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UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS
UFR SCIENCES

Ecole Doctorale “Sciences fondamentales et appliquées”
e
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Abstract

Résumé

Cette thèse regroupe des travaux numériques et théoriques s’ins-
crivant dans le cadre général de la dynamique des polymères en
écoulement. La première partie est dédiée à l’étude de la dynamique
de molécules isolées dans des écoulements, situation d’intérêt pour
la rhéologie et la biophysique. Le mouvement individuel d’une molé-
cule a été analysé en détail grâce à des méthodes stochastiques et à
de nouveaux algorithmes numériques. Ces études ont permis d’ob-
tenir les distributions de probabilité de l’élongation et de l’orien-
tation des molécules et de caractériser les temps dynamiques du
système dans des écoulements laminaires et aléatoires.
La deuxième partie de la thèse porte sur les solutions diluées de po-
lymères, qui jouent un rôle essentiel dans les applications indus-
trielles et pour l’étude de la dynamique des fluides complexes en
général. La stabilité de l’écoulement de Kolmogorov viscoélastique a
été étudiée à l’aide d’une approche perturbative multi-échelles. On
a ainsi montré que les polymères peuvent stabiliser l’écoulement
mais aussi générer des instabilités purement élastiques. L’état tur-
bulent correspondant a été analysé par des simulations numériques,
qui mettent en évidence les différences entre les cas viscoélastique
et newtonien.

Sinossi

Questa tesi contiene uno studio teorico e numerico della dinamica
di polimeri in flussi. La prima parte è dedicata allo studio del mo-
to di un singolo polimero in flussi esterni, argomento di interesse
nella caratterizzazione delle proprietà meccaniche di biomolecole
e in reologia. Il moto di una singola molecola e le quantità sta-
tistiche relative sono state analizzate in dettaglio grazie a metodi
stocastici e a nuovi algoritmi numerici. Tali strumenti permetto-
no di accedere alla distribuzione di probabilità della lunghezza e
dell’orientamento della molecola e di studiare i tempi dinamici del
problema in flussi laminari e aleatori.
Nella seconda parte della tesi affronterò il problema della dinamica
di soluzioni diluite di polimeri, tematica di grande interesse per le
sue applicazioni industriali nonché nello studio della meccanica di
fluidi complessi in generale. Ho studiato la stabilità del flusso di
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Kolmogorov di una soluzione polimerica con metodi perturbativi a
scale mutiple. La presenza di polimeri può aumentare la stabilità,
ma può dare anche luogo a instabilità di tipo puramente elastico.
Ho analizzato il corrispondente regime turbolento per mezzo di si-
mulazioni numeriche, che mettono in evidenza come tale stato sia
differente dal caso newtoniano.

Abstract
This thesis encompasses numerical and theoretical work within
the general framework of polymers in fluid flows. The first part con-
cerns the study of single polymer dynamics and statistics, a subject
of interest in the research on mechanical properties of biomolecules
and in rheology. By means of stochastic methods and of new nu-
merical algorithms the motion of a single molecule in an external
flow has been analyzed in detail, and its statistics has been studied.
In particular the probability distribution functions of extension and
orientation of the molecule, as well as the dynamical timescales of
the system, can be derived both in laminar and random flows.
The second part of the thesis refers to the dynamics of dilute poly-
mer solutions which appears in technological and industrial appli-
cations as well as in complex fluid dynamics. The stability prop-
erties of a polymer solution in a Kolmogorov flow have been in-
ferred by means of multiple-scale perturbation techniques. The
presence of polymers results in a stabilization of the flow, but can
also generate purely elastic instabilities. The correponding turbu-
lent dynamics is analyzed via direct numerical simulations, and
the viscoelastic and the Newtonian cases are compared.
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Polymer dynamics in fluid
flows: from single molecules
to complex fluids

Polymers are molecules of high molecular mass, structurally com-
posed by repeated units derived from molecules of low relative
molecular mass. There are both natural and synthetic polymers:
among naturally occurring polymers are DNA, proteins, starches,
cellulose, and latex. Synthetic polymers are produced commer-
cially on a very large scale and have a wide range of properties and
uses. For example the materials commonly called plastics are all
synthetic polymers.
Polymers are formed by chemical reactions where the repeating
units, called monomers, are joined sequentially, forming a chain.
In many polymers, only one type of monomer is used. In others,
two or three different monomers may be combined.

Natural polymers began to be chemically modified during the
18th century to produce many materials. The first industrial use
goes back to the first half of the 19th century: in 1834 Ludersdorf
and Hayward discovered that adding sulfur to raw rubber helped
preventing the rubber from becoming sticky. In 1839 Goodyear
accidentally dropped a mixture of rubber latex, sulfur, and white
lead on a hot stove-top. The result was a rubber that was more
resistant to temperature extremes. Goodyear named the process
vulcanization, and vulcanized rubber became the wonder material
of the 1800s. The first theories on polymer aggregates appear at
the end of 19th century but most of the knowledge about polymers
has been gleaned during the past century.

In this thesis I will present the research I performed during

ix



x GENERAL INTRODUCTION

Figure 1: In this experiment by Chu and coworkers [1] a bead is attached to one
end of a single DNA molecule and is pulled to form different pathways. The snap-
shots of the molecule are obtained by fluorescence microscopy.

my PhD. The thesis is subdivided into two parts, introduced here-
after. Each part aims at introducing the fundamentals concepts
and models, and at reporting the results I obtained. Chapters are
followed by the corresponding research articles.
Each part, including the introduction, has its own bibliography.

Part I: Single polymer dynamics
and statistics

Until about fifteen years ago, measurements of polymer properties
were taken in ’bulk’ experiments. Typically, macroscopic proper-
ties of a solution were measured and the result was connected with
properties of single molecules. Thanks to the extraordinary tech-
nological progresses and to the development of novel experimental
techniques it is nowadays possible to have direct access to micro-
scopic observables, such as extension, orientation or conformation
of a single molecule. In particular, a macromolecule can be directly
manipulated and its mechanical properties can be studied in great
detail (see for example figs. 1 and 2). Furthermore, by means of flu-
orescence microscopy, also the dynamics of a single polymer can
be tracked in time and analyzed directly.
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(a) (b)

Figure 2: (a) A sketch of an experiment where a protein is stretched by an atomic
force microscopy. The cantilever of the microscope is attached to one end of the
molecule, and its other end is attached to the substrate. Mechanical properties of
the molecule can be determined by measuring the deviation of the cantilever or
by inducing vibrations of the substrate. (b) In this experiment, a double stranded
DNA is unzipped. One end of the molecule is pulled by interferometric techniques.
In this way the forces in molecular reactions where DNA opens its strands can be
measured in detail.

A large number of experiments have been performed in the past
decade to exploit the accessibility of the microscopic properties of
these macromolecules (including very important biomolecules such
as DNA). As a result many of the theoretical polymer models pro-
posed in the past fifty years have been verified and refined. Phe-
nomenological models predicting elasticity of macromolecules have
been confirmed by some very nice experiments between 1991 and
1997 (see ref. [2] and references therein).
Due to the applicability of these techniques to biomolecules, many
experiments have been performed to investigate the forces involv-
ing DNA in biological reaction or the variation of mechanical prop-
erties of DNA-protein complexes (see ref. [2] and references therein).
Finally, numerous efforts have been devoted to the detailed anal-

ysis of the motion of macromolecules in fluid flows. These exper-
iments have a twofold aim: they attempt on the one hand to re-
fine the accepted polymer models and to identify the fundamental
elasticity-related physical mechanisms (see for example [3] for a
recent review), and on the other hand to study the complicated dy-
namics of a polymer in external velocity fields such as conforma-
tion hysteresis in elongational flows [4, 5], coil-stretch transition
in deterministic and turbulent flows [6, 7], tumbling dynamics in
shear flows [8–10].
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(a)

(b)

Figure 3: (a) The Weissenberg effect. (b) The die swell effect: on the left the Newto-
nian case and on the right the viscoelastic case. Pictures taken from web.mit.edu.

This first part of the thesis is dedicated to new results in single
polymer dynamics: I will give a brief description of the phenomenol-
ogy of single polymers dynamics in external flows, introduce a few
widely accepted models and show how, in spite of their simplicity,
they can be very useful to understand the basic physics of single
polymer motion in external flows.

Part II: Dynamics of dilute
polymer solutions

It is known since the end of the 40s that the addition of polymer
additives into a fluid can dramatically change its properties. The
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Figure 4: Two squads of firemen using a water cannon carrying pure water (right)
and a dilute polymer solution (left). It has been noted that besides the fact that
pure water covers a smaller distance (starting with the same pressure) the cannon
with the polymer solution exerts also weaker recoil forces.

mechanical response of a fluid is defined by a so called “constitu-
tive equation” which links the deformation rate to the stresses in
the flow. The fluids for which there is proportionality between the
two are called Newtonian fluids, the constant being the viscosity.
A dilute solution of a Newtonian fluid and soluble polymers is a
viscoelastic fluid, as it behaves both like viscous and elastic ma-
terials. Among the large number of notable phenomena which are
known to appear when dealing with viscoelastic fluids there are the
entanglement, the die swell effect, the Weissenberg effect and the
turbulent drag reduction.
To have a flavor of how a polymer solution can show very inter-

esting properties a simple experiment can be performed. Using a
saturated solution of water and cornstarch, it can be clearly seen
that depending on the external solicitation the solution reacts in
different ways. If a weak stress is imposed (for example by slowly
stirring the mixture with a teaspoon) the fluid reacts as a liquid. If
the external solicitation is strong (take the tea spoon and abruptly
dip it or extract it from the mixture) the fluid reacts as a solid. This
is a typical example of entanglement: the cornstarch is a polymer
(a complex carbohydrate), and its concentration in this solution is
very large. When the external stress is low, polymers can slide past
each other, whereas when the stress is large they tend to tangle on
each other and this causes a rigidity of the mixture.
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Figure 5: A picture of the Trans Alaska Pipelines. 800 miles of pipe cross all
Alaska, carrying roughly 1 million of barrels per day. A drag reducing agent is
used since the middle of the 70s to reduce the pressure drop between the starting
point and the final point of the pipe. The pumping stations have been reduced from
11 to 7 thanks to the drag reduction phenomenon.

A striking behavior of viscoelastic fluids can be observed in an
experiment called rod-climbing or Weissenberg effect [11]. The free
surface of a Newtonian fluid put in rotation inside a tank takes the
typical shape of a paraboloid, whereas some viscoelastic fluids tend
to climb the rod, as in fig. 3a.
Analyzing the motion of a fluid coming out from a capillary, a big
difference can be observed between a Newtonian fluid and a vis-
coelastic fluid, as shown in fig. 3b. For fully developed flow of a
viscoelastic fluid in the tube, a tension along the streamlines is
present. When the fluid exits the tube, it relaxes the tension along
the streamlines by contracting in a longitudinal direction. For an
incompressible liquid, this results in a lateral expansion, giving
rise to the die-swell phenomenon [12].
Finally, when fully developed turbulence is achieved, a viscoelastic
fluid can show a very interesting behavior from a practical point of
view. The addition of a small amount of long-chain polymers to a
Newtonian fluid flowing in a pipe can display a dramatic reduction
of the skin friction between the walls of the pipe and the fluid. This
effect has been first reported by the British chemist Toms [13] but
it was probably already discovered during the Second World War by
the US army, and kept in secrecy. Drag reduction by polymer ad-
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ditives has been studied for more than half a century [14–17], and
it has been used in a variety of different applications (see fig. 4 and
fig. 5). Nevertheless a commonly accepted explanation still does
not exist.

This part of the thesis concerns the results I obtained in the
analysis of dilute polymer solutions dynamics. I will briefly review
the physics of polymer solutions and describe the stability prop-
erties of a flow. I will present the most used models of polymer
solutions and introduce and explain in detail the results on the sta-
bility of polymer solutions and on the study of the drag reduction
phenomenon in the context of the viscoelastic Kolmogorov flow.
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Introduction
The dynamics of polymers in fluid flows has been investigated for
more than half a century, due to the rich phenomenology and wide
applications of polymer solutions. The rheological properties of di-
lute and concentrated solutions of polymers are of paramount im-
portance in polymer processing. For example in industrial process-
ing of plastic materials a polymer melt is formed by a prestretching
process occurring in a flow. Another very important application of
polymers is the use of polymer additives to accelerate the motion
of a fluid through a pipe system (see part II).
The direct access to microscopic observables in the study of the
motion of polymers in fluid flows has been a motivation to deepen
the understanding of phenomena which had been observed several
years ago.
In the first chapter I will present the phenomenology of the dynam-
ics of a single molecule in a fluid flow, referring to recent exper-
iments in the field that represent some of the major accomplish-
ments of single molecule techniques. The coil-stretch transition
and the conformation hysteresis appearing in the laminar elonga-
tional flow will be reviewed and the motion of a polymer in a linear
shear flow will be described, addressing the problem of shape dy-
namics. Recent observations of coil-stretch transition and single
polymer dynamics in random flows will be also presented.
In chapter 2 I will introduce the most common polymer models, fo-
cusing on the appropriate approximations and on the known draw-
backs.
The following chapters are devoted to present my research results.
Chapter 3 is dedicated to the analysis of the tumbling motion in
a linear shear flow. Due to the particular alternation between re-
gions where the flow is weak compared to fluctuations and to re-
gions where it is dominating, a typical flipping motion occurs, that
can be studied and explained by means of theoretical analysis and
numerical simulations.
In chapter 4 I will present the results of a theoretical and numeri-
cal analysis of the influence of an external flow on the relaxational
dynamics of a single polymer. This study aims at explaining in
detail how polymer-flow interactions can dramatically change the
typical dynamical timescales compared to the case where the flow
is absent.
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Chapter 1

Single polymer dynamics in
fluid flows

1.1 Coil-stretch transition in elongational
flows

It is known since the end of the ’50s that a polymer in a fluid
flow can be strongly deformed by the interaction with the veloc-
ity field. A polymer in a fluid at rest typically resembles a spongy
ball. A homo-polymer (i.e. a polymer with a unique monomer re-
peated many times) is like a wire that coils up due to hits with
the molecules of the solvent. In principle all the configurations
are permitted (even the fully stretched one) but in probabilistic
terms highly coiled configurations are much more probable. Con-
versely, when intense velocity gradients are imposed across a poly-
mer, stretched states occur with large probabilities.
The entropic tendency to recover a coiled state is indicated by an
intrinsic parameter of the polymer, which is the time needed by the
molecule to reach the steady state, in the absence of flow, start-
ing from a non-coiled configuration. This time is called relaxation
time or Zimm’s time and depends on the temperature and viscosity
of the solvent, on the number of monomers in the molecule (and
hence on the molecular weight) and on the effective length of the
bonds between monomers.
Clearly the stretching rate of a given velocity field must be com-

pared to the relaxation time of the molecule. If the velocity field is
weak the recalling force prevails and the molecule is not stretched.
On the contrary, if it is sufficiently strong the polymer will be

5
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Figure 1.1: Snapshots of a single DNA molecule relaxing to a coiled state [1]. In
this experiment a bead is attached to an end of the molecule and is tethered. The
molecule is stretched by a uniform flow and once the molecule is fully elongated
the flow is switched off and the relaxation of the molecule is measured at different
times.

stretched.
This concept can be quantified in terms of the non-dimensional
Weissenberg number (from the German physicist Karl Weissenberg):

Wi = ||∇v||tτ (1.1)

where ||∇v||t stands for the typical velocity gradient across the
molecule and τ is the Zimm’s time. Wi " 1 corresponds to a
relaxation-dominated dynamics and hence to substantially coiled
molecules, while Wi # 1 corresponds to a dynamics entirely domi-
nated by the stretching, and therefore to highly stretched molecules.

The natural question that arises is: what happens when stretch-
ing and relaxation are competing with each other, i.e. for Wi ∼ 1?

De Gennes and Hinch were the first to address this question [2,3],
claiming that a sharp transition exists between relaxation-domi-
nated states and stretching-dominated states in strong flows. This
transition has been called coil-stretch transition (see fig. 1.2). A typ-
ical example cited by de Gennes where the transition is expected
is the elongational flow (see fig. 1.3a). A quite trivial observation is
that if we imagine that the molecule is linearly stretched by the ve-
locity field there will be a value of Wi above which the length of the
polymer would grow indefinitely because stretching would prevail
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CST Wi
Figure 1.2: A sketch of the coil-stretch transition. In a probabilistic sense below
the critical Wi the molecule is coiled, and above it is substantially stretched.

(a)

X

Y

(b)

Figure 1.3: (a) Streamlines of an elongational flow. (b) Sketch of a linear shear
flow.

on relaxation. In fact, polymer recalling forces are nonlinear, so
that the length of a polymer stretched by a velocity field saturates
to the fully extended length for large enough values of Wi.
The coil-stretch transition has been observed in a bulk experiment

by Leal and collaborators [4,5] by means of birifrengence methods,
by measuring the optical properties as a function of the orienta-
tion of molecules in a two-dimensional flow. One of the first ex-
periments where single molecule measurements of the coil-stretch
transition were taken has been performed by Chu and cowork-
ers [6], where a linear mixed flow was generated by moving rods.
With real-time imaging fluorescence microscopy, the conformation
of molecules was observed (see fig. 1.4). More recently the coil-
stretch transition has been observed also in random flows (see
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glucose oxidase (0.05 mg/mL), catalase (0.01 mg/mL), and
!-mercaptoethanol (1% v/v) was used to reduce photobleaching.

The viscosity of the buffers was measured using a cone-
plate viscometer and was found to be 25 and 100 cP, respec-
tively, at 23 °C. We believe, however, that the actual viscosity
of the solutions when loaded into the apparatus is ap-
proximately 50 and 200 cP, respectively. This belief is based
on a comparison of the measured polymer relaxation time, τ,
with previous values of τ obtained in earlier experiments at
different viscosities done in this lab. We think the difference
in viscosity seen in this experiment can be attributed in part
to a 3-5 °C temperature difference between the lab where the
viscosity was measured and the lab where the data were taken
and in part to solvent evaporation during the 5 min that it
took to load the sugar solution into the apparatus. After the
solution had been loaded the apparatus was sealed, and no
significant difference was detected in τ measured before and
after an experimental run (typically of 2 h in length). The
average τ was also consistent from run to run.

General. The Wi of a flow was determined using the
formula Wi ) Γτ (τ is the longest polymer relaxation time).
The strain rate Γ was determined by the speed of an external
dc encoded motor (Maxon Motors) which translated the tubes/
rods. The relaxation time τ was determined by fitting the
relaxation of >50 molecules to the function x(t)2 ) c exp(-t/τ)
+ 4Rg

2, where x(t) is the extension and τ, C, and Rg
2 are free

parameters in the fit: τ was measured to be 4.7 s in the 50 cP
buffer and 20 s in the 200 cP buffer used for these experiments.

The polymers were imaged using a home-built inverted
microscope setup for epi-fluorescence. This microscope used a
100 W mercury arc lamp (Zeiss), a 470 ( 32 nm band-pass
excitation filter (Chroma), and a 500 nm long-pass dichroic
(Chroma) to excite the fluorescent dye. A 60×, 1.2 numerical
aperture water immersion microscope objective (Nikon) was
used both to couple in the excitation light and to image the
resulting fluorescence. Additionally, the imaging pathway
contained a 160 mm-to-infinity-corrected conversion lens
(Zeiss), a 40 cm tube lens (Newport), a 515 nm long pass

emission filter (Chroma), and a video camera (Phillips 600TN
CCD) fiber coupled to a microchannel plate intensifier
(Hamamatsu).

