows at any Weissenberg number. Moreover, this study may
stimulate new experiments directed to investigate the transient relaxation to
the stationary regime.
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Chillà, F., Dubrulle, B., Gagne, Y., Hebral, B., Herwei-
jer, J., Marchand, M., Maurer, J., Muzy, J. F., Naert, A.,
Noullez, A., Peinke, J., Roux, F., Tabeling, P., van de Wa-
ter, W. & Willaime, H. 1996 Structure functions in turbulence, in
various flow configurations, at Reynolds number between 30 and 5000,
using extended self-similarity. Europhys. Lett. 34, 411–416.

[40] Kurien, S. & Sreenivasan, K. R. 2000 Anisotropic scaling con-
tributions to high-order structure functions in high-Reynolds-number
turbulence. Phys. Rev. E 62, 2206–2212.

[41] Warhaft, Z. & Shen, X. 2002 On the higher order mixed structure
functions in laboratory shear flow. Phys. Fluids 14, 2432–2438.

[42] Arad, I., Dhruva, B., Kurien, S., L’Vov, V. S., Procaccia, I.
& Sreenivasan, K. R. 1998 Extraction of Anisotropic Contributions
in Turbulent Flows. Phys. Rev. Lett. 81, 5330–5333.



BIBLIOGRAPHY 153

[43] Biferale, L. & Toschi, F. 2001 Anisotropic Homogeneous Tur-
bulence: Hierarchy and Intermittency of Scaling Exponents in the
Anisotropic Sectors. Phys. Rev. Lett. 86, 4831–4834.

[44] Biferale, L., Calzavarini, E., Toschi, F. & Tripiccione, R.
2003 Universality of anisotropic fluctuations from numerical simula-
tions of turbulent flows. Europhys. Lett. 64, 461–467.
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Summary - Riassunto

This thesis encompasses analytical, and also numerical, work within the gen-
eral framework of hydrodynamical turbulence. It is divided into three parts.
The first part is devoted to the study of the degree of universality and self-
similarity at different scales, which is a key point in the classical view of ideal
turbulence. Analysis is performed both on the velocity field, investigating its
scaling exponents, and on passive scalars advected by it, in the presence of
“nonideal” (e.g. inhomogeneous, even point-like) sources: comparisons with
the corresponding homogeneous situations are performed, in order to verify
a possible small-scale restoration of homogeneity, i.e. of ideality.
The second part moves to a large-scale study of turbulence. First, large-eddy
simulation closures for the passive scalar are derived systematically from first
principles in the Kraichnan advection model. Subsequently, they are applied
to the numerical study of a practical situation (the atmospheric boundary
layer), also in order to verify some of the issued raised in the previous part.
In the third part, I analyse the dynamics of complex particles, which (de-
spite disregarding their feedback on the flow) do not fit the passive-scalar
description. More specifically, I focus on the falling velocity of inertial parti-
cles (for which inertia, gravity and advection interact in a nontrivial way) in
the Stokes regime and on the study of relaxation time of probability density
functions of polymers in the FENE model for Batchelor–Kraichnan flows.

Modelli analitici di turbolenza: dalle piccole

alle grandi scale, e oltre

Questa tesi raccoglie studi analitici, e numerici, svolti nell’ambito della tur-
bolenza fluidodinamica. Essa è divisa in tre parti.
La prima parte riguarda lo studio del grado di universalità e autosimilarità
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alle diverse scale, cardine dello scenario classico della turbolenza. Ho ana-
lizzato sia il campo di velocità, studiando i suoi esponenti di scala, sia il
trasporto di scalare passivo, in presenza di sorgenti non ideali (in partico-
lare disomogenee, come la sorgente puntiforme): la verifica di un possibile
ripristino a piccola scala dell’omogeneità, cioè dell’idealità, è stata svolta me-
diante un costante paragone con la controparte omogenea.
Nella seconda parte mi sono concentrato sullo studio delle grandi scale in
turbolenza. Dapprima, ho sistematicamente derivato dai principi primi le
chiusure LES nel modello di avvezione di Kraichnan per lo scalare passivo.
Successivamente, ho applicato la tecnica LES allo studio di una situazione di
notevole interesse pratico, lo strato limite atmosferico, anche per verificare
alcuni degli argomenti costituenti la parte precedente.
Nell’ultima parte, ho analizzato la dinamica di particelle complesse, che non
rientrano nella modellizzazione di scalare passivo (pur avendo trascurato la
loro retroazione sul flusso). In particolare, ho studiato la velocità di caduta di
particelle inerziali (per cui inerzia, gravità e trasporto interagiscono in modo
non banale) nel regime di Stokes e il tempo di rilassamento delle PDF di
molecole polimeriche nel modello FENE per flussi di Batchelor–Kraichnan.