The polymers were imaged at a depth of 120 ( 20 µm in
the apparatus, where velocity gradients in the z-direction were
found to be minimal. Movies of polymer behavior were
captured directly to a computer from the video camera using
a National Instruments frame grabber card (PCI-1407). The
polymer extension in each frame of a movie was determined
using a threshold-based algorithm. The results of the algo-
rithm were checked and corrected manually.

Results and Discussion

The behavior of 20-26 polymers was recorded at each
value of Wi and λ. Starting from equilibrium in the
absence of flow, a movie of a polymer was recorded until
it was carried out of the observation area. Data taken
at Wi ) 47 and λ ) 15.9 × 10-3 are shown in Figure
4A. The extension (x) starts at that of a coil and
approaches the contour length (L) as the flow stretches
the polymer. The amount of strain necessary to reach
an equilibrium extension was different for physically
identical polymers. The heterogeneous extension is due
to the initial polymer conformation, similar to the
behavior previously observed in purely elongational flow
(λ ) 1.0).8,9

Figure 3. Data were taken using guide 1 and Teflon tubes.
(A) The average bead velocity in 17 µm bins (circles) is plotted
for beads whose x position was within 100 µm of the stagnation
point (x and y are as defined in Figure 2A-D). The line is the
best fit line. (B) Beads were tracked continuously for 20 s in a
single field of view centered on the stagnation point. 1 s
snapshots of bead tracking data were then used to determine
Γ. The line is the average Γ.

Figure 4. Plots of fractional extension (x/L) vs strain (Γt) for
different polymer molecules exposed to a sudden flow. 4-8
measurements of x/L were made per unit of strain and
averaged. The upper insets each show an image of the polymer
whose fractional extension is given by the heavy black line.
The numbers on the x/L trace correspond to the numbers in
the images. Each image is a 1 strain unit average of the movie.
The lower inset shows the orientation of the eigenvectors of
[∇V]. (A) λ ) 15.9 × 10-3 and Wi ) 47. (B) λ ) 15.9 × 10-3

and Wi ) 4.8.

4546 Babcock et al. Macromolecules, Vol. 36, No. 12, 2003

Figure 1.4: In the two pictures are displayed the average molecular extensions
as a function of time rescaled with the flow intensity for different Wi numbers [6].
On the top, the one above the coil-stretch transition and, on the bottom, the one
below. Qualitatively it is clear that above the coil-stretch transition the polymers
are elongated in average, whereas below the transition molecules have a smaller
fractional extension. In the insets the corresponding typical conformations are
shown: “dumbbell” conformations are typically observed above the transition, and
coiled or “hairpin” conformations are found below the transition.

ref. [7] and sec. 1.4).

1.2 Conformation hysteresis in elongational
flows

In the same papers by Hinch and de Gennes reporting the ob-
servation on the coil-stretch transition [2, 3], another important
phenomenon is predicted: the conformation hysteresis. In these
seminal papers is argued that the interactions between the differ-
ent parts of the molecule must be included in the modelization
of polymers in fluid flows. Every segment of the molecule feels a
velocity field which is modified by the remaining segments of the
polymer. These hydrodynamic interactions decay with the distance
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(a) (b)

Figure 1.5: (a) The values of the fractional extension measured for different values
of De number (identical to the Weissenberg number) and different initial states [8].
(b) The average fractional extension for coiled and stretched initial conditions as a
function of De. The diagram shows the hysteretic behavior.

between the different segments. It is thus evident that coiled con-
figurations are characterized by strong hydrodynamic interactions,
while in stretched configurations hydrodynamic interactions de-
crease. Nevertheless in a coiled state only the outer segments of
the “spongy ball” are exposed to the flow, while in a stretched state
all segments are exposed, and longer molecules are consequently
more affected. This observation leads naturally to think that the
relaxation process is not independent on the configuration. The
relaxation from a fully stretched state is hindered with respect to a
moderately stretched state.
This conclusion suggests that the relaxation process of a poly-
mer which is initially very stretched can be quite slow. This ef-
fect takes place only when stretching and relaxation are compa-
rable, thus around the coil-stretch transition, and is more pro-
nounced for those polymers showing a big difference between coiled
and stretched states. When these conditions are met, hysteresis
is expected: if we measure the mean extension of two identical
molecules near the coil-stretch transition, one starting near the
maximum extension and the other starting in a coiled configura-
tion we expect two different typical extensions.
This phenomenon has been recently observed by Chu and cowork-

ers [8] in a plane elongational flow. This flow has a stagnation point
where the molecule can be kept at rest and where real-time imaging
can be performed. The main results of this experiment are shown
in fig. 1.5.
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Figure 1.6: A sketch of the tumbling motion extracted from numerical simula-
tions [9].

As already noticed the effect is supposed to be evident for very long
molecules: in ref. [8] these are DNA molecules for which the ratio
of the maximum length to the length of the polymer at rest is about
a thousand (for comparison, in common synthetic polymers this
ratio ranges between 50 and 100).

1.3 Shape dynamics and tumbling in shear
flows

One of the most interesting aspects of polymer dynamics in fluid
flows is the description of the wide variety of configurations dy-
namically occurring in the molecule motion. Both the coil-stretch
transition and the conformation hysteresis can be described sim-
ply in terms of the length of the molecule (this concept will become
more clear in the next chapter). Nonetheless, focusing on the se-
quence of conformations bringing the polymer from a coiled to a
stretched state (or vice-versa) we can easily argue that there are
preferred conformation pathways, or simply that the probability to
find the polymer in a given conformation is larger than for the other
conformations. In a sufficiently long polymer for example there will
be knots whose formation and disentaglement can be studied.
The dynamics of a single polymer in a shear flow (see fig. 1.3b) is
particularly interesting from this point of view. The shear flow has
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(a) (b)

Figure 1.7: (a) Typical time dependence of the fractional extension of a single
polymer in a shear flow. (b) Typical conformations of polymers in a shear flow
(see ref. [10]).

a stagnation line (the line y = 0 in fig. 1.3b). For a rigid rod in
a pure linear shear flow the (unstable) equilibrium configurations
are those where the rod is aligned along the x axis. In the presence
of thermal noise, the motion through regions with weak flow (near
the line y = 0) and regions with strong flow yields the so called tum-
bling motion, i.e. the polymer initially aligned along the x axis flips
and ends up aligned in the opposite direction. A typical sketch of
this motion is depicted in fig. 1.6.
Let’s consider a polymer which is initially stretched along the y
axis. The shear flow would induce a rotation bringing the polymer
aligned along the x axis. There, as already said, the velocity field is
negligible, hence the polymer motion is fully dominated by thermal
fluctuations. When a realization of these fluctuations brings a part
of the polymer out of the weak flow region, the shear flow becomes
again important, and it induces a flip. This phenomenon can hap-
pen through very different pathways, depending on which is the
initial part of the polymer starting the rotation, and it is aperiodic.
The dynamics of a single polymer in shear flows has been investi-
gated in detail once more by Chu and coworkers [10]. A shear flow
is generated as a superposition of an elongational flow and a pure
rotational flow. The probability density function (PDF) of the ex-
tension can be extracted from this experiment, and shows similar
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Figure 1.8: Probability density function of the fractional extension for different Wi
numbers [10]. Smaller Wi correspond to a PDF which is more peaked around small
extensions (below transition) whereas larger Wi correspond to large extensions
(above transition).

features to the elongational flow (see fig. 1.8), and different con-
formations can be observed such as “dumbbell”, “half-dumbbell”,
“kinked” and “folded” (see fig. 1.7b).
In another recent experiment Steinberg and collaborators [11] in-

vestigated the orientation of polymers in a shear flow, confirming
the picture drawn by Chu and extending further the experimental
investigations of the theories, measuring the PDFs of the orienta-
tion of the polymer and the distribution of tumbling times, i.e. the
time between two subsequent flips (see fig. 1.9).

1.4 Single polymer dynamics
in random flows

The majority of flows occurring at macroscopic scales are turbu-
lent, i.e. essentially random in nature. At the level of polymer
motion these flows are characterized by a smooth dependence on
space and an irregular behavior in time. Recently it has been dis-
covered that a random flow can be generated by exciting a fluid in
the “elastic turbulence” state (see for example [12,13] and part II).
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(a)

(b) (c)

Figure 1.9: (a) The geometry of polymer orientation in a shear flow, with the def-
inition of azimuthal and polar angle. (b) The PDF of angle φ. The PDF is centered
at φ = 0,π, i.e. the polymer spends most of the time aligned in the x direction. (c)
The PDF of angle θ. It is centered around 0.

In an experiment performed by Steinberg and coworkers [7], single
polymer dynamics is studied in such random flow. The stretching
properties of the flow are measured and, averaging over different
molecules, the probability density function (PDF) of the elongation
of the molecule is reconstructed (see fig. 1.10).
In the random flow, as well as in the elongational flow, the coil-

stretch transition is observed, confirming the qualitative picture of
de Gennes and Hinch [2,3], as shown in fig. 1.11.
The sharpness of the transition depends on the stretching proper-

ties of the flow. Heuristically we could say that in the elongational
flow the transition occurs much more abruptly than in the random
flow, because the random flow has a fluctuating extension rate, re-
sulting in a broader distribution of polymer elongations.
It is worth noticing that the value of Wi for which the transition
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Figure 1.10: Probability density function of polymer elongation [7]. On the left (a,
b, c, d): PDFs for random flow; on the right (e, f, g, h) PDFs for laminar shear flow.
For small Wi the distribution is peaked around small values of the extension; the
contrary holds for large Wi.

occurs depend on the flow details and on the molecule properties,
but the transition occurs always at Wi ∼ 1, when stretching effects
and relaxation become comparable in magnitude.
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Figure 1.11: The mean fractional extension plotted as a function of Wi in differ-
ent flows reported in ref. [7]: 1) elongational flow from ref. [14]; 2) plane shear
from ref. [10]; 3) random flow generated in a λ-DNA solution; 4) random flow gen-
erated in a Polyacrylamide solution; 5) laminar shear flow in both solutions; 6)
more frequent values of fractional extension extracted from the probability density
functions in both solutions.





Chapter 2

Polymer models

In this chapter I will briefly review the most common polymer mod-
els, trying to address their specificity and generality. Furthermore
I will try to focus on the ability of these models to reproduce exper-
imental observations and measurements. I will describe only those
models that apply to polymers with the following properties:

• long polymers: the number of repeating units M is typically
much larger than one. M is also called degree of polymeriza-
tion, and can reach in certain cases 105.

• flexible polymers: the angle formed by a bond between two
monomers is fixed. This means that at the scale of the mono-
mers a polymer is rigid. However if we look at the molecule
at a typical length-scale "p we see a flexible coil. "p is called
the persistence length. When the persistence length is much
smaller than the total length of the polymer, the molecule is
highly flexible.

• homo-polymers: in general a polymer can have different re-
peating units. We will consider only macromolecules formed
by only one kind of monomer.

• no branching: we will consider only single chain molecules,
even if in general there exists molecules formed by several
branches.

The dynamical properties of the polymer that we want to take into
account are the following:

• at rest the polymer assumes a random coil configuration whose
radius is connected with the thermal energy. Experimental

17
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Figure 2.1: A sketch of a freely jointed chain.

measurements of the typical dependence of the radius of the
coil on the degree of polymerization give typically scalings be-
tween R ∼M0.55 and R ∼M0.6.

• once elongated the polymer relaxes asymptotically with a typ-
ical relaxation time τ

• for relatively small extensions, the polymer opposes to a con-
stant elongation force a recalling force which is proportional
to its extension.

Given these phenomenological observations we can introduce
briefly some of the most known polymer models.

2.1 The freely jointed chain

A freely jointed chain is formed by M rods of length b0 each, con-
nected one to another, and free to point in any direction indepen-
dently of each other. Each node is characterized by a vector #P n in
space, where n stands for bond index n = 1, . . . ,M . We can simply
construct the bond vectors #r n as:

#r n = #P n− #P n−1 (2.1)
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The characteristic size of the chain is given by:

〈R2〉 1
2 =

〈(
M∑

n=1

#r n

)2〉 1
2

= 〈
M∑

n=1

||#r n||2〉 1
2 + 〈2

M∑

n>m

#r n · #r m〉 1
2 (2.2)

Segments are oriented independently so that:

〈#r n · #r m〉 =

{
〈||#r n||2〉 = b2

0 for n = m

〈#r n · #r m〉 = 〈#r n〉 ·〈 #r m〉 = 0 for n (= m
(2.3)

Hence we obtain:
〈R2〉 1

2 =
√

Mb0 (2.4)

Even if the freely jointed chain is a very simple model, this scaling
holds also for more general models. If we keep fixed the angle θ
between two successive bonds we obtain for example:

〈R2〉 1
2 =

√
Mb0

√
1 + cos θ

1− cos θ
(2.5)

A quantity very often used to describe polymer elongation at rest is
the radius of gyration, defined as:

R2
g = 〈 1

2M2

(
M∑

n=1

M∑

m=1

(
#P n − #Pm

)2
)
〉 (2.6)

For flexible polymers we have:

Rg =
〈R2〉 1

2

√
6

(2.7)

Introducing the maximum extension (the contour length) L = Mb0

of a polymer we have:
〈R2〉 = Lb0 (2.8)

The freely jointed chain is completely equivalent to a diffusion pro-
cess: a particle following the path formed by the bonds performs a
random walk. By the central limit theorem, the probability density
function of the extension is given (in the limit of large M ) by:

PM(#R) =

(
3

2πMb2
0

) 3
2

e
− 3R2

2Mb2
0 (2.9)
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This PDF gives the entropic force that restores the coiled configu-
ration starting from a stretched one; we can write the free energy
of the chain in terms of the partition function Z ∝ PM :

F = −kBT lnZ =
3kBTR2

2Lb0
+ const (2.10)

Thus the variation of the energy due to a variation of the end-to-end
elongation of the chain is

f =
∂F
∂R

=
3kBT

Lb0
R (2.11)

which means that the polymer as a whole behaves like a spring
with elastic constant H = 3kBT

Lb0
.

2.2 Excluded-volume effects

Experimental measurements give evidence that the ingredients of
the freely jointed chain are not sufficient to describe the micro-
scopic dependence of the radius of gyration on the polymer param-
eters. Precisely, the scaling behavior of the radius of gyration as
a function of the degree of polymerization is Rg ∼ M ν where the
scaling exponent ν is between 0.55 and 0.6.
Within this model the chain is a phantom chain. In other words
crossing and superposition of segments are allowed. This results in
an overestimation of the number of permitted configurations, and
in a wrong exponent ν, which for a freely jointed chain is ν = 1/2. A
better approximation of the dynamics of the chain is a self-avoiding
random walk, that is a random-walk that cannot intersect itself.
While the theory of random walk is quite simple, the treatment of
the self-avoiding walk is more difficult. A theoretical estimation of
the scaling exponent ν has been given by Flory [15] in dimension
d ≤ 4:

ν =
3

d + 2
(2.12)

which is exactly 0.6 for the case d = 3. It is worth noticing that a
“real” chain recovers an ideal chain (ν = 1/2) for d ≥ 4, which means
that the repulsions due to excluded-volume interactions become
negligible when the polymer has “enough room” to avoid the other
segments of the chain.
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Figure 2.2: A sketch of Rouse and Zimm chains.

2.3 The Rouse and Zimm models
To describe the dynamics of a polymer in a solution it is convenient
to resort to a simpler view of the problem. In the Rouse model each
segment of the molecule can be represented as a spring containing
all the microscopic informations of the molecule: it is an over-
damped oscillator with a relaxation time τr, it has a linear response
to external forces (i.e. it is a Hookean spring), and in the absence
of the flow the spring relaxes to an equilibrium elongation given by
the thermal noise. The only prescription on the “coarse-graining”
of a segment into a spring is that the segment be long enough to
have Gaussian statistics, i.e. the response to a constant elongation
force is linear in the polymer extension. The nodes connecting two
different springs can be represented by beads which interact with
the flow with a Stokes friction coefficient:

ζ = 6πηa (2.13)

where η is the dynamic viscosity of the solvent and a is the bead
radius. The most important approximations of the Rouse model
are [16]:

• the beads do not interact with each other (i.e. the hydrody-
namic interactions are negligible)

• the chain is a phantom chain (i.e. excluded-volume interac-
tions are negligible)

• inertial effects due to the mass of the beads are negligible (i.e.
the mass of the beads is virtually zero)
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With these assumptions each bead experiences two forces arising
from the two neighboring springs, the thermal motion and the ex-
ternal velocity field.
It is justified to assume that the velocity field is smooth at the
length scales of the polymer. In other words, the difference be-
tween two velocities computed in two different points #x1 and #x2 is
simply proportional to the velocity gradient which is independent
of the position:

#v(#x2, t)− #v(#x1, t) - #∇#v(t) · (#x2 − #x1) (2.14)

Within this approximation we can write the Newton equations for
the N beads, and successively for the N − 1 vectors describing the
springs, obtaining (see for example [17–20]):

ṙn
α = (∂βvα)rn

β −
1

τr

N−1∑

m=1

Ankrk
α +

√
2R2

eqs

τr
(ηn+1

α (t)− ηn
α(t)) (2.15)

where Latin indices stand for bead indices and Greek indices stand
for vector indices, Reqs represents the equilibrium length of the
springs1 and is proportional to the thermal energy kBT , τr is the
relaxation time of the springs and ηn(t) is a Gaussian white noise
modeling the thermal noise, characterized by the correlation:

〈ηl
α(t)ηk

β(t′)〉 = δlkδαβδ(t− t′) (2.16)

The matrix A is called the Rouse matrix and is defined as:

Ank =






2 if |n− k| = 0

−1 if |n− k| = 1

0 in all other cases
(2.17)

This system can be treated via a normal modes expansion, and the
end-to-end length at rest can be computed as well as the slowest
relaxation time of the molecule:

〈R2〉 = NR2
eqs

∑

m:odd

8

m2π2
= NMb2

∑

m:odd

8

m2π2
(2.18)

τ =
ζN2R2

eqs

3π2kBT
=

ζN2Mb2

3π2kBT
(2.19)

1For a freely jointed chain this is given by
√

Mb0, where M is the number of
stiff segments of the sub-chain that can be considered as a freely jointed chain.
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The obvious critiques to the Rouse model are the absence of hydro-
dynamics interactions and excluded-volume interactions. The first
drawback is addressed within the Zimm model [21]. If we consider
N identical spherical particles in a solvent we can describe how the
velocity field experienced by a particle is distorted by the presence
of other particles by the Oseen tensor H. The velocity #̇x of a particle
k is given by:

ẋk
α =

N∑

m=1

Hkm
αβ Fm

β (2.20)

Hkm
αβ =





δkmδαβ for k = m

1

8πηrmk
(δαβ − r̂mk

α r̂mk
β )

(2.21)

where #Fm is the net force acting on particle m, #rmk is the vector
joining the particles m and k, rmk is its modulus and r̂mk

α = rmk
α /rmk.

With simple algebra we could in principle describe the evolution of
a Zimm chain in terms of the vectors #rn. The obvious problem that
arises is that the equivalent of eq. (2.15) accounting for hydrody-
namic interactions is nonlinear. Zimm [21] suggested to preaverage
the different components of the Oseen tensor over the statistics at
equilibrium. This yields:

Hkm → 〈Hkm〉eq =

∫ N∏

k=1

#drkHkmPeq(#r
k, t) (2.22)

where Peq(#rk, t) is the probability density function (PDF) of the vec-
tor #rk at time t. With this procedure the evolution equations for
the vectors describing the elongation and orientation of the springs
become again linear and we can compute the leading relaxation
time:

τ =
ηsN

3
2 R3

eqs√
3πkBT

(2.23)

These two models are quite accurate even when compared with
experiments. Nevertheless very few analytical calculations can be
performed within these multi-bead models, and from a computa-
tional point of view they can be quite expensive. Furthermore there
are physical situations that do not require so many degrees of free-
dom. The next section is dedicated to a very simple, yet reliable
model that bypasses such difficulties.
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Figure 2.3: A sketch of a dumbbell.

2.4 The dumbbell model
A model which is very often used for its simplicity is the dumbbell
model [18]. The basic ingredients of the model are:

• there is only one relaxation time (the longest time of the Rouse
model), which determines asymptotically the relaxation prop-
erties of a polymer

• the end-to-end vector is described by an entropic force try-
ing to restore an equilibrium length at rest, and opposing a
Hookean force to an external stretching

• the velocity gradient is homogeneous in space as in previous
models

With these simple assumptions we can now build a “dumbbell” with
two beads of radius a, negligible mass, and density much larger
than the one of the solvent, connected by a spring with elastic con-
stant H = 3kBT

Lb0
. Such a spring has the same properties of an entire

freely jointed chain (see sec. 2.1). On each bead acts an elastic
force, the thermal noise and the extension forces of the velocity
gradient. The evolution equation for the end-to-end vector is:

Ṙα = Rβ∂βvα −
1

2τ
Rα +

√
R2

0

τ
ξα(t) (2.24)

where ξα are Gaussian white noises modeling the thermal fluctua-
tions, ζ

4H = τ and R2
0 = kBT

H . With these definitions the scaling of the
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equilibrium length R0 is R0 ∼Mb2
0 as predicted by the freely jointed

chain model and by the Rouse and Zimm models. The scaling of
the relaxation time is the following:

τ ∼ ζMb2

kBT
(2.25)

To compare directly this scaling with the one of the Rouse model we
should reformulate the problem in terms of the number of bonds:
a Rouse chain is a coarse-graining of several freely jointed chains
of M links, in a chain of N springs (each containing Q links). For
the equilibrium value Reqs then holds Reqs = Qb2. From eq. (2.19)
we obtain

τR ∼
ζNMb2

kBT
(2.26)

This means that to recover the “right” scaling we must increase the
friction coefficient ζ by a factor N , i.e. the radius a of the beads
must be N times larger than in the Rouse model. This condition is
reasonable, since we are concentrating the friction into two beads
instead of N .
The entropic dynamics of the polymer relaxation is embedded in
the dependence of the elastic constant H on the thermal energy of
the solvent. At high temperatures the relaxation to the equilibrium
length is faster. As for the equilibrium length, the higher is the
thermal energy of the solvent, the bigger is the coil formed by the
polymer at rest (the length R0 of the spring in the dumbbell lan-
guage).

The equilibrium properties in the absence of external flows of
such a polymer can be computed analytically. In particular we can
compute the moments 〈Rn〉 for n = 1 and n = 2:

〈Rα〉 = 0 (2.27)
〈R2

α〉 = R2
0 (2.28)

〈R2〉 = 3R2
0 (2.29)

The dynamics of an initially stretched polymer can also be com-
puted yielding:

〈R2(t)〉 = 3R2
0 +

(
R2(0)− 3R2

0

)
e−

t
τ (2.30)

The introduction of a velocity gradient (except for a very few cases)
hinders most of analytical calculation and often makes numerical
simulations of eq. (2.24) a suitable approach to the problem.
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2.4.1 Nonlinear elasticity
The approximation of linear elasticity is no longer valid when the
end-to-end extension approaches the contour length L. This fact is
also experimentally very well confirmed by recent experiments on
DNA (see [22] for a recent review). It is reasonable to expect that
molecules that have different structures and properties will have
different elasticities. The two most commonly accepted models
in the literature are the finitely extensible nonlinear elastic model
and the Marko-Siggia model, which refer to synthetic polymers and
biopolymers respectively.

To take into account the nonlinearity of polymers we must add
a term in eq. (2.24) which modifies the restoring force:

Ṙα = −f(R)

2τ
Rα + Rβ∂βvα +

√
R2

0

τ
ξα(t) (2.31)

where f(R) must be specified according to the phenomenology.
The first model I will consider has been introduced by Warner [23],
and it is known as the FENE model (finitely extensible nonlinear
elastic). It consists in the introduction of the following nonlinearity
in the restoring force:

f(R) =
1

1− R2

L2

(2.32)

This simple law works particularly well in the case of synthetic
polymers (such as PolyEthileneOxide and PolyAcrylaMide).
The other common model of nonlinearity has been introduced more
recently by Marko and Siggia [24], and is obtained directly by mea-
suring the stretching of a DNA molecule:

f(R) =
2

3
− L

6R
+

L

6R(1−R/L)2
(2.33)

Both the Marko-Siggia force and the Warner force reduce to the
linear case for small extensions R " L (see fig. 2.4).

2.5 Probability density function
for the polymer extension

A differential equation for the probability density function P(#R),
i.e. the probability to find a polymer described by the end-to-end
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Figure 2.4: The three different forces plotted as a function of the fractional exten-
sion (the end-to-end elongation rescaled with the contour length).

vector #R is associated to the stochastic differential equation (2.31).
This equation is called (depending on the context) Fokker-Planck
equation, Kolmogorov equation or Smoluchowsky equation. In the
absence of the flow we have:

∂tP(#R) = −∂Rα

(
−f(R)

Rα

2τ
P(#R)

)
+

R2
0

2τ
∂Rα∂RαP(#R) (2.34)

The stationary solution of eq. (2.34) can be written in terms of a
potential Φ:

Pst = e
− Φ

kBT (2.35)
where:

Φ(#R) = −kBT
2τ

R2
0

∫ Rα

dρα (−f(ρ)

2τ
ρα) (2.36)

We can now compute the marginal probability density function
p(R):

p(R) =

∫
dΩR2P(R) (2.37)

with the normalization condition
∫

p(R)dR = 1.
In the FENE case we have:

Φ

kBT
= − L2

2R2
0

ln (1− R2

L2
) (2.38)

p(R) = N14πR2

(
1− R2

L2

) L2

2R2
0 (2.39)
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Figure 2.5: The probability density function of elongation of a FENE polymer in an
elongational flow for Wi = 0 (solid line), Wi = 1 (long-dashed line), Wi = 2 (short-
dashed line), Wi = 4 (dot-dashed line). It is evident that for large Wi the probability
to find states for which R ∼ L is almost one, while the probability to find coiled
polymers is nearly zero.

where N1 is set by the normalization condition.
Adding an external elongational flow stretching in the x direction
we have:

Φ

kBT
= Wi

R2
x −R2

y

R2
0

− L2

2R2
0

ln (1− R2

L2
) (2.40)

p(R) = N2

∫
dφ

∫
dθ sin θR2

(
1− R2

L2

) L2

2R2
0
e

1
2WiR2

R2
0

cos 2φ sin θ
(2.41)

where N2 is set by the normalization condition. The PDF is shown
in fig. 2.5.



Chapter 3

Tumbling dynamics
in shear flows

In this chapter I will present an investigation on single polymer dy-
namics in a shear flow. Theoretical predictions are supported by
Brownian Dynamics simulations.
The typical rotation motion of non spherical particles in a shear
flow is called “tumbling”. This problem has been first addressed
by Hinch and Leal [25] who studied the dynamics of non spheri-
cal rigid Brownian particles in a shear flow. Examples of tumbling
motion can be found in many situations in nature: red blood cells
can rotate suddenly due to the local shear flow in vessels [26]; tum-
bling dynamics has been studied in detail for vesicles in shear flows
where the membrane can be considered elastic or rigid [27–29], de-
pending on the ratio between internal and external viscosity.

I will describe the dynamics of a single polymer in two different
situations:

• linear shear flow with thermal noise

• linear shear flow with weak superimposed random velocity
fluctuations.

Even if analytical calculations are not possible, it has been possi-
ble to deduce the fundamental physical laws of tumbling in shear
flow, following Chertkov et al. [30]. Hereafter I will present the
theoretical predictions and numerical simulations I performed to
confirm the theory. I will show the probability distributions for the
orientation and elongation of the polymer and the statistics of the

29
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tumbling times, i.e. the time between two subsequent flips.
The theoretical and numerical results of the case of linear shear
with thermal noise will be also compared with a recent experiment
by Steinberg and coworkers. This comparison shows that the non-
linear dumbbell model, in spite of its simplicity, is very effective in
reproducing experimental data and scaling laws.

3.1 Tumbling dynamics in laminar shear
flows

A pure shear flow (or linear shear flow) can be obtained by a super-
position of a pure elongational flow and a pure rotation flow, and
is defined by:

#v = (sy, 0, 0) (3.1)

∂̂v =




0 s 0
0 0 0
0 0 0



 =




0 s

2 0
s
2 0 0
0 0 0





︸ ︷︷ ︸
elongation

+




0 s

2 0
− s

2 0 0
0 0 0





︸ ︷︷ ︸
rotation

(3.2)

A sketch of a linear shear flow is depicted in fig. 1.3b. This flow
is weak in the region near the xz plane, while is strong far from
it. When the polymer is elongated, and its ends are in the region
of strong flow, elongation and rotation both occur. The polymer
is thus stretched and rotates clockwise until it is aligned along
the x axis. At this point it is in a region of weak flow, where the
dynamics is dominated by the thermal noise. In this state the poly-
mer remains elongated and fluctuates, until a sequence of thermal
fluctuations brings it in a region where the flow is not negligible
anymore. Then the polymer flips clockwise (tumbles). When it ap-
proaches the x axis (in the opposite direction) it is stretched again
and the process starts over.

To describe polymer dynamics we use the dumbbell model with
a choice of parameters corresponding to the experimental values of
ref. [11]. The dynamics of a dumbbell in a shear flow is described
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Figure 3.1: (a) The angles φ and θ describe respectively the dynamics in the shear
plane and off the shear plane. (b) A two-dimensional projection of the system: the
region defined by the angle φt is the region where the polymer waits for a typical
time τt before rotating and tumbling.

by the equations:

Ṙx = sRy −
f(R)

2τ
Rx +

√
R2

0

τ
ξx(t)

Ṙy = −f(R)

2τ
Ry +

√
R2

0

τ
ξy(t) (3.3)

Ṙz = −f(R)

2τ
Rz +

√
R2

0

τ
ξz(t)

where f(R) can be 1 in the Hookean case or 1/(1 − R2/L2) in the
FENE case.

3.1.1 Elongation statistics

The PDF of the vector #R in the statistically stationary state can be
computed analytically, whereas the PDF of the elongation R has
a closed expression only in the two opposite limits of very small
shear rates and very high shear rates. In terms of the Weissenberg
number Wi = sτ , these limits correspond respectively to Wi " 1
and Wi# 1.
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Figure 3.2: The probability density function of the fractional extension for Wi =
0, 1, 5, 10, 40, 200 from A to F extracted from numerical simulations of FENE polymers
in shear flows.

For linear dumbbells the probability density functions of #R is Gaus-
sian, as well as the marginal PDFs. For the mean values we have:

〈Rx〉 = 〈Ry〉 = 〈Rz〉 = 0 (3.4)

and for the variances:

〈R2
y〉 = 〈R2

z〉 = R2
0 〈R2

x〉 = R2
0(1 + 2Wi2) (3.5)

For small Wi the polymer elongation is completely determined by
the balance between thermal fluctuations and relaxation. For large
Wi the same holds for Ry and Rz, while Rx is strongly enhanced by
the flow, yielding a proportionality between the extension of the
polymer and the relative strength of the flow:

R ∼ 〈R2
x〉

1
2 ∼ R0Wi (3.6)

Thus the polymer is linearly extended by the shear flow.
For high shear rates the linear dumbbell model fails so that it is
necessary to switch to nonlinear models. In the FENE case the
PDF in the absence of flow can be computed quite easily [31], but
analytical calculations are not possible in the general case, and
the probability density function must be extracted from numerical
simulations. As shown in fig. 3.2 for small Wi we recover the lin-
ear case, whereas for large Wi the typical value of the elongation
approaches the maximum length R ∼ L.
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(a) (b)

Figure 3.3: Data extracted from numerical simulations. (a) The PDF of the angle φ,
plotted against sin−2 φ; in the inset the whole PDF in linear scale. (b) The width at
half height of the PDF, φt, as a function of Wi.

3.1.2 Orientation statistics
The orientation dynamics of rigid non spherical particles in a shear
flow has been previously investigated by Jeffery [32] and by Hinch
and Leal [25]. As for polymers, in a recent work Chertkov and
coworkers [30] have investigated the dynamics and statistics of
polymer in a shear flow.
An evolution equation for the angle φ can be derived from eqs. (3.3),

yielding:

∂tφ = −s sin2 φ + ξφ 〈ξφ(t)ξφ(t
′)〉 ∝ R2

0

τR2
δ(t− t′) (3.7)

The boundary between weak and strong flow regions is by defini-
tion where the flow and the thermal noise are comparable. This
portion corresponds to a small angle φt. For φ ! φt we are in the
weak flow region, whereas for φ " φt we are in the strong flow re-
gion. From eq. (3.7) we can estimate φt by the balance s φ2 - ξφ,
yielding:

φt ∼ (
R2

0

WiR2
)

1
3 (3.8)

As the polymer spends most of the time aligned along the x axis,
the most probable value for the probability density function of φ are
0, π, and the width of the peaks is proportional to φt

1.
The dependence of φt on Wi can be derived immediately by recalling
the expression of the extension in the linear and nonlinear cases,

1The PDF of &R can be determined in this case, and can be integrated over the



34 CHAPTER 3. TUMBLING DYNAMICS IN SHEAR FLOWS

(a) (b)

Figure 3.4: Numerical simulations of a single polymer in a linear shear flow. (a)
The PDF of the angle θ and the plot of the marginal PDF taken around φ = 0,
showing a power law tail θ−3; in the inset the whole PDF in linear scale for different
Wi. (b) The width θt at half height of the PDF, as a function of Wi.

R ∼ R0Wi and R ∼ L respectively. These estimates, plugged into
eq. (3.8), give the scaling laws:

Linear φt ∼Wi−1 (3.10)

Nonlinear φt ∼Wi−
1
3 (3.11)

As for the dynamics of θ another equation can be derived:

∂tθ = −s
sin 2φ sin 2θ

4
+ ξθ 〈ξθ(t)ξθ(t

′)〉 ∝ R2
0

τR2
δ(t− t′) (3.12)

The symmetry with respect to the xy plane implies that the proba-
bility density function for the angle θ is symmetric with respect to
θ = 0 (see fig. 3.4a). The most probable value for this PDF is θ = 0,
and its width can be estimated as θt ∼ φt, thus decreasing with Wi
as:

Linear θt ∼Wi−1 (3.13)

Nonlinear θt ∼Wi−
1
3 (3.14)

elongation R giving:

P(φ, θ) ∝ cos θ
{

1− cos2 θ
4+Wi2

[
Wi2 cos(2φ) + 2Wi sin(2φ)

]}3/2
. (3.9)

The marginal PDF of each angle cannot be calculated analytically and must be
integrated numerically.



3.1. TUMBLING DYNAMICS IN LAMINAR SHEAR FLOWS 35

(a) (b)

Figure 3.5: Numerical simulations of a single polymer in a linear shear flow. (a)
The PDF of the tumbling time τtum rescaled with the relaxation time of the polymer,
shown for two different definitions of tumbling time: τφ and τR (see the text for
details). The peak at τtum ∼ τt and the exponential tail∼ exp (−τtum/τt) are evident.
(b) The typical tumbling time τt as a function of Wi.

As the flow strength grows (together with the typical elongation),
large off-shear-plane angular fluctuations becomes less probable.
It can be shown that when θt ! θ " 1 the PDF decays as a power
law θ−2, and that in the range φ ∼ φt the whole PDF follows a power
law p(θ,φ ∼ φt) ∼ θα where α > 2.

3.1.3 Tumbling statistics

The tumbling time is defined as the time elapsed between two
successive flips. Tumbling occurs as follows: if we start from a
stretched configuration there will be a typical time τres of residence
in the region defined by φt, then suddenly a flip occurs, and the
polymer rotates around its center of mass in a typical time s−1, and
then the process starts over. The total duration of a tumbling event
is given by:

τt ∼ τres + s−1 (3.15)

For small Wi the contribution s−1 of the rotation itself is more rele-
vant, while for large Wi the tumbling time is essentially determined
by the time of residence in the region φ ∼ φt. This can be estimated
by a simple physical argument. In the region φ ∼ φt the dynamics
is dominated by the thermal noise. Hence the time of residence is
the exit-time of a diffusive process:

τres ∼
φ2

t

D (3.16)
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where D is the diffusion coefficient associated with the evolution
equation (3.7), i.e. D = R2

0
τR2 . Substituting the typical values for the

extension in the linear (R ∼ R0Wi) and nonlinear case (R ∼ L) we
have:

Linear τt ∼ τ (3.17)

Nonlinear τt ∼ τWi−
2
3 (3.18)

showing how the typical tumbling time is affected by the nonlinear
elasticity of the polymer at large Wi.
The probability density function of the tumbling time cannot be
computed analytically. However, since the exit-process is a Pois-
son process, as the polymer tries a large number of times to exit
the “hesitation region”, the tail of the PDF should be exponential
(see fig. 3.5), with a typical tumbling time τt.
There are two ways to give an operational definition of the tumbling
time, one referring to the angle φ and the other to the elongation
(τφ and τR, respectively, of fig. 3.5a). The first one is the following:
a tumbling event starts when the polymer crosses the line φ = π/2,
and ends when the polymer crosses it again. The second way is
to define a certain appropriate threshold Rth and to identify a tum-
bling event as the sequence of consecutive crossings of the plane
R = Rth in the phase space (R, θ,φ). This means that a tumbling
event is a sequence of consecutive coiled-stretched-coiled states.
It is worth noticing that for small Wi the tumbling time is difficult
to measure in experiments, because of the very high resolution
needed.

3.1.4 Comparison with experimental data
This subsection is devoted to show how the dumbbell model com-
pares well with experimental results on the dynamics of polymers
in a linear shear flow.
In the experiment by Steinberg and Geraschenko [11] a single DNA
molecule is observed with microscopy techniques in two different
flows: one generated by a rotating cylinder, and a Poiseuille flow in
a microchannel. Both these flows are locally linear shear flows. By
averaging over several molecules in time, the PDFs of the orienta-
tion angles can be extracted, as well as the PDFs of the tumbling
times. Furthermore scaling laws for φt, θt and τt are obtained in the
measured range of Wi.
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Figure 3.6: Data extracted from experiments [11]. The PDF of φ is shown against
sin−2 φ. In the inset φt as a function of Wi with an effective scaling Wi−0.51. The
black squares represent experimental measurements, while white triangles repre-
sent our numerical data.

Angle φ

The probability density function is measured in the vicinity of φ = 0
and is shown in fig. 3.6. It is peaked around φ = 0 as predicted,
and decays as sin−2 φ, as in the results of numerical simulations
shown in fig. 3.3a.
In the inset are plotted the experimental data of the measured
width of the peak of the PDF as a function of Wi. The expo-
nent −0.51 is extracted from a fit, and interpolates between the
two asymptotics Wi−1 and Wi−1/3. As shown in fig. 3.3b, the expo-
nent reaches the value −1/3 after Wi ∼ 100 whereas in experimental
measurements the maximum value is Wi ∼ 50.

Angle θ

The probability density function of the angle θ is shown in fig. 3.7.
As predicted it is symmetric with respect to θ = 0 and it is peaked
around θ = 0. The scaling θ−2 is clear for θ > 0.
The upper inset of fig. 3.7 shows the width of the PDF as a function
of Wi. The exponent is in good agreement with the theoretical and
numerical predictions.
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Figure 3.7: Data extracted from experiments [11]. The PDF of θ is shown, with the
clear scaling θ−2. In the upper inset θt as a function of Wi, showing the exponent
−0.38. The black squares represent experimental measurements, while white tri-
angles represent our numerical data. In the lower inset the PDFs in linear scale
for two different values of Wi.

Tumbling times

The PDFs of the tumbling times measured in the experiment by
Steinberg and coworkers are shown in fig. 3.8a, and are exponen-
tial. In fig. 3.8b is shown the typical tumbling time τt plotted as
a function of Wi at different relaxation times and shear rates. The
comparison between the numerical data and the experimental data
shows a good agreement. The difference in the prefactor is due to
the different criterion used to define a tumbling event. In the ex-
periment the definition τR is used, as well as for the numerical data
of the picture, but the threshold values are different: this explains
the overall multiplicative factor between the two curves.

3.2 Tumbling in shear flows with weak
superposed velocity fluctuations

In this section I will present the results of the study of tumbling
in a turbulent flow, modeled by a random flow superposed to a
strong linear shear. This condition is met whenever a polymer is in
a strong vortex and senses small velocity fluctuations or when sin-
gle polymer dynamics is studied in elastic turbulence (see sec. 5.2).
The velocity gradient in this case is decomposed into a determin-
istic part and a stochastic part. The deterministic part is a lin-
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(a) (b)

Figure 3.8: Data extracted from experiments [11]. (a) PDF of tumbling times mea-
sured in the experiment. (b) The typical tumbling time τt as a function of Wi: full
squares are taken at constant shear rate and varying the relaxation time, while
open squares are taken at constant relaxation times and varying the shear rate.
In the inset: the relaxation time over the typical tumbling time. Black squares are
the experimental measurements while white triangles are numerical data.

ear shear flow of the form: #v = (sy, 0, 0). The stochastic part is a
Gaussian random field, white in time, statistically isotropic, homo-
geneous and parity invariant:

〈σij(t)〉 = 0 (3.19)
〈σij(t)σkl(t

′)〉 = Dδ(t− t′)(4δikδjl − δilδkj − δijδkl) . (3.20)

This is called a Kraichnan-Batchelor field [33]. Here thermal fluc-
tuations are negligible so that the evolution equation of the dumb-
bell reads:

Ṙα = Rβ∂βvα −
Rα

2τ
(3.21)

There is a region (as in the previous section) where velocity fluctu-
ations govern the dynamics and a region where the shear flow is
dominating. The former region is defined by an angular width φt.
As in the case of pure linear shear flow, the polymer hesitates in
the weak flow region, then suddenly flips, and is realigned along
the x axis.
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(a) (b)

Figure 3.9: Data extracted from numerical simulations of polymers in linear shear
flow with weak velocity fluctuations. (a) The PDF of the angle φ plotted against
the function sin−2 φ. (b) The PDF of the angle θ with the power law θ−2.

3.2.1 Orientation statistics

For the angle φ an evolution equation can be derived, as in the
previous section:

φ̇ = −s sin2 φ + ξφ 〈ξφ(t)ξφ(t
′)〉 =

4D

cos2 θ
δ(t− t′) (3.22)

where the term proportional to s represents the effect of the shear
flow and the noise represents the effect of the weak velocity fluc-
tuations. The angular amplitude φt can be estimated by imposing
that these two effects are comparable, yielding:

φt ∼ (
D

s
)

1
3 (3.23)

The PDF is peaked in the vicinity of 0, π as in the case of the ther-
mal noise, and decays as sin−2 φ, as shown in fig. 3.9a.

An evolution equation for the angle θ can be derived in a similar
way:

θ̇ = −s
sin(2φ)

2
sin θ cos θ + ξθ 〈ξθ(t)ξθ(t

′)〉 = 4Dδ(t− t′) (3.24)

The width of the PDF of θ can be estimated as for φ, yielding θt ∼ φt,
it is symmetric with respect to θ = 0 as fluctuations are isotropic
and the shear flow is in the xy plane, and decays as a power law
for θ " θt, as shown in fig. 3.9b.
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Figure 3.10: The exponent of the probability density function of the elongation for
Wi < 0.5, plotted for different ratios D/S.

3.2.2 Elongation statistics

From eq. (3.21) we can derive an evolution equation for the end-to-
end extension R:

∂t ln
R

R0
= − 1

2τ
+

s

2
cos2 θ sin 2φ + 6D + η , (3.25)

where 〈η(t)η(t′)〉 = 2Dδ(t − t′). The corresponding Fokker-Planck
equation is quite complicated. Yet, below the coil-stretch transi-
tion, the properties of the probability density function of the elon-
gation can be derived. In particular in this regime the polymer
spends most of the time in the coiled state, but rare events lead to
a large polymer stretching, when the flow becomes strong enough.
It can be shown, that the right tail of the polymer elongation PDF
is a power law p(R) ∝ R−1−q [31, 34–38], where the exponent q de-
pends on the parameters of the flow. For example in the case
of pure Kraichnan-Batchelor field we have that the exponent q is
smaller than 0 for Wi < 0.5, i.e. below the coil-stretch transition.
Above the transition, strong elongation events are more probable
yielding a non-normalizable PDF, and nonlinear elasticity has to
be accounted for. The numerical measurements of the exponent q
as a function of Wi below the coil-stretch transition are shown in
fig. 3.10, and compare well to those found in refs. [31,38]
Here the Wi number is defined as the product of the relaxation

time and the largest Lyapunov exponent of the flow. The Lyapunov
exponent is the rate of divergence of two initially close Lagrangian
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trajectories in the flow, and is defined as:

λ = lim
T→∞

λT = lim
T→∞

ln 〈R(T )

R(0)
〉 (3.26)

where λT is called finite-time Lyapunov exponent. For the Kraichnan-
Batchelor flow the Lyapunov exponent can be calculated exactly
and we have λ = 3D. For nonzero shear rates the Lyapunov ex-
ponent can be estimated as follows: for two points in the flow the
equation describing the divergence of trajectories is:

∂t ln
R

R0
=

s

2
cos2 θ sin 2φ + 6D + η , (3.27)

The maximum rate of divergence is in the x direction, for θ,φ " 1.
As sφ# η, D we have [30]:

∂t ln
R

R0
∼ sφ (3.28)

and on average λ ∼ sφt ∼ (Ds2)1/3.
The numerical measurements of the Lyapunov exponent are shown
in fig. 3.11a. A more refined characterization of the statistics of
the flow is given by the Cramèr function, or entropy function S,
which is related to the so called finite-time Lyapunov exponent. In
particular this relation holds:

P (λT ) ∼ e−λTS(
λT
λ ) (3.29)

where S is the Cramèr function, that has a quadratic minimum at
λT = λ. This function can be found explicitly only in few cases:
in the particular case s = 0 (Kraichnan-Batchelor flow) it can be
shown that S is exactly quadratic. The Cramèr function gives the
details of the statistics of convergence of the stretching rate of the
flow. For this flow it is shown in fig. 3.11b.

3.2.3 Tumbling dynamics
The tumbling time τtum is determined by the time of residence in
the region φ ! φt and by the duration of the flip s−1. Here the
time of residence is set by the relevant timescale of the flow λ−1:
for high Wi a tumbling event duration is determined only by the
residence time. The dependence of the typical tumbling time on the



3.2. SHEAR FLOW WITH RANDOM FLUCTUATIONS 43

(a) (b)

Figure 3.11: (a) Measured largest Lyapunov exponent of the flow. The line repre-
sents the theoretical prediction and is a guide to the eye. (b) The Cramèr function
of the finite-time Lyapunov exponent for this flow.

(a)

(b)

Figure 3.12: Data extracted from numerical simulations. (a) Probability density
function of the tumbling time, plotted against the theoretical calculations. (b) The
typical tumbling time τt as a function of the Lyapunov exponent.

Lyapunov exponent extracted from numerical simulations is shown
in fig. 3.12a. The probability of long tumbling events is determined
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by the Poisson distribution, resulting in an exponential tail for the
probability density function, as shown in fig. 3.12a:

P (τtum) ∼ e−E τtum
τt , τtum # τt (3.30)

The prefactor E can be computed analytically, and the theoretical
calculations are compared with numerical results in fig. 3.12a.

3.3 Perspectives
A tumbling event can take place through very different sequences
of conformations. These cannot be described within the dumbbell
model. Thus a future task would be to study tumbling by means
of multi-bead models. Starting from a trimer (a three-bead chain),
it would be interesting to study the probability to find the polymer
in a given configuration, which, in this case, is simply given by
the probability density function of the angle between the two vec-
tors joining the beads (see for example ref. [39]). The latter is also
connected to another interesting quantity: the probability that a
tumbling event occurs starting from a given conformation.
This analysis would be a first step toward the investigation of the
shape dynamics of a N-bead Rouse or nonlinear Rouse chain in
shear flows. In the case N # 1 it is necessary to analyze more
complex quantities. For example it is possible to characterize the
shapes by means of the statistics of the number of folds of the
chain in the direction of the mean shear. The average number of
folds can be computed analytically in the case of the Rouse model
for a large number of beads. The analytical calculations become
difficult when nonlinear elasticity is considered and in this case
numerical simulations are a suitable approach.
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Abstract. – We study the dynamics of a single polymer subject to thermal fluctuations in
a linear shear flow. The polymer is modeled as a finitely extendable nonlinear elastic (FENE)
dumbbell. Both orientation and elongation dynamics are investigated numerically as a function
of the shear strength, by means of a new efficient integration algorithm. The results are in
agreement with recent experiments.

Introduction. – Nowadays, thanks to the development of effective experimental tech-
niques, it is possible to follow the motion of a single macromolecule in a flow, either laminar
or turbulent [1–16]. This is of crucial importance for applications in polymer processing [17]
and biophysics [1]. Dynamical properties of biomolecules have been explored in detail (see,
e.g., [1–5,9–12] for DNA and [13] for chromatin) and protein-macromolecule interactions have
been studied [14–16].

The formulation of theoretical models (see, e.g., [17]) able to reproduce qualitatively and
quantitatively these measurements represents an important step towards the understanding of
single-molecule biophysics. An extensive analysis of single polymer dynamics in simple flows
has been conducted in a series of papers by Chu and coworkers, Larson and coworkers and
Shaqfeh and coworkers (see [1–8] and references therein). Here we mention in particular two
recent papers where the statistics of orientation and conformation of long-chain molecules in
linear shear flows has been studied in great detail, with a direct comparison with numerical
models [18,19]. An intrinsic difficulty is represented by the large number of degrees of freedom
required to describe the polymer conformation, and thus its dynamics. Nonetheless, nontrivial
aspects of polymer-fluid interactions may be accounted for and even explained at a semi-
quantitative level by means of simple, few-degrees-of-freedom models. One of the simplest,
yet reliable, model is the finitely extendable nonlinear elastic dumbbell (FENE) [17]. The
polymer is described by its end-to-end distance vector R and the microphysical properties
are essentially dumped into two parameters: 1/γ, the longest elastic relaxation time of the
c© EDP Sciences
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Fig. 1 – A sketch of the geometry of polymer motion in a linear shear flow.

macromolecule, and ζ, its friction coefficient with the surrounding solvent. Nonlinear elastic
effects must be accounted for whenever the polymer is considerably stretched, as is the case of
shear flows [4]. The geometry of this problem is depicted in fig. 1. The polymer spends a large
fraction of time in elongated configurations along the shear direction. In the following we will
present numerical results about end-to-end orientation, elongation and about the statistics
of tumbling times. The latter is defined as the time spent between two successive “flips” of
the polymer ends (see fig. 2). Tumbling can occur via different pathways, e.g. passing by a
coiled state or through folded configurations: those details cannot be addressed within the
single-dumbbell model and will be the subject of future study.

A

A
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A

A

B

B

B

B

B

Fig. 2 – Four possible stages of a tumbling event.
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From experiments to numerics. – Single polymer orientation and tumbling dynamics
was recently studied experimentally by Steinberg et al. [10] with a 10−3 ppm solution of
λ−DNA molecules labeled with fluorescence methods (but see also the experiments presented
in [18,19]). To resolve the angular dynamics two different flow configurations were used: one
was generated by two discs one of which was rotating with uniform angular velocity Ω and
the other flow was obtained by a boundary layer in a micro-channel produced with the soft
lithography method (see [10] and references therein for details).

To reproduce the physical situation of [10] we studied a FENE dumbbell in a simple shear
flow $v = (sy, 0, 0), sensing thermal fluctuations (see fig. 1). The equation describing the
evolution of the end-to-end vector of the polymer is

Ṙi = s δix Ry − γRi

2
(

1 − R2/R2
m

)−1 +
√

γR2
0 ηi(t), (1)

where R0 = KBT/H, γ = 4H/ζ, η is a three-dimensional white noise with zero mean and
correlation 〈ηi(t)ηj(t′)〉 = δijδ(t − t′), Rm is the maximum length of the polymer, KB is
the Boltzmann constant, T is the temperature, ζ is the isotropic drag coefficient, and H the
spring constant.

Even if the single-FENE-dumbbell model does not reproduce precisely the behavior of
real molecules [8], we can set the parameters of our model, R0, Rm, γ, as close as possible
to their corresponding experimental values [4, 10]: we choose R0 $ 1µm, Rm/R0 $ 21,
γ $ 0.01 s−1–1 s−1.

The orientation dynamics has been investigated for rigid spheroid by Hinch and Leal [20].
As for polymers, at large Weissenberg numbers Wi = s/γ, where s is the shear rate, the
basic ingredients of the polymer dynamics can be summarized as follows [7,20–25]: due to the
shear flow the polymer tends to reach the unstable equilibrium configuration where it is fully
extended along the shear direction. In polar coordinates (R, θ,φ) = (Rm, 0, 0 or π). The effect
of thermal noise is to drive the polymer away from this configuration. The most probable value
of θ is zero, due to the symmetry of the dynamics along the z-axis. However, large fluctuations
in the off-shear-plane angle can occur. The most probable value for φ will be slightly larger
than 0, or π: the symmetry-breaking effect of shear causes the polymers to “hesitate” for
some time before crossing the x-axis and then give rise to a tumbling event. Few results can
be obtained analytically for this model, except for the linear case where Rm/R0 → ∞.

Numerical algorithm. – Several numerical methods have been proposed to simulate poly-
mer dynamics (see, for example, [26]). A commonly encountered problem with nonlinear elas-
tic models is the loss of accuracy close to the singularity R → Rm. In order to overcome this
problem, it is possible to perform a change of variables in the vicinity of Rm that removes the
singularity and allows to use a straightforward time-marching scheme. This method can be
easily extended to other nonlinear models [27] as well as to other flows.

Equation (1) can be solved by any stochastic discretization scheme (Euler-Itô in our case)
in the region R < Rthr, where Rthr is a fraction of Rm, say 0.5Rm. Whenever R exceeds
the threshold we switch to polar variables (R, n̂), where n̂ is the unity vector describing the
orientation of the polymer n̂i = Ri/R, and then to the new variables (z, n̂), where

z = −Rm

2

(

1 − R

Rm

)2

. (2)

This relation can be easily inverted to give R as a function of z. After computing all the
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Fig. 3 – The PDF of elongation plotted for Wi = 0, 1, 5, 10, 40, 200 (from A to F).

contact terms in the Itô convention we have the following equations for (z, n̂):

∂tz = −γR

(

1+
R

Rm

)−1

− γR2
0

2
1

Rm
+

(

1− R

Rm

) (

sn̂xn̂yR+
γR2

0

R
+

√

γR2
0n̂iηi(t)

)

, (3)

∂tn̂i = s
(

n̂y − n̂yn̂2
x

)

δix − γR2
0

R2

(

1 − R

Rm

)2

n̂i +
√

γR2
0

R

(

ηi(t) − ηj(t)n̂j n̂i

)

. (4)

which is regular in the neighborhood of R = Rm, i.e. z = 0.

Results. – The Probability Density Function (PDF) of the modulus of the conformation
vector depends strongly on Wi. At sufficiently small Wi ≈ 1, the statistics does not differ much
from the linear elastic case, since R ( Rm. The PDF in the FENE case can be computed
analytically only in asymptotic regimes [25, 28]. The numerical result is shown in fig. 3 for
several Weissenberg numbers. At very large Wi the elongation PDF presents a peak with
height scaling as Wi2/3 and width as Wi−2/3 (not shown). This result is in agreement with
the predictions of ref. [23]. As a side remark we notice that experimental measurements of
the elongation PDF at Wi as large as Wi = 76 do not display a peak near Rm (see [8] and
fig. 5 of [4]) as well as numerical results of multi-beads models (see figs. 4, 5 in [8] and the
discussion therein).

The orientation of polymers follows the qualitative picture drawn in the linear elastic
case [24, 25], even though there appear important quantitative differences. The PDF of the
in-shear-plane angle φ is shown in fig. 4. The probability is concentrated in the vicinity of
φ = 0,π with a peak width at half height φt, whose dependency on Wi is shown in fig. 5. The
case of a linear elastic dumbbell Rm = ∞ is shown for comparison. The angle φt decreases
with Wi in both cases, i.e. the larger is Wi the narrower is the region around the x-axis where
the polymer spends most of its time. The scaling can be derived by simple physical arguments:
following Chertkov et al. [22], the evolution equation for φ in the region φ ( 1 is approximated
by ∂tφ = −sφ2 +

√

γR2
0/R2 ηφ, where ηφ is a white noise. Thus φt can be estimated balancing

shear and noise terms in the right-hand side terms, i.e. φt ∼ Wi−1/3(R0/R)2/3. At large Wi,
for a linear elastic dumbbell one has R ∝ Wi, yielding φt ∼ Wi−1, whereas for a nonlinear
elastic force one estimates R ∼ Rm to find φt ∼ Wi−1/3. The tails of the PDF follow closely
the distribution sin−2 φ dictated by the shear (see fig. 4).

The agreement with the experiments is very good [10]: the scaling in the tail follows
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Fig. 4 – The PDF of the angle φ plotted with sin−2 φ. In the inset the PDF in linear scale plotted
for Wi = 1, 5, 40.

Fig. 5 – The behavior of φt as a function of Wi.

sin−2 φ, and the dependence of φt on Wi is close to the theoretical prediction already for
Wi = 25.

The marginal PDF of the angle θ is presented in fig. 6. The tails decay as θ−2, with
a scaling range increasing with Wi. The algebraic behavior has been observed in [10] for
Wi = 17.6, and even if Wi is not very high the agreement is remarkable. The probability
density of θ for small angles φ ∼ φt, or equivalently the joint PDF P (θ,φ = 0), shows a
neat power law close to θ−3 for θ + θt. This nontrivial scaling behavior has been predicted
theoretically and observed numerically for the linear elastic case in refs. [22,24,25]. The width
of the peak of the P (θ) at half height, θt, decays as Wi−1/3 for the nonlinear elastic case (see
fig. 7). The agreement with experimental data is perfect [10].
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Fig. 6 – The PDF of the angle θ plotted against θ−2. In the inset the PDF in linear scale for
Wi = 20, 40, 100.

Fig. 7 – The behavior of θt as a function of Wi.
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Fig. 8 – The PDF of tumbling times: τR is the time elapsed between two nonadjacent coiled states,
defined as the states where R is smaller than λR0 (λ = 1.5 in this figure); τφ is defined as the time
between two rotations of π in the angle φ. Here, Wi = 76.

Fig. 9 – The exponent E rescaled with the relaxation time as a function of Wi in the linear case and
in the FENE case.

Note that the crossover between the linear elastic case φt ∼ θt ∼ Wi−1 and the FENE
case φt ∼ θt ∼ Wi−1/3 occurs at Wi ∼ 1, as measured experimentally.

For what concerns the tumbling times statistics there are two possible definitions [25]:
i) given an appropriate threshold value in R that defines the coiled state for the polymer, one
can compute the time spent during two successive coiled states [10]. ii) One can consider the
time between two subsequent crossings of the plane φ = π/2.

Both definitions are ambiguous for small values of Wi, i.e. when the polymer spends most
of its time in a coiled state. For large tumbling times the PDF is exponential for both defini-
tions of τ , P (τ) ∼ exp [−Eτ ] (see fig. 8). This is a robust feature of this phenomenon [10,22].
Experimental measurements of the tumbling time are possible only following the first defini-
tion, due to lack of angular resolution [10].

The exponent E of the tail in the linear elastic case is inversely proportional to the relax-
ation time of the polymer γ−1. In the FENE case there is a nontrivial dependence on Wi,
as shown in fig. 9. The scaling of the typical tumbling time τt ∼ E−1 can be estimated at
large Wi as follows: the angular motion in the region φ ∼ φt is driven by the thermal noise
and is therefore diffusive. The diffusion coefficient is D = γ(R0/R)2 and therefore τt ∼ φ2

t /D.
Substituting R ∝ R0Wi for the linear spring model and R ∼ Rm for the FENE model one
obtains for E/γ the scalings Wi0 and Wi2/3, respectively.

The behavior of the PDF at τ ( τt is model dependent and should not be considered as
relevant (see, e.g., [25]). In experiments [10] the exponential tail of the PDF is observed and
the dependence of τt on Wi is in accordance with theoretical arguments and numerical results.

Conclusions. – We studied the dynamics of a single FENE polymer immersed in a simple
shear flow with thermal noise. The statistics of orientation, elongation and tumbling of the
polymer have been analyzed in comparison with experimental measurements [10], previous
numerical simulations [8,25], and theoretical expectations [22–24]. Even if the large variety of
conformations of real polymers cannot be explored within such a simple model, single-FENE-
dumbbell can reproduce semiquantitatively several aspects of the behavior of real polymers.
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Abstract

We investigate numerically the dynamics of a single polymer in a linear shear flow. The effects of thermal fluctuations and
randomly fluctuating velocity gradients are both analyzed. Angular, elongation and tumbling time statistics are measured nu-
merically. We perform analytical calculations and numerical simulations for a linear single-dumbbell polymer model comparing
the results with previous theoretical and experimental studies. For thermally driven polymers the balance between relaxation
and thermal fluctuations plays a fundamental role, whereas for random velocity gradients the ratio between the intensity of the
random part and the mean shear is the most relevant quantity. In the low-noise limit, many universal aspects of the motion of a
polymer in a shear flow can be understood in this simplified framework.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Fluid dynamics; Single polymer dynamics

1. Introduction

Thanks to recent improvements in experimental techniques it is nowadays possible to follow the motion of
individual molecules in solvents [1–9]. The characterization of polymer dynamics at the level of a single molecule
is a first step towards the understanding of mechanical interactions between biomolecules (see, e.g. [10–17]), of
the fundamental rheology of polymer solutions, and of the viscoelastic properties of more complex flows (see, for
example [18], and references therein for elastic turbulence).
Recently measurements of elongation and orientation with respect to simple external flows have been per-

formed [7,9] in order to analyze how the conformation of a single molecule can be modified by an external field.

∗ Corresponding author. Tel.: +33 4 92 96 73 35; fax: +33 4 93 65 25 17.
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As the number of degrees of freedomneeded to fully describe amacromolecule is extremely high it is necessary to
formulate theoretical models, to verify themwith numerical simulations, to simplify the problem , and to understand
which observables play a key role.
Large numbers of papers have been written on the subject of single polymer dynamics in shear flows

from experimental, numerical and theoretical viewpoint by Chu, Larson, Shaqfeh and their respective colla-
borators.
A polymer molecule in a plane, linear, steady shear flow is oriented in the flow direction by the velocity field.

As the rotational motion of the polymer is determined only by the velocity difference in the space points, when it
is aligned along the shear direction the external flow effect becomes negligible, and the thermal noise is the most
relevant external force. Thermal fluctuations can push the polymer to regions where the external flow is relevant
again. In these cases the shear flow can induce a fast rotation and align the polymer again along the (reverse) flow
direction, i.e. the polymer tumbles [21,3,4,8,9,7].
This phenomenon can happen via several conformational pathways due to the complexity of the motion of a

polymer molecule (see, for example [8,9]), and can be fully described only by taking into account all the degrees
of freedom of the polymer. Unfortunately in the framework of these complex polymer models it is very difficult to
obtain analytical results.
The main goal of our paper is to test numerically the predictions of recent theoretical and experimental stud-

ies [20,7] in a framework in which analytical results can be obtained [23], and to analyze the statistics of the tumbling
times, i.e. the time between two subsequent flips of the polymer [21,3,7]. The simplest model that reproduces qual-
itatively the behavior of polymers is the dumbbell model [22]. This model allows one to carry out some analytical
calculations in the case which we analyze [19,20,24,23], it is very easy and fast to simulate numerically (see Setion
2 and [25]) and reproduces qualitatively recent experimental results [3,7].
The paper is organized as follows: in Section 2, the evolution equation of the polymer and the numerical methods

are briefly explained. Section 3 is devoted to the analysis of the statistics of thermal fluctuations of a flexible polymer
placed into a linear shear flow. In our work we present the analysis of the stationary distribution of the polymer
end-to-end vector and we study the distribution function of the polymer tumbling time, which can be measured
experimentally. In Section 4, we study the angular dynamics of strongly elongated polymers, for which the size
fluctuations are negligible. Finally, in Section 5, we study the elongation statistical properties of the end-to-end
vector in a random flow with a large mean shear.

2. Basic relations and numerical analysis

Wewish to analyze the behavior of a polymer in a generic simple shear flow experiencing the Langevin force [19].
In general there are two effects of the velocity field on a polymer molecule: the Lagrangian advection of the polymer
and the elongation/relaxation dynamics due to velocity gradients. In all the cases discussed in this paper we disregard
the Lagrangian dynamics by staying in the reference frame of the polymer center of mass. For the internal degrees
of freedom of the polymer we use the simple dumbbell model [22], leaving the analysis of more realistic models
for future studies [26]. In this case the basic equation describing the evolution of the polymer end-to-end vector R
has the following form:

Ṙi = σijRj − γRi +

√
2γR20
3
ξi, (1)

where σij = ∂jvi is the velocity gradient matrix, γ the polymer relaxation rate, ξ the thermal noise term, which
has white-noise statistics: 〈ξi(t)ξj(t′)〉 = δijδ(t − t′), and R0 is the equilibrium length in the absence of an external
field.
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For incompressible flows there is no ambiguity in the discretization of the stochastic differential equation (1),
and no additional contact term must be taken into account, so we resort to the Euler–Itô scheme without any loss of
generality.
When the gradient σ contains only a steady linear shear contribution we can write down the formal solution of

(1) as:

Ṙi(t) = Ri(0)e−γt + e−γt
∫ t

0
eγt

′
sij Rj(t′)δixδjy dt′ − γe−γt

∫ t

0
eγt

′
Ri(t′) dt′ +

√
2γR20
3
e−γt

∫ t

0
eγt

′
ξi(t′) dt′.

(2)

This equation can be discretized, and the terms containing the thermal noise can be rewritten as new gaussian
variables with amplitudes that can be computed directly, so that the final solution reads:

Rk+1
x = Rk

xe
−γ&t +

√
R20
3
(1− e−2γ&t)ηkx + s&te−γ&tRk

y + s
R0√
3
ηky

×

√[
1
2γ2

(1− e−2γ&t)− 1
γ
&te−2γ&t −&t2e−2γ&t

]
(3)

Rk+1
i = Rk

i e
−γ&t +

√
R20
3
(1− e−2γ&t)ηki , i = y, z (4)

where 〈ηki ηlj〉 = δijδkl. The subscripts stand for the cartesian coordinates while the superscripts stand for the dis-
cretized time. As expected in the limit&t → 0 there is no contribution of ηy in the first equation and the amplitudes
are the same as in Eq. (1).
In the case of a random velocity gradient, wij , we have to generate the variables wk

ij such that they have the
prescribed correlation function:

〈σij(t)σkl(t′)〉 = Dδ(t − t′)(4δikδjl − δilδkj − δijδkl), (5)

where again the Dirac delta function is substituted by a Kronecker symbol. In this case the modulus of the vector
R grows indefinitely so that we can normalize it at each time step. In order to describe the elongation properties we
can compute the maximum Lyapunov exponent λ and the corresponding finite time Lyapunov exponent λT [27].

3. Thermally driven polymers

In this section we will examine the case of a linear steady shear flow in the plane XY : σij = sδixδjy, where s is
the shear rate. Eq. (1) has an explicit solution of the following form:

Ri(t) = exp(−γt)Wij(t)Rj(0)+
∫ t

0
dt′ exp[−γ(t − t′)]Wij(t − t′)ξj(t′), (6)

whereW(t) = exp(tσ). At large times the initial polymer elongation is forgotten and after averaging over the thermal
fluctuations ξ one can easily obtain the following distribution function:

P(R) = (2π)−3/2(det I)−1/2 exp
[
−1
2
RTI−1R

]
(7)
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Fig. 1. Schematic figure explaining polymer orientation geometry.

I = 2γR20
3

∫ ∞

0
exp(−2γt)W(t)WT(t). (8)

The probability density function (PDF) (7) is valid for any velocity gradient. In the particular case of a steady shear
flow in the XY plane, as shown in Fig. 1, the matrices can be found explicitly:

W(t) =




1 st 0
0 1 0
0 0 1



 , I = R20
3





1+ s2

2γ2
s

2γ
0

s

2γ
1 0

0 0 1




, (9)

where the axis are sorted in the order X–Z. One can see that for large Weissenberg numbers Wi = s/γ * 1, the
mean polymer elongation in the X-direction is much larger than in transversal directions.

3.1. Elongation PDF

The PDF of elongation can be easily computed from (7): the elongation in the y- and z-direction are independent
of Wi and the two marginal PDFs are gaussian with zero mean value and variance 〈R2y〉 =〈 R2z〉 = R20/3, while in
the mean flow direction the variance is 〈R2x〉 = (R20/3)

(
1+ (1/2)Wi2

)
(Fig. 2).

The distribution function of R cannot be obtained analytically for an arbitrary value ofWi, but one can study its
behavior in two limiting cases. For Wi + 1 the effect of the shear flow can be neglected, and we have the simple
thermally driven polymer with linear relaxation force. The distribution function of its elongation has a simple
gaussian form [22]:

P(R) =
√
2
π

R2

R30
exp

[
− R2

2R20

]
. (10)

In the opposite caseWi * 1 the system is strongly anisotropic and the main contribution to the polymer elongation
comes from the X component. This fact allows one to obtain the right tail of the elongation PDF. For R * R0 one
has

P(R) =

√
12

π(2+ Wi2)
1
R0
exp

[
− 3R2

(2+ Wi2)R20

]
. (11)
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Fig. 2. The PDF of the modulus of the end-to-end vector R for different Wi numbers. While for Wi = 0 the PDF is concentrated around the
radius of equilibrium, for higher values ofWi it is broader and the high elongation configurations become more and more probable.

3.2. Angular PDF

Next we are interested in the orientation of the polymer. The angular distribution function will allow us to show
that for large Wi the polymer spends most of the time aligned to the X-axis, while for Wi + 1 the orientation
distribution is almost isotropic. In order to parameterize the orientation of the polymer we introduce the angles φ
and θ as shown in Fig. 1. The angle φ represents the deviation of the polymer end-to-end vector from the X-axis in
the shear velocity planeXY while the angle θ gives us the polymer deviation in the transversal direction Z. Switching
to spherical coordinates we have Rx = R cos θ cosφ, Ry = R cos θ sin φ, Rz = R sin θ. After integrating over the
polymer elongation in Eq. (7) one immediately obtains the angular PDF:

P(φ, θ) ∝ cos θ
{1− (cos2 θ/(4+ Wi2))[Wi2 cos(2φ)+ 2Wi sin(2φ)]}3/2

. (12)

The calculation of the two marginal PDFs is not possible in general, and we have to integrate Eq. (12) numerically
(Figs. 3(a) and 4).
As one can see in Fig. 4, the PDF of θ decays as a power law (asymptotically P(θ) ∼ θ−2 in the region φt +

θ + 1), and is symmetric about θ = 0. The higher the value ofWi, the wider is the power law region.
In principle, if the polymer tumbles in the shear plane, we should consider a time-dependent PDF of φ on a

unbounded domain. However, if we consider φ to be between 0 and 2π one arrives at a stationary PDF, peaked in

Fig. 3. The PDF of the angle φ. (a) The analytic PDF is the numerical integration of (12), while the dots come from the numerical simulations.
(b) The amplitude of the PDF’s peak φt as a function ofWi.
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Fig. 4. The PDF of the angle θ is symmetric with respect to θ = 0 and can be described by a power law relationship over a wide range of values
of θ.

the regions φ = kπ + φt , k = 0–2 (Fig. 3(a)), where φt ∼ 1/Wi as shown in Fig. 3(b). In the region where φ * φt

we have P(φ) ∼ sin−2 φ.
The angular PDFs tell us that any fluctuations in θ are not relevant to the tumbling dynamics, and that for the

angle θ there is no relevant scale. The fact that increasingWi the power law region becomes wider and wider means
that when the shear is much stronger than the relaxation the polymer is nearly aligned with the X-axis. The PDF of
the angle φ expresses the fact that the polymer spends most of the time in the vicinity of φ = 0, φ = π, φ = 2π.
The polymer is aligned in the X-direction as a result of the shear flow, it fluctuates for a certain time in the region
φ ∼ φt , where the shape effects are strong. When thermally activated it goes beyond the region φ ! φt and the shear
becomes more important and induces a fast rotation of &φ . π or multiples thereof, that is the polymer tumbles.

3.3. Tumbling time distributions

In the previous two sections we have studied the stationary distribution functions which can be measured ex-
perimentally by averaging the polymer elongation and orientation over large time periods. However, as described
in the introduction and in [20,23] the dynamics of the polymer is non-stationary, due to continuous tumbling. The
natural question which arises is whether there are some quantities, which would allow experimental observation
and quantitative description of the tumbling process. In the recent papers by Chu et al. [3,5], the different time
correlation functions of the polymer elongation were studied, and it has been shown that they can have different
forms in the presence of shear. Here we introduce the tumbling time, which can be measured experimentally [7]
and used to describe the tumbling process. As described above the most striking difference between the tumbling
dynamics of the polymer in a shear flow and spinning in a rotational flow is the a-periodicity of the tumbling process.
Due to the stochastic nature of tumbling, the tumbling time, i.e. time between subsequent flips of the polymer, is a
random variable with relatively large fluctuations. Our task is now to study the distribution function of the tumbling
time and to give some theoretical and numerical predictions of its dependence on the Weissenberg number (Fig. 5.).
In the case of the dumbbell model, we can define tumbling as a flip of the polymer induced by the thermal noise.

When the polymer is in an unstable equilibrium configuration φ = kπ, k = 0–2 the thermal noise can bring the
polymer out of the region φ ∼ φt , and this induces a fast rotation which takes a time of the order of s−1. We define
the tumbling time τφ as the interval between two subsequent flips. This is typically the time between subsequent
crossings of the lines φ = (k + 1/2)π. For Wi * 1, as shown in the previous section (see Fig. 3(a)), the polymer
spends only a small fraction of the total time far from the shear direction, and therefore the exact value of the angular
threshold defining the tumbling time is not very important. Indeed this time is made up of two contributions: the
time spent in the region φ ∼ φt and the duration of the rotation of order s−1. The latter can be neglected for large
Wi.
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Fig. 5. The two different tumbling time PDFs. (a) The elongation-based tumbling time PDF. (b) The angle-based tumbling time PDF.

Experimental techniques do not always allow the polymer orientation angle φ to be resolved and therefore it is
convenient to introduce another definition of the tumbling time (τR). This quantity measures the interval between
subsequent changes between stretched and coiled polymer conformations. In other words, we start measuring when
the length of the polymer exceeds a certain threshold value and we stop when it again becomes smaller than this
threshold value.
While τφ is the most natural definition it can be difficult to measure experimentally. On the other hand, the PDF

of τR depends in a non-universal way on the threshold, but experimental techniques allows it to be measured when
the polymer is sufficiently stretched.
In order to analyze the behavior of the tumbling time PDFs at large Weissenberg numbers we should analyze

the dynamics of the polymer elongation projected onto the X-axis (Rx). Indeed, the angle-based tumbling time τφ
measures the time intervals between subsequent events when Rx = 0, while the elongation based tumbling time τR
corresponds to the time intervals between crossings of a threshold value Rx = RTH. In order to find how the shape
of the tumbling time PDF changes with increasingWi number, we can rescale the time and the polymer size in the
following way: Rx = xR0Wi, Ry = yR0, t = γ−1τ, which leads to the following equations:

ẋ = −x + y (13)

ẏ = −y +
√
2
3
ζy (14)

〈ζy(0)ζy(τ)〉 = δ(τ). (15)

In Eq. (13), we have omitted the term corresponding to ξx because it is negligible in the large Weissenberg number
regime compared to the other terms. Note that these equations do not depend on the Weissenberg number, and it
enters the problem only through the threshold RTH. In our simulations we choose RTH =

√
3〈R2〉 ∝ R0Wi, so that

in the dimensionless variables we have xTH = 1/
√
2 which does not depend on Weissenberg number either. From

this analysis we conclude that the tumbling time PDF at large Weissenberg numbers approaches some universal
form: its peak is positioned at characteristic time scale of order γ−1, and as γ increases the peak moves towards
the origin. The problem of finding the exact form of this function is equivalent to the problem of finding the
PDF of persistence times of a non-Markovian random process x(τ). This problem has recently attracted a lot
of attention (see, e.g. ref. [28]), however no explicit solution is known for a general random process. Still it is
possible to make some predictions on the PDF: the right tail of the PDF τR, τφ * γ−1 is exponential and has the
form P(τR) ∝ exp [−cRγτR], P(τφ) ∝ exp [−cφγτφ] because large tumbling times correspond to a large number
γτ * 1 of unsuccessful attempts to cross the threshold. The correlation time of our stochastic process Rx(t) is of
order γ−1, and therefore these attempts to cross the threshold are almost independent, and one should take the
product of their probabilities, which leads to the above exponential laws. Both the PDFs of τφ and τR are not well
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defined for τφ ∼ 0, τR ∼ 0 since they are sensitive to brownian noise discretization: it is possible to tumble very
rapidly when the polymer is coiled, and this is why the probability of measuring a tumbling time much smaller than
s−1 is not zero. Both the tumbling time definitions do not work very well in the case of small Wi experimentally
because of the high resolution needed, and numerically because of the discretization procedure.

4. Strongly elongated and rigid molecules

Another physical situation we are interested in is the dynamics of strongly elongated polymers in random flows.
In this model, described in detail in [20,24,23], the polymer is placed into a random flow above the coil-stretch
transition, where the effect of the thermal fluctuations can be neglected. In this case the orientational dynamics of
the polymer are decoupled from the evolution of the elongation, so that we can introduce the unit vector ni = Ri/R,
obeying the following evolution equation:

ṅi = nj(δik − nink)∇jvk. (16)

The velocity gradient consists of a regular shear part (as in the previous section), and an isotropic incompressible
random part. The polymer size in the experiments is always much smaller than the characteristic viscous scale of
the velocity field which allows us to assume smoothness of the velocity field. We will also assume short-correlated
velocity field which corresponds to the so called Kraichnan–Batchelor model, which has been extensively studied
in recent years [29]. In the framework of this model the velocity gradient matrix σij = ∇jvi in the Lagrangian frame
is described by a gaussian process with the following pair-correlation function [30]:

〈σij(t)σkl(t′)〉 = Dδ(t − t′)(4δikδjl − δilδkj − δijδkl) , (17)

where σij is the gradient matrix of the random velocity component. Using the same notations as in the previous
sections one arrives at the following dynamical equation for the angles:

φ̇ = −s sin2 φ + ξφ, (18)

θ̇ = −s
sin(2φ)
2

sin θ cos θ + ξθ, (19)

where ξφ and ξθ are zero mean random variables related to the fluctuating components of the velocity gradient. The
statistics of both ξφ and ξθ can be obtained from the correlation function (17):

〈ξθ(t)ξθ(t′)〉 = 4Dδ(t − t′) (20)

〈ξφ(t)ξφ(t′)〉 = 4D
cos2 θ

δ(t − t′). (21)

Note that the measure of configurations with θ ∼ π/2 is small, thus making the formal singularity in Eq. (21)
not essential. From Eq. (18) it turns out that the polymer experiences constant a-periodic tumbling in the XY

plane [20,24,23].

4.1. Stationary angular PDF

From a dimensional analysis it can be shown that for s + D the characteristic values of the angles φ, θ will be of
order (D/s)1/3 + 1. In this region one can set cos θ = 1 in the expression (21) so that Eq. (18) becomes completely
independent of θ. Hence in this limit one derives:

Pst(ϕ) = ω

D

∫ ∞

0
dφ exp

[
− s

8D
φ(φ − 2ϕ)2 − sφ3

24D

]
, (22)
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Fig. 6. The function U(x), where x = tan θ/ sin φ.

where ω is the mean rotation frequency of the polymer, which is determined from the normalization condition∫ π
0 Pst(φ) dφ = 1 and is given by

ω = (Ds2)1/3

4× 31/6Γ (7/6)
√
π

. (23)

The explicit form of the joint angular PDF is hard to compute analytically. However, one can obtain the expression
for the tails of the PDF φ, θ * (D/s)1/3 [24,19]:

P(φ, θ) = U(tan θ/ sin φ)
sin3 φ cos2 θ

, (24)

where U(x) is an unknown function with an universal argument. Numerical simulations confirms this prediction, as
shown in Fig. 6.
The two marginal PDFs obtained by numerical simulations show a behavior similar to that of thermally driven

polymers. Also the phenomenology of the systems are similar, but now all the quantities depend on the ratio
between the amplitude of the random velocity gradient and the mean shear. The PDF of the angle φ has peaks at
φ ∼ φt + kπ, k = 0–2, where φt ∼ (D/s)1/3 and the PDF of θ has an algebraic coreP(θ) ∼ θ−2 for (D/s) + 1 (see
Fig. 7).

Fig. 7. The PDF of the angle φ. (a) The agreement between the PDF and sin−2 φ is good in the region φ * φt + kπ, k = 0–2. (b) The behavior
of φt as a function of D/s, with the dotted line shown as a guide only.
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Fig. 8. The PDF of the angle θ. (a) The PDF of the angle θ is symmetric with respect to θ = 0 and can be expressed by a power law in a wide
range of θ. (b) The power law for the core region φ ∼ 0. For this case y ∼ 3.

In the stochastic region |φ| " φt the tails of the θ-angle PDF P(θ) are also algebraic P(φ = 0, θ) ∝ θ−y, but the
exponent y is non-universal and depends on the statistical properties of the random velocity gradient (see Fig. 8). It
has been shown in [23] that a simple relation exists between the exponent y and the entropy Cramèr function S(x)
of the Lyapunov exponent of the system (see Section 5). For the non-universal exponent y the relation y = S′(x)
holds, where x is the solution of the equation xS′(x) = S(x). Numerical simulations show that in the case of an
isotropic, short correlated, random velocity, the value of the exponent is approximately y ≈ 3, as shown in Fig. 8.
This implies that it is subdominant on the background of the θ−2 tail coming from the regular dynamics region
|φ| ! φt . However, in the general case of a finite-correlated and non-gaussian velocity field, one can imagine a
situation where the non-universal exponent y becomes smaller than the universal one y < 2, and in this case the
θ-angle distribution becomes non-universal.

4.2. Tumbling time distribution

For rigid polymers with a fixed size the tumbling time can be defined only through the angular dynamics and
therefore we will refer only to τφ. The evolution time of this system is τt ∼ (sφt)−1 so we expect that both the width
and the maximum of the tumbling time distribution are τt . The tails are related to the probability of passing (clock-
wise) the angle φt after a large amount of independent attempts, and can be estimated as P(τ) ∼ e−E(Ds2)1/3τ [20].
In [23], it has been shown that the constant E is connected with the ground state energy value of a one-dimensional
quantum-mechanical system and can be estimated with simple numerical analysis (E . 0.45). It is possible to
analyze the left tail of the tumbling time PDF:

p(τ) ∝ exp
[
−2K

4(1/2)
3Ds2τ3

]
, s−1 + τ + (Ds2)−1/3, (25)

where K(x) is an elliptical integral of the first kind, and also to give an exact expression for the tail τ + s−1 of the
PDF. For large values of s/D this tail can be barely observed experimentally or numerically, and the structure of
the tail strongly depends on the statistics of the chaotic flow, and is therefore non-universal (see Fig. 9).

5. Polymer elongation in chaotic flows

In this final section we will study elongation statistics of the polymer in the case of random velocity plus mean
shear. The polymer is not strongly elongated and can be treated as a linear dumbbell, as in Section 3. Such a situation
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Fig. 9. The PDF of the tumbling time τ. (a) The exponential tail of the PDF. (b) The behavior of τt as a function of s2D.

corresponds to a flexible polymer in a chaotic flow below the coil-stretch transition[31]. Formally, this is the case
when the maximum Lyapunov exponent is smaller than the inverse relaxation time λ <γ , where the Lyapunov
exponent is the rate of divergence or convergence of two neighboring trajectories.
The equation governing the system is again Eq. (1) where the gradient of the velocity is decomposed into a

regular shear part and a chaotic part. We can switch to spherical coordinates obtaining an evolution equation for the
angles (as in Eqs. (18) and (19)) and an evolution equation for the modulus of the elongation vector [24,23]:

∂t lnR = −γ + 1
2 s cos

2 θ sin 2φ + 6D + η, (26)

where in our model we assume 〈η(t)η(t′)〉 = 2Dδ(t − t′). Dimensional arguments show that the Lyapunov exponent
should be proportional to (Ds2)1/3 (see Fig. 10).
In this situation the polymer spends most of the time in the coiled state, but rare events lead to a large polymer

stretching, when the flow becomes strong enough. It can be shown, that the right tails of polymer elongation PDF
have the algebraic form P(R) ∝ R−1−q [32,23], where the exponent q depends on the parameters of the system.
While in the thermal noise case the tails were Gaussian, here the probability of observing the polymer stretched
is strongly enhanced. The algebraic behavior of the tail can be easily explained: the probability of having a local
stretching rate λ >γ for a large time t decays exponentially with t, and during such events the polymer is stretched
by a factor which grows exponentially with the time t.
It has been shown in [32,23] that the exponent q is related with the Cramèr function of the Lyapunov exponent

of the flow [29]. This function can be found explicitly only in few cases, hence the main aim of this section is to

Fig. 10. The behavior of the Lyapunov exponent as a function of D/s.
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Fig. 11. The exponent of the elongation PDF as a function ofWi.

present numerical measurements of the Cramèr function and of the dependence of the exponent q on theWeissenberg
number Wiλ = λ/γ below the coil-stretch transition (i.e. Wiλ < 1). As shown in [23] the large deviation theory
predicts that for large averaging times T * (Ds2)−1/3 ≡ τT the PDF of the Lyapunov exponent is:

P(λT ) ∼ exp
(

− T

τT
S(λT τT )

)
, T * τT , (27)

where the function S(x) is the Cramèr function. Note that for large but finite values of T/τT the measured Cramèr
function ST (x) = −(τT /T ) logPT (x/τT ) depends on the time T, but the difference between ST (x) and S(x) is
significant only in the region |x| ! T/τT * 1. Therefore in order to calculate the core of the Cramèr function we
can use the finite time approximation. In our simulations we considered the ratio T/τT from 10 up to 280.
In order to connect the Cramèr function with the exponent q in the elongation PDF we need to use the Legendre

transform (see refs. [32,23] for details):

S(x)− xS′(x)+ γτT S′(x) = 0 (28)

q = S′(x). (29)

In [32,33], the behavior of q in the case of zero mean shear has been computed, and the calculations leads to:

q = 2
∆
(γ − λ) , (30)

Fig. 12. The Cramèr function for two different times.
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where ∆ is the variance of the Lyapunov exponent distribution. In the case of Kraichnan field without mean shear
the ratio ∆ is proportional to λ (see ref. [29] for details), so that q becomes proportional to Wi−1λ − 1. In [34], the
case of shear turbulence has been analyzed and the scaling is the same as in Eq. (30).
The exponent q extracted from numerical simulations is plotted in Fig. 11. The convergence of the Lyapunov

exponent, given by the Cramèr function, is shown in Fig. 12.

6. Conclusions

The tumbling phenomenon [21,3,20,7] has been studied in the framework of the linear dumbbell model, and
some universal features of this motion are derived and numerically verified.
Three different examples of polymers in a linear, steady, plane, shear flow have been studied: (i) a flexible

polymer experiencing thermal noise, (ii) a rigid polymer in a smooth random velocity gradient above the coil-
stretch transition [31,32,6]), and (iii) a flexible polymer in a smooth random velocity gradient below the coil-stretch
transition.
In all three cases, the polymer tumbles aperiodically and the probability density function of the time between

two successive tumbling events is exponential. While in the case of pure thermal noise, the typical tumbling time is
determined only by the relaxation process, in the cases of random velocity gradient, the typical rate of divergence
of two initially close lagrangian trajectories is the most important time scale.
The analysis of the statistics of orientation leads one to conclude that the phenomenology of these three situations

is very similar: in the plane formed by the polymer end-to-end vector and the Z-axis there are no relevant scales
and the polymer spends most of the time in the shear plane. In the shear plane, the dynamics is determined by the
balance between the shear and the thermal fluctuations. The majority of time is spent nearly aligned to the velocity
field. Aperiodically the shear induces a tumbling event.
The elongation dynamics is determined only by the balance between the relaxation and the stretching due to the

shear flow in the thermal noise case. In the other two cases stretching is determined by the presence of a positive
Lyapunov exponent. In the case below the coil-stretch transition the tail of the PDF can be determined by measuring
the statistics of the Lyapunov exponent.
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Chapter 4

Relaxation and conformation
dynamics in elongational and
random flows

One of the most important observables in polymer dynamics is
the Zimm’s relaxation time. The Zimm’s relaxation time is the
time needed by the polymer to reach the equilibrium configuration,
starting from a given initial condition. In principle there exists
a whole spectrum of relaxation times (see chapter 2). Neverthe-
less the relaxation dynamics is determined asymptotically by the
largest time in the spectrum, which depends on the thermal energy
of the solvent, on the viscosity, and on the length of the polymer.
In this chapter I will show that in the presence of an external flow,
the relaxation process may be significantly different from the ther-
mal equilibrium situation. The external flow introduces dynamical
timescales that interfere with the relaxation process, resulting in
a strong slowdown around the coil-stretch transition. This phe-
nomenon is present even in simple flows such as the elongational
flow and the random flow, where a full or semi-analytical approach
is permitted.
The model I will use is the dumbbell model with nonlinear elastic-
ity. The evolution equations are:

Ṙα = Rβ∂βvα −
f(R)

2τ
Rα +

√
R2

0

τ
ξα(t) (4.1)

67



68 CHAPTER 4. RELAXATION AND CONFORMATION DYNAMICS

4.1 Relaxation dynamics in external flows
The relaxation in an external flow is the process bringing the poly-
mer from a given initial condition to the stationary state. For-
mally, the time-dependent Fokker-Planck equation associated with
eq. (4.1) can be expanded in eigenfunctions:

P (#R, t) = Pst(#R) +
∞∑

k=1

akpk(#R)e
− t

Tk (4.2)

where Pst is the stationary-state PDF, the coefficients ak depend on
P (#R, 0), the functions pk are eigenfunctions of the Fokker-Planck
operator and Tk are the inverse of the eigenvalues. The relaxation
time to the stationary state is the largest value T = maxk{Tk}.
An operative way to measure the time of convergence to the sta-
tionary state of a polymer in a fluid flow is to measure the rate of
convergence of the moments. Suppose to be able to measure, for a
single molecule, the function R2(t) for a sufficiently long time (sev-
eral Zimm’s relaxation times) starting from a given initial condition,
and to repeat the measure on several molecules. The average of
R2(t) over the ensemble of polymer trajectories tends to a constant
value with increasing t. From the behavior of the second order mo-
ment of the extension we can thus extract the relaxation time to
the steady state. It is possible to show that the convergence times
of the moments are the same as the relaxation time of the whole
PDF.

4.2 Shape effects on relaxation dynamics
As observed by de Gennes [2] a fundamental feature to include
in a polymer model is the conformation dependent drag: the re-
lated effects become crucial as the polymer length increases. The
observation by de Gennes is based simply on the fact that in the
coiled state a polymer can be considered as a ball of radius R0

and typically offers a resistance proportional to the gyration radius
(Rg ∼ 1µm), given by the Stokes law, i.e.:

ζc = 6πηsR0 (4.3)

In the stretched state the polymer resembles much more a slender
cylinder than a sphere, resulting in a resistance which is very dif-
ferent from the one in the coiled state [17]. For a polymer of length
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Polymer Rg[µm] L[µm]
PEO 0.4 40
PAM 0.5 77

E. Coli DNA 3 1300
λDNA 0.71 21
7λDNA 1.82 150

Table 4.1: Indicative gyration radii and contour lengths of common polymers.

L we have indeed:
ζs =

2πLηs

ln L
d

(4.4)

where d is the cross sectional area of the polymer. For very long
polymers the ratio between the two can be as large as 10 and can-
not be neglected.
A first approximation is to consider that the effective drag experi-
enced by a polymer can be linearly interpolated between the drag
of a slender cylinder of length L (the contour length) and the one of
a coiled polymer [40,41] (obtained within the Zimm model) [17]:

ζc =
3

8

√
(6π3)ηsR0 (4.5)

ζ(R)

ζc
= 1 + (

ζc

ζs
− 1)

R

L
(4.6)

Note that the drag coefficient enters the dumbbell model in the
relaxation time, so that formally the introduction of a conforma-
tion dependent drag corresponds to the introduction of a variable
relaxation time: stretched conformations are slower to relax than
coiled ones. Thus we have:

Ṙα = Rβ∂βvα −
f(R)

2τ(R)
Rα + +

√
R2

0

τ(R)
ξα(t) (4.7)

τ(R) = τ
ζc

ζ(R)
(4.8)

Hereafter I will refer to the FENE model for constant relaxation
times τ and to FENE-CD (FENE corrected drag) when conforma-
tion effects will be accounted for. The values of the characteristic
parameters for the most commonly used polymers are given in ta-
ble 4.1.
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Figure 4.1: Elongational flow: the potential associated with the stationary state
of polymer elongation for a dumbbell with nonlinear elasticity and conformation
dependent drag for (from top to bottom) Wi = 0.125, Wi = 0.135, Wi = 0.145, Wi =
0.155. Here ζs/ζc = 6.87. Hysteresis is found in the vicinity of the coil-stretch
transition. The values of Wi for which hysteresis can be found depend on the
ratio ζs/ζc. Note also that when this ratio is high, the transition occurs for smaller
critical Wi.

4.3 Dynamical slowdown in random and elon-
gational flows

Elongational flow

The elongational flow is defined by the velocity gradient:

∂̂v =




λ 0 0
0 −λ 0
0 0 0



 (4.9)

The potential associated with the stationary PDF of a dumbbell in
an elongational flow can be computed analytically both in the FENE
model and in the FENE-CD model and is shown in fig. 4.1 for the
conformation dependent drag:

Φ

kBT
= b

(
Wi

R2

L2
+

2

3
Wi(

ζs

ζc
− 1)

R3

L3
+

1

2
ln (1− R2

L2
)

)
(4.10)

pst(R) = NR2e
− Φ

kBT (4.11)
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(a) (b)

Figure 4.2: Elongational flow: (a) the largest relaxation time rescaled with the
Zimm’s time plotted as a function of Wi for two different FENE polymers: PEO is
poly-ethylene-oxyde and PAM is poly-acrylamyde. These two polymers differ (from
a macroscopic point of view) only for the different characteristic lengths: PAM is
longer than PEO. (b) The peak value of the relaxation time plotted as a function of
the ratio ζs/ζc (FENE-CD model).

where b = L2/R2
0 is called the extensibility parameter, Wi = λτ and

N is set by the normalization condition for p(R). Conformation
hysteresis occurs for the FENE-CD model because of the deep dou-
ble well structure of the potential and consequently of the double
peak of the PDF. A polymer starting from a coiled configuration
will spend a long time in a coiled configuration before reaching
the steady average extension. Conversely, an initially prestretched
polymer will stay stretched for a long time. It is worth noticing that
for the FENE model (ζs/ζc = 1) the potential does not show a double
well structure, thus the presence of conformation dependent drag
in the model is essential for the observation of hysteresis.

The slowdown corresponding to hysteresis can be expressed in
terms of the dynamical relaxation times to the stationary state,
which can be computed semi-analytically (see eq. (4.2)), and are
shown in fig. 4.2. The relaxation time as a function of Wi shows
that a strong slowdown occurs in correspondence of the coil-stretch
transition (see fig. 4.2a). Near Wi = 0 the dynamics is dominated
by the Brownian nature of the system, resulting in T = τ . For
very large Wi the flow timescales are dominating: the relaxation
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(a) (b)

Figure 4.3: Random flow: (a) effective energy for a FENE-CD PAM as a function of
the fractional extension. From top to bottom: Wi = 0.28, 0.33, 0.38, 0.43; (b) Compari-
son with a FENE dumbbell polymer with same extensibility parameter b.

dynamics due to the elasticity of the polymer is negligible, yielding
T ∼ λ−1.
The noticeable slowdown occurring around the transition is due
to a critical competition between the entropic relaxation and the
stretching due to the velocity field. Note that this critical slowdown
can occur also without the appearance of conformation hysteresis.
The introduction of a conformation dependent Zimm’s time in-
creases further the slowdown, as shown in fig. 4.2b, whereas it
does not affect the regimes Wi " 1 and Wi # 1. The value tmax of
the relaxation time at the peak increases with the ratio ζs/ζc, i.e. in-
creasing the length of the polymer (fig. 4.2b). Finite time hysteresis
is more evident as the length of the polymer increases.

Random flows

Another interesting case are random flows. These flows are irreg-
ular in space and time and are thus relevant to the study of tur-
bulence of polymer solutions. Single molecule measurements in a
random flow have been performed in elastic turbulence [12,13,42].
Here we model the random flow with the Kraichnan-Batchelor flow
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(a) (b)

Figure 4.4: Random flow: (a) the largest relaxation time rescaled with the Zimm’s
time plotted as a function of Wi for a FENE and a FENE-CD PAM polymer. (b) The
peak value of the computed relaxation time plotted as a function of Wi for different
polymer lengths extracted from refs [8,41,44,45].

introduced in sec. 3.2. This flow permits also to carry on analytical
calculations (see e.g. [31,43]).
The stationary PDF (and the potential) can be calculated exactly for
ζs = ζc:

pst(R) = NR2

(
1 +

Wi

6

R2

R2
0

)−h (
1− R2

L2

)h

(4.12)

h =
1

2
(

1
b + Wi

4

) (4.13)

where Wi = λτ (see chapter 3). The potential is shown in fig 4.3a,
and has a double well structure near the coil-stretch transition.
However the depth is smaller or comparable with kBT , therefore
hysteresis does not take place in the random flow. The effect of
the conformation dependent drag is to flatten the potential (see
fig. 4.3b), leading to a broader distribution of elongations.
The relaxation times to the stationary states can be computed an-
alytically, and the results are shown in fig. 4.4a. Even though no
hysteresis is present, the relaxation dynamics is similar to the case
of the elongational flow. The fact that the peak is less pronounced
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and broader can be explained by the stretching properties of the
random flow, where there are large fluctuations around the aver-
age stretching rate or Lyapunov exponent. As with the elongational
flow, the peak tmax of the relaxation time increases with the length
of the polymers (see fig. 4.3b).

These results are a clear indication that in a random flow the
dynamics of polymer near the coil-stretch transition can be sig-
nificantly slowed down. This applies also to other flows than the
Kraichnan-Batchelor one. We have studied the following flow (in-
troduced first in ref. [46]), decomposed into a strain and a rota-
tional part :

∂αvβ = Sαβ +Rαβ (4.14)

where each component has Gaussian statistics and a finite corre-
lation time (τS and τR, respectively):

〈Sαβ(t)Sγδ(t
′)〉 = Sαβγδ

1

τητS
e
− |t−t′|

τS (4.15)

〈Rαβ(t)Rγδ(t
′)〉 = Rαβγδ

1

τητR
e
− |t−t′|

τR , (4.16)

where τη is the Kolmogorov timescale and Sαβγδ and Rαβγδ are fourth-
order tensors which ensure incompressibility and isotropy:

Sαβγδ =
1

20
[δαγδβδ + δαδδβγ −

2

3
δαβδγδ] (4.17)

Rαβγδ =
1

12
[δαγδβδ − δαδδβγ] (4.18)

The correlation times of each component are set to be τS = 2.3τη,
and τR = 7.2τη [46], and the Lyapunov exponent is λ ∼ 10τ−1

η . In the
limit τη → 0 we recover the Kraichnan-Batchelor flow.
We have simulated numerically the evolution equation for a dumb-
bell with nonlinear elasticity and conformation dependent drag,
and we have collected statistics over the realizations of the thermal
noise and of the velocity field. The relaxation times are obtained
from the rate of convergence of the moments:

〈R
n(t)

Ln
〉 − 〈R

n

Ln
〉st ∝ e−

t
T for t→∞ (4.19)

The results of the simulations are shown in fig. 4.5. The phe-
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(a)

(b)

Figure 4.5: Results of numerical simulations of the flow introduced in ref. [46]: the
relaxation times to the stationary states for a FENE and FENE-CD (a) PEO and (b)
PAM molecules.

nomenology is exactly the same as in the Kraichnan-Batchelor flow:
the relaxation time T to the stationary state is equal to the Zimm’s
time for small Wi, it is proportional to the inverse Lyapunov ex-
ponent for large Wi, whereas it is larger than the Zimm’s time in
the vicinity of the coil-stretch transition. The effect of the confor-
mation dependent drag is to further increase the peak, as in the
Kraichnan-Batchelor flow.
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4.4 Perspectives
A first natural extension to the case of single polymer in random
flows is the addition of a mean shear. This flow is more similar
to those flows where drag reduction is observed (see part II). As
shown in chapter 3, this would change the dependence of the Lya-
punov exponent on the flow parameter but the dynamics should
remain unchanged, and a dynamical slowdown should occur, as in
the case of pure random flow.
It would be interesting to measure the relaxation times to the sta-
tionary state in external flows within a multi-bead model with hy-
drodynamic interactions. In this context it would be interesting to
perform a detailed measurement of the effective drag coefficient of
the polymer as a function of the conformation, namely the func-
tion ν(R). Indeed the linear interpolation between the drag of a coil
and a cylinder has been proposed for the elongational flow, where
the most probable configurations are either coiled or fully extended
ones. In the random flow conformation fluctuations can be larger,
leading to a heterogeneity of configurations and, possibly, to a dif-
ferent functional form of the effective drag.
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The dynamics of an isolated polymer in a flow field
forms the basis of constitutive models for dilute poly-
mer solutions [1–3]. The modeling of drag-reducing flows,
for instance, requires an appropriate description of sin-
gle polymer deformation in turbulent velocity fields [4].
In the last decade, major advances in fluorescence mi-
croscopy offered the possibility of tracking isolated poly-
mers both in laminar [3] and random flows [5]. The dy-
namics of a polymer in thermal equilibrium with the sur-
rounding solvent is commonly described in terms of nor-
mal modes and relaxation times associated with them.
The analytical form of the relaxation spectrum was first
obtained by Rouse under the assumption that the poly-
mer could be described as a series of beads connected by
Hookean springs [6]. The Rouse model was subsequently
improved by Zimm to include hydrodynamical interac-
tions between segments of the polymer [7]. In Zimm’s
formulation, the equations of motion are decoupled into
a normal mode structure by preaveraging the distances
between the beads over the distribution of polymer con-
figurations. The relaxation time associated with the fun-
damental mode, τ , determines the typical time that it
takes for a deformed polymer to recover the equilibrium
configuration in a solvent. The normal mode theory was
confirmed by the analysis of the oscillatory motion of a
DNA molecule immersed in a solvent and held in a par-
tially extended state by means of optical tweezers [8]. An
alternative approach to examine polymer relaxation con-
sists in stretching a tethered DNA molecule in a flow and
measuring its relaxation after cessation of the flow [9, 10].
The theoretical predictions for these experimental con-
ditions are provided by the scaling theory [11] and the
static dynamics formalism [12].

The aforementioned studies all consider the internal
dynamics of a polymer floating in a solvent under the
influence of thermal noise only — the interaction of the
polymer with an external flow is not taken into account.
One of the aspects highlighted by experiments is that

polymer dynamics in a moving fluid is strongly influenced
by the carrier velocity field. The coil–stretch transition
is the most noticeable example: as the strain rate ex-
ceeds a threshold value, the polymer undergoes a tran-
sition from the coiled, equilibrium configuration to an
almost fully extended one [13]. Therefore, when a poly-
mer is freely transported by a nonhomogeneous flow, we
expect that the time scales describing its dynamics may
be significantly different from the Zimm time τ . Simple
models for polymer stretching indeed suggest deviations
from Zimm’s theory near the coil–stretch transition [14–
16]. Discrepancies in the definition of the correct relax-
ation time are also encountered in drop formation exper-
iments [17].

In this Letter we investigate polymer relaxation dy-
namics both in elongational and random smooth flows.
Our analysis brings to evidence an important slowdown
of dynamics with respect to the Zimm timescales, in the
vicinity of the coil–stretch transition. For the elonga-
tional flow, this is related to conformation hysteresis [18].
For random flows, we show that hysteresis is not present.
Nonetheless, the amplification of the relaxation time per-
sists, albeit to a lesser extent, due to the large hetero-
geneity of polymer configurations. In both cases, the de-
pendence of the drag force on the polymer configuration
plays a prominent role. This suggests the necessity of im-
proving current models of polymer solutions in turbulent
flows to account for such effect.

The dumbbell approximation is the basis of the most
common models of single polymer dynamics and vis-
coelastic models of dilute polymer solutions [19]. Its va-
lidity relies on the fact that the slowest deformational
mode of the polymer is the most influential in produc-
ing viscoelasticity [4]. However, when attention is di-
rected to non-equilibrium dynamics it is often too crude
to assume that τ is independent of the conformation of
the molecule [20]. Therefore, following de Gennes and
Hinch’s approach [13, 21], we consider a model where



2

the polymer is described as two beads connected by an
elastic spring, and the separation vector of the ends of the
molecule, R, satisfies the stochastic differential equation
(in the Stratonovich sense):

Ṙ = ∇v(t) · R− f(R)
2τ ν(R)

R +

√
R2

0

τν(R)
ξ(t), (1)

where v is the velocity field, R0 is the mean extension
at thermal equilibrium, R = |R|, and ξ(t) is a three-
dimensional white noise modeling the thermal fluctua-
tions of the solvent. The function f(R) defines the en-
tropic force restoring stretched molecules into the coiled
configuration. Synthetic polymers are properly described
by the Warner law, f(R) = 1/(1 − R2/L2), where L is
the contour length of the polymer. Biological macro-
molecules are better characterized by the Marko-Siggia
law, f(R) = 2/3− L/(6R) + L/[6R(1−R/L)2] [2]. The
function ν(R) encodes for the dependence on the poly-
mer conformation of the drag exerted by the fluid: a
thick coil offers a larger resistance with respect to a
long thin rod-like configuration. We utilize the expres-
sion ν(R) = 1 + (ζs/ζc − 1)R/L that interpolates lin-
early between these extremes (see Refs. [22, 23]). Here,
ζc = 3

√
6π3R0/(8ηs) and ζs = 2πLηs/ ln(L/&) are the

friction coefficients for the coiled and the stretched con-
figuration, respectively, ηs is the solvent viscosity and &
is the diameter of the molecule. The flow strength rel-
ative to the polymer tendency to recoil is expressed by
the Weissenberg number Wi, defined as the product of
the Zimm time τ by a characteristic extension rate of the
flow.

In order to define the relaxation time in presence of
an arbitrary external flow, we consider the probability
density function of the rescaled extension, P (r, t) with
r = R/L, and identify the dynamical relaxation time
of the polymer, trel, as the characteristic time needed
for P (r, t) to attain its stationary form Pst(r).

As a first example, we examine the steady planar elon-
gational flow v = γ(x,−y), turning our attention to ran-
dom flows in the second part of this Letter. By assuming
that the polymer extension in the x-direction is much
greater than in the y-direction, it is easy to derive from
Eq. (1) a Fokker–Planck equation for the probability den-
sity function of r:

∂t′P = −∂r(D1(r)P ) + ∂rD2(r)∂rP, (2)

where D1(r) = Wi r− f̂(r)r/[2ν̂(r)], D2(r) = [2bν̂(r)]−1,
f̂(r) = f(rL), ν̂(r) = ν(rL), Wi = γτ , and t′ = t/τ . The
stationary solution to Eq. (2) takes the potential form
Pst(r) = N exp [−E(r)/KBT ], where N is the normal-
ization constant and E(r) = −KBT

∫ r
0 D1(ρ)/D2(ρ) dρ.

For large enough ζs/ζc, there is a narrow range of Wi
around the critical value for the coil–stretch transition,
Wicrit = 1/2, where E(r) has a double well structure.
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Figure 1: Elongational flow: (a) rescaled relaxation time
vs. Wi for b = 400. The entropic force is given by the
Warner law; (b) Rescaled maximum relaxation time vs. ζs/ζc

(b = 400).

This property gives rise to a conformation hysteresis
characterized by a multivalued mean molecular exten-
sion [18]. Strictly speaking, this is a finite-time effect
since Pst(r) is unique. However, the barrier height sepa-
rating the coiled and the stretched state is much greater
than thermal energy (E is of the order of 10KBT ) and
therefore the polymer remains trapped in its initial con-
figuration for an exceptionally long time [18]. Confor-
mation hysteresis has a clear counterpart in the time de-
pendence of P (r, t′), as we shall see from the analysis of
Eq. (2).

The probability density function of the extension ad-
mits the expansion

P (r, t′) = Pst(r) +
∞∑

n=1

anpn(r) e−t′/σn , (3)

where pn(r) are the eigenfunctions of the Fokker–Planck
operator and σn the reciprocals of its (strictly positive)
eigenvalues, arranged in descending order (σn > σn+1).
The coefficients an are fixed by P (r, 0). The relaxation
time is thus defined as trel ≡ σ1τ . For ζs = ζc, trel can
be computed by solving a central two-point connection
problem for a generalized spheroidal wave equation [16].
In the general case, ζs > ζc, we resorted to a numerical
computation based on the variation–iteration method of
quantum mechanics [24]. For very small Wi, the dynam-
ics is dominated by the entropic force, and therefore trel
is approximately equal to the Zimm time. With increas-
ing Wi, trel/τ grows as 1/(1−2Wi), as can be seen by re-
placing f̂(r) with 1 in Eq. (2) (Fig. 1). For Wi % Wicrit,
the thermal noise is negligible and the only role of the
restoration force is to prevent extensions greater than L;
the time needed to reach the asymptotic regime is there-
fore set by the time scale of the flow, γ−1, and trel/τ de-
creases as Wi−1. In the vicinity of the coil–stretch transi-
tion trel shows a sharp peak (Fig. 1). In this range of Wi
there is a critical competition between the entropic force
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and the velocity gradient that makes the convergence
time to the steady state extremely long. This effect is
strongly enhanced by the conformation-dependent drag.
The peak tmax indeed increases with ζs/ζc (Fig. 1). Those
extremely long relaxation times are intimately connected
with the observation of conformation hysteresis.

More relevant to viscoelastic turbulence is the case
of a random smooth flow (see, e.g., [25]). To make
analytical progress, we initially assume that the flow
obeys the Batchelor–Kraichnan statistics [26]. The ve-
locity gradient is then a statistically isotropic and par-
ity invariant Gaussian process with zero mean and cor-
relation function: 〈∂jvi(t)∂kvl(s)〉 = 2λδ(t − s)[(d +
1)δikδjl − δijδkl − δilδjk]/[d(d − 1)], where d is the di-
mension of the flow and λ denotes the maximum Lya-
punov exponent, that is the average logarithmic sep-
aration rate of nearby fluid trajectories. In this con-
text, we indicate by P (r, t′) the probability density func-
tion of the extension both with respect to thermal noise
and the realizations of the velocity field. The Fokker–
Planck equation for P (r, t′) takes the form (2) with
D1(r) = (d−1)/dWi r−f̂(r)r/[2ν̂(r)]+(d−1)/[2bν̂(r)r],
D2(r) = Wi r2/d + [2bν̂(r)]−1 with Wi = λτ . The sta-
tionary probability density function admits once more a
potential form. For ζs > ζc, the potential E(r)/KBT
displays a very wide well, the effect of the conformation-
dependent drag being to increase the probability of large
extensions and hence make the potential flatter (Fig. 2).
There is no evidence of pronounced double wells. Near
the coil–stretch transition, the effective barrier heights
separating the coiled and stretched states are indeed at
most comparable to thermal energy. As a result, for re-
alistic ζs/ζc, no conformation hysteresis is expected to be
observed in random flows. The behavior of trel as a func-
tion of Wi is however analogous to the one encountered
in the elongational flow. The rescaled relaxation time in-

creases as [1−Wi(d+2)/d]−1 at small Wi, and decreases
as Wi−1 at large Wi. A peak near the coil–stretch transi-
tion is present, that becomes more and more pronounced
with increasing ζs/ζc as shown in Fig. 3, attaining val-
ues as large as about thirty times the Zimm time. The
reason for this behavior is the breadth of Pst(r) and the
consequent large heterogeneity of accessible polymer con-
figurations.

To corroborate the results obtained in the context of
the short-correlated flow, we performed Brownian Dy-
namics simulations of Eq. (1) with the random flow
introduced by Brunk et al. [27]. This model repro-
duces the small scale structure of a turbulent flow by
means of a statistically isotropic Gaussian velocity gra-
dient. The autocorrelation times of components of the
strain and rotation tensors are set to be multiple of the
Kolmogorov time τη by comparison with direct numer-
ical simulations of 3D isotropic turbulence (τS = 2.3τη,
τR = 7.2τη) [28]. The Lyapunov exponent of this flow
is λ ( 10τη. We computed trel as the time of conver-
gence of the moments 〈rn(t)〉 to their stationary value
〈rn〉st: t−1

rel = − limt→∞ ln [〈rn(t)〉 − 〈rn〉st]/t, where the
averages were taken over an ensemble of realizations of
Eq. (1), all with the same initial extension r(0). The
numerical difficulty arising from the singularity of the
entropic force at R = L has been overcome by exploiting
the algorithm introduced in Ref. [29]. The results shown
in Fig. 4 confirm the scenario depicted in the context of
the short-correlated flow. It is worth noticing that the
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Figure 3: 3D Batchelor–Kraichnan flow: (a) rescaled relax-
ation time trel/τ vs. Wi for a PAM molecule (b = 3953);
(b) rescaled maximum relaxation time tmax/τ for the follow-
ing polymers: DNA (•, b = 191.5; ◦, b = 260; !, b = 565;
+, b = 2250), polystyrene (×, b = 673), polyethyleneoxide
(PEO) (", b = 1666), Escherichia Coli DNA (#, b = 9250),
PAM ($). Measures of b and ζs/ζc can be found in [18, 22].
Synthetic polymers are modeled by the Warner law, whereas
biological molecules are described by the Marko–Siggia law.
Relaxation time were computed by means of the variation–
iteration method [24]. For ζs = ζc they can be obtained by
solving an eigenvalue problem for a Heun differential equa-
tion [15].
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above definition provides an operational method to mea-
sure trel that can be implemented in experiments.

In summary, we have shown that the equilibrium con-
figuration of a polymer in a flow, as well as the time a
deformed molecule takes on average to recover that con-
figuration, depend sensitively on the properties of the
flow. In the vicinity of the coil–stretch transition the
characteristic relaxation time is much longer than the
Zimm time τ , both in elongational and random flows.
In other words, the effective Weissenberg number differs
considerably from the “bare” one. This effect is strongly
amplified when the drag coefficient depends on the con-
formation of the polymer, and may play an important
role in drag-reducing turbulent flows, where the strain
rate often fluctuates around values typical of the coil–
stretch transition [30]. Our conclusions thus suggest that
the conformation-dependent drag should be included as
a basic ingredient of continuum models of polymer so-
lutions, calling for further theoretical, experimental and
numerical study.
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Introduction
Polymer solutions belong to the class of viscoelastic fluids, i.e. they
behave both like viscous and elastic materials. The dynamics of
polymeric liquids is a long-standing research subject in rheology
and fluid mechanics due to the numerous industrial applications
and to its challenging theoretical aspects.
It is known that the mechanical properties of a viscoelastic fluid
can be dramatically different from those of a pure Newtonian sol-
vent. One of the most striking differences is encountered in flow
stability. It is well-established, indeed, that the properties of the
laminar-to-turbulent transition are significantly altered by the pres-
ence of polymers, often resulting in the occurrence of novel types
of instability mechanisms.
Here I will focus on the stability of a polymer solution in the Kol-
mogorov flow, where analytical perturbative methods can be ap-
plied, and I will present a numerical investigation on the dynamics
of the turbulent viscoelastic Kolmogorov flow.
Chapter 5 is dedicated to the brief introduction to the stability
analysis of fluid flows, and the Newtonian and viscoelastic cases
are compared. The occurrence of elasticity driven turbulent-like
states, and the dynamics of turbulent polymer solutions are also
addressed.
In chapter 6 I will present the most used polymer solution mod-
els, focusing on their efficacy and on the correspondence between
the phenomenology of the solution and microscopic description of
polymer molecules.
In chapter 9 I will report the results of numerical simulations of
a polymer solution in a turbulent Kolmogorov flow. These results
suggest that the basic physical mechanisms of the drag reduction
phenomenon can be studied in the absence of material boundaries.
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Chapter 5

Dynamics of polymer
solutions

Flow stability analysis is a formidably difficult problem in fluid dy-
namics. Even more challenging is the study of the stability of poly-
mer solutions, due to their rich phenomenology. In general, the
difficulties arising from the complexity of the laminar-to-turbulent
transition and from the dynamics of viscoelastic fluids hinder the
analytical approach, and numerical simulations are often the only
suitable method of investigation.
In this chapter I will report some recent observations on the stabil-
ity of polymer solutions [1,2], which demonstrate that instabilities
can develop in the limit of very small Reynolds numbers. These
are called elastic instabilities. Moreover, I will present the results
on the emergence of a novel turbulent-like state occurring at small
Reynolds numbers, that has been called elastic turbulence [3, 4].
Finally I will briefly recall the major features of the drag reduction
phenomenon [5,6].

5.1 Flow stability analysis

5.1.1 The Newtonian case
The transition of fluid flows from a laminar to turbulent state is a
matter of everyday experience. The flow of an incompressible fluid
is a solution of the well known Navier-Stokes equations:

∂tvα + vβ∂βvα = −∂αp + ν∂2vα + fα

∂αvα = 0
(5.1)
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Figure 5.1: The laminar-to-turbulent transition in a Reynolds tank. The Reynolds
number increases from top to bottom. Above the laminar regime transverse
perturbations develop, eventually leading to a turbulent state. Picture taken
from www.eng.man.ac.uk.

where v is the velocity field, p is the pressure, ν is the kinematic
viscosity and f is a forcing term. The ratio of inertial effects to
viscous forces is expressed by the Reynolds number:

Re =
V L

ν
(5.2)

where V is the typical velocity and L is a typical length scale. For
small Re the dynamics is dominated by the viscosity, flows are
regular and externally induced perturbations decay in time (see
fig. 5.1).
With increasing Re, inertial effects take over, flows become essen-
tially irregular in space and time, and “fully developed turbulence”
is eventually achieved.
The study of the transition to turbulence is a longstanding prob-

lem in fluid dynamics for both its theoretical interest and techno-
logical applications. The basic idea of a stability analysis is the
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following: a basic flow #U is perturbed by a superimposed velocity
field #w. Such a flow is stable if the perturbation #w diminishes in
time, whereas it is unstable if the perturbation grows and gives rise
to an irregular (and eventually turbulent) state.
The perturbed flow is described by the velocity and pressure fields:

{
vα = Uα + wα

p = P + q
(5.3)

the evolution equation of which can be written by imposing that
the flow (#U, P ) satisfies the Navier-Stokes equations:

∂twα + Uβ∂βwα + wβ∂βUα + wβ∂βwα = −∂αq + ν∂2wα (5.4)
∂αwα = 0 (5.5)

This problem is even more complicated than the starting one, as
there are two more terms which describes the coupling between
the basic flow and the perturbation. To date a fully analytical ap-
proach to this problem is not available, except for few very simple
cases.
A simplification of the problems (5.4), (5.5) is obtained if the pertur-
bations amplitude is assumed to be slow with respect to the basic
flow. This permits to neglect the nonlinear term in eq. (5.4), arriv-
ing to a linear equation for #w. The stability analysis performed un-
der this simplification is called linear stability analysis. Although
linear stability analysis represents a suitable approach to the prob-
lem, there are flows that are linearly stable but in fact unstable. In
these cases a fully nonlinear analysis or a weakly nonlinear analy-
sis should be performed. The latter is a perturbative approach in
the small parameter obtained by the ratio between the perturbation
amplitude and the basic flow amplitude.

Stability of a parallel flow

In the case of a plane parallel flow #U = (U(y), 0, 0), eq. (5.4) simplifies
to:

∂twx + U∂xwx + wy∂yU = −∂xq + ν∂2wx

∂twy + U∂xwy = −∂yq + ν∂2wy

∂twz + U∂xwz = −∂zq + ν∂2wz

(5.6)
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A normal mode expansion can be performed in x, z, t and the sta-
bility is related to the evolution in time of each mode.

A further simplification is introduced by the Squire’s theorem [7],
which for a parallel flow assures that to each unstable three-dimensional
disturbance there corresponds a more unstable two-dimensional one.
With this simplification we can describe everything in terms of the
stream function and of its normal modes:

wx =∂yψ (5.7)
wy =− ∂xψ (5.8)

ψ −→φ eik(x−ct) (5.9)

where φ is the Fourier transform of ψ. Plugging these identities
in eqs. (5.6) we can derive an evolution equation for the stream
function:

(U − c)(∂2
yφ− k2φ)− (∂2

yU)φ =
ν

ik
(∂4

yφ− 2k2∂2
yφ + k4φ) (5.10)

that is called the Orr-Sommerfeld equation (see for example [8]).
The analytical approach to eq. (5.10) is almost prohibitive, except
for a few cases, and numerical studies are necessary to solve the
problem.

5.1.2 The viscoelastic case
Conceptually, the same analysis can be repeated for viscoelastic
flows. Practically (see chapter 6) the main additional difficulty
arises from the description of viscoelasticity. The stresses in a vis-
coelastic fluid are modified by the presence of polymers and their
evolution should be modeled accurately. This adds to eqs. (5.6)
new unknowns and possibly terms of coupling between the poly-
meric stress and the velocity field.
The parameter that describes the relative importance of viscous
effects over elastic effects is usually the non-dimensional Weis-
senberg number Wi (or Deborah number De). In principle we ex-
pect that the critical point above which instabilities can grow will
be characterized by a critical Re and a critical Wi.
In the regime of small Re and small Wi flows are laminar and no
instabilities take place. With increasing Re, inertial instabilities
develop: these instabilities are those occurring in the Newtonian
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case, possibly altered by the presence of polymers. In the limit of
small Re and large Wi purely elastic instabilities can appear. These
have no equivalence with the Newtonian case, and are generated
by the viscoelasticity of the fluid.
In the past years a number of important experiments and nu-
merical simulations have been performed to investigate the sta-
bility of viscoelastic flows. The instabilities that can arise in vis-
coelastic fluids are different according to the properties of the so-
lution: dilute unentangled or moderately entangled solutions show
altered hydrodynamic instabilities with respect to the Newtonian
case, whereas concentrated entangled solutions show a different
class of instabilities, namely fracture. Nevertheless, in all kinds of
viscoelastic flows purely elastic instabilities are likely to appear.
Larson and coworkers [9] and then Steinberg and coworkers [10]
studied experimentally the effect of elasticity on the stability of a
Couette-Taylor flows by varying the ratio between Re and Wi. They
found the existence of inertial and purely elastic instabilities, and
they characterized these two regions and the crossover between
them. A detailed analysis can be found in refs. [1,2,11,12].

5.2 Elastic turbulence

In a series of recent papers by Steinberg and coworkers [3,4,10,13]
it has been noted that a turbulent like state can be generated
at vanishingly small Reynolds number, yet relatively large Weis-
senberg numbers in polymer solution flows. The emergence of a
“small-Re turbulence” is very important in all mixing related appli-
cations, as this implies that it is not necessary to excite a flow at
large Reynolds numbers to obtain an efficient mixing. For example
this could be exploited to improve drug mixing in micro-devices,
where is typically difficult to reach large Re.
In polymer solutions an elasticity parameter measuring the relative
importance of elasticity and viscosity can be defined as El = Wi/Re.
When El ! 1 and Re is small, the flow behaves like a laminar
Newtonian flow. For large enough El, elastic instabilities develop,
giving rise to a state exhibiting some features of developed turbu-
lence. Steinberg and coworkers have identified a principal measure
of elastic turbulence by measuring the ratio between the average
shear stress and its corresponding value for a laminar flow.
For a flow between two rotating circular plates, this ratio has been
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Figure 5.2: Representative snapshots of elastic turbulence in a flow generated
between two rotating coaxial plates [4]. (a, b) Polymer solution at Wi = 6.5, Re =
0.35; (c, d, e) polymer solution at Wi = 13, Re = 0.7; (f) pure solvent at Re = 1.

measured (see ref. [3]). When the relative angular velocity be-
tween the two plates is increased the average rescaled shear stress
grows significantly, showing a sharp transition. The same maxi-
mum stress value is found in a corresponding flow of a Newtonian
fluid for Re ∼ 104, whereas the measurements were taken at Re < 1,
showing that these effects are due to the fluid elasticity. The spa-
tial spectra of the velocity field have been measured, and a power
law tail has been observed. This flow is irregular in time and in
space, essentially at large scales.
Qualitatively the polymers are stretched by the shear flow thus
triggering elastic instabilities. These instabilities give rise to a sec-
ondary flow that stretches further the molecules until the system
reaches a stationary state. A theoretical analysis of elastic turbu-
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Figure 5.3: The friction coefficient as a function of the Reynolds number [5]. Black
dots represent the Newtonian case, whereas the other symbols correspond to dif-
ferent concentrations of polymers. For small Re the typical dependence Re−1 is
observed. After the transition from laminar to turbulent the friction coefficient no-
tably reduces, and is a function of the concentration.

lence has been proposed in refs. [14–16].

5.3 The drag reduction phenomenon
The case of elastic turbulence concerns the regime Re" 1 and El#
1. In the opposite regime, Re # 1 and El " 1, inertial instabilities
lead to a turbulent state with phenomenology different from the
Newtonian one.
Since the seminal work by Toms it is known that the addition of
a few parts per million of long chain polymers in a pipe flow can
reduce the skin friction of a factor near 80%. The fundamental
aspects related to the drag reduction phenomenon in a pipe flow
have been reviewed by Virk [5] and are briefly explained hereafter.
The friction coefficient can be defined as:

f =
∆p

ρV 2

R

L
(5.11)

where ∆p is the pressure drop across a length L of the pipe of ra-
dius R, ρ is the density and V is the mean-stream velocity. This
coefficient is related to the frictional loss in pumping the fluid



96 CHAPTER 5. DYNAMICS OF POLYMER SOLUTIONS

through the pipe. For a turbulent pipe flow of a polymer solution
the friction coefficient can be dramatically reduced in comparison
to the Newtonian case, as shown in fig. 5.3, i.e. drag reduction
occurs. In plain words the pressure drop that should be imposed
to maintain a given throughput in the pipe is smaller for a polymer
solution than for a Newtonian flow.
Many theories have been proposed to explain what is the basic
physical mechanism of the drag reduction phenomenon. Lum-
ley [17] proposed a quantitative approach based on the phenomenol-
ogy of the channel flow. Another approach is due to de Gennes [18],
who suggested an elasticity-based criterion. More recently Moin,
Shaqfeh and collaborators proposed a mechanism based on the in-
teraction of coherent structures (see for example [19, 20]). Much
effort in understanding the mechanism of drag reduction in wall
flows has been dedicated also by Piva, Casciola and coworkers
(see [21] and refs. therein), by Procaccia and coworkers (see [22]
and refs. therein), by Benzi and coworkers (see [23] and refs.
therein), by Chertkov [24], Lebedev and coworkers [14,15]. Collins,
Sureshkumar, Beris and their respective collaborators have de-
voted a lot of attention to the numerical algorithms to simulate
polymer solutions [25,26]. Finally, recent experimental results are
reported in refs. [6,27–31]. A list of references updated to 1997 can
be found in ref. [32].
Despite the considerable number of studies, a quantitative, fully
satisfactory, explanation of drag reduction is not available yet, and
the phenomenological theories are not universally accepted [33].
The experimental and theoretical studies of drag reduction have
been performed in wall bounded flows, due to technological and
industrial applications . We remark here that this effect can take
place also without material boundaries (see chapter 9).



Chapter 6

Viscoelastic fluid models

Much effort has been dedicated in the past years to the formula-
tion of polymer solution models able to reproduce experimental ob-
servations, yet simple enough to be simulated numerically or even
treated analytically. This endeavor is motivated on the one hand by
the diversity of phenomenological behaviors of polymer solutions,
and on the other hand by the fact that numerical simulations of
viscoelastic flows are exceptionally expensive from a computational
point of view.
In this chapter I will present the most common models of viscoelas-
tic fluids and show how these can be connected with the descrip-
tion of the polymer dynamics at the microscopic level.

6.1 Constitutive equations for viscoelastic
fluids

A fluid is characterized by a constitutive equation that describes its
mechanical response. This express the stress T in a fluid element
due to an external deformation rate D:

T = T (D) (6.1)

where D = (∂v + ∂vT )/2.
For a Newtonian fluid the stress is proportional to the rate of de-
formation via the viscosity of the fluid. The mechanical response
of a fluid can be characterized for example in viscometric flows (see
e.g. [34]), where a constant shear rate is imposed and the corre-
spondingly produced stress can be measured. For example such
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Figure 6.1: A sketch of a shearing flow used to measure the stress opposing an
externally imposed deformation.

a flow can be generated as in fig. 6.1, where a fluid lies between
two plates and one of them is displaced at constant velocity #v. This
produces a pure shear flow with constant rate s, vx = sy. A shear
stress is generated by this deformation, whose components are:

Txy = Tyx = ηs (6.2)
Txx = Tyy = Tzz = 0 (6.3)

where η is the dynamics viscosity of the solvent, and the following
relations hold:

N1 = Txx − Tyy = 0 N2 = Tyy − Tzz = 0 (6.4)

where N1 and N2 are called the first and second normal stress dif-
ferences, respectively.

For non-Newtonian fluids there is in general no proportionality
between the stress and the rate of deformation, and the relation
between them is more complicated.
Viscoelastic fluids are a class of non-Newtonian fluids that can be
obtained for example by adding a few parts per million of long chain
polymer to a Newtonian solvent. Chewing gum and polyurethane
memory foam are other examples of viscoelastic materials.
In the case of viscoelastic fluids, the stress in a fluid element de-
pends in general on the deformation history of that element. For
example, in the experiment of fig. 6.1, if one stops the plate sud-
denly after the application of the external deformation, a time-
dependent shear stress would be observed.
In eq. (6.2) the viscosity is replaced by a function of the local shear
rate (called the shear viscosity) and of time. Usually this is a mono-
tonically decreasing function of the shear rate, and the behavior of
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(a) (b)

Figure 6.2: (a) A falling Newtonian fluid drop. (b) A non-Newtonian fluid drop. Due
to the presence of altered normal stresses, the adhering part of the drop is smaller
than for the Newtonian fluid, and the filaments are thinner.

the fluid is said to be “shear-thinning”. However, in some cases,
the viscosity can increase with the shear rate, and the fluid is called
“shear thickening”.
The first normal stress difference N1, which also depends on the
local shear rate, is positive for polymeric liquids, giving rise to the
most typical demonstrations of non-Newtonian behaviors, such as
the rod-climbing (or Weissenberg) effect, the very large extrudate
swelling at the exit of a die or the example given in fig. 6.2. The
second normal stress difference N2 is negative.
A review of the most common constitutive equations for polymeric
liquids can be found in ref. [35] whereas a complete treatment can
be found for example in ref. [36]. In the following subsections I
will present the constitutive equations on which some of the most
accepted polymer solution models are based.

6.1.1 The Maxwell model

An intuitive one-dimensional model for a viscoelastic fluid is sketched
in fig. 6.3. The viscous behavior is reproduced by a dashpot, while
the elastic behavior is represented by a spring. The tension T of
the system would satisfy the following differential equation:

T + τ Ṫ = η D (6.5)

where D is the strain rate of this system, and τ = η/k is the relax-
ation time of the dashpot. This is called the Maxwell model [36].
Other simple one-dimensional models can be realized by combining
differently the spring and the dashpot: for example the so called
Kelvin (or Voigt) model is obtained by a spring and a dashpot in
parallel.
The generalization of the Maxwell model to the case of fluids yields
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Figure 6.3: A representation of the Maxwell model as a superposition of a spring
of elastic constant k and a dashpot corresponding to the viscosity η.

the constitutive equation:

T + τ
%
T = 2ηD (6.6)

where T is the total stress tensor, and the symbol
%
T describes the

time evolution of the tensor in a velocity field v [37] and is called
upper-convected derivative:

%
T = ∂tT + v · ∂T − ∂v · T − T · ∂vT (6.7)

This model is also called upper convected Maxwell model.
The Maxwell model shows constant shear viscosity η, a first nor-
mal stress difference quadratic in the local shear rate, whereas the
second normal stress difference is zero.
The drawback of the Maxwell model is that the so called extensional
viscosity (the analogous of the shear viscosity for an elongational
flow) is meaningful only for small stretching rates, and is negative
for larger values.

6.1.2 The Oldroyd-B model
A more refined model is the Oldroyd-B model [36–39]. Its basic
ingredient is that the stress is decomposed into two parts: a New-
tonian contribution T n and a polymer contribution T p. Each of
these components obeys a constitutive equation:

T n = 2ηnD (6.8)

T p + τ
%

T p = 2ηpD (6.9)

where ηn is the solvent viscosity and ηp is the polymer contribution
to the total viscosity. In the Oldroyd-B model the shear viscosity is
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η = ηn + ηp, the first normal stress difference N1 is quadratic in the
local shear rate and N2 = 0.
The main difference between the Oldroyd-B model and the Maxwell
model is in the emergence of a second typical timescale. Indeed the
constitutive equation for the total stress is:

T + τ
%
T = 2η

(
D + τR

%
D

)
(6.10)

where τR = ηnτ/η is called the retardation time. It is worth notic-
ing that physically the relaxation time expresses the property of
the fluid to have non zero stress even when no rate of deforma-
tion is applied, whereas the retardation time is related to the fact
that the reaction to a deformation is not immediately followed by
a corresponding stress. Note that the Oldroyd-B model recovers
the Maxwell model for τR = 0. Within this model the extensional
viscosity is meaningful in a wider range of stretching rates.

6.1.3 The Giesekus model

In the Giesekus model [40], as in the Oldroyd-B model, the to-
tal stress is decomposed into solvent and polymer contributions,
where the solvent contribution obeys eq. (6.8). Starting from con-
siderations on the behavior of the solution at the molecular level,
Giesekus developed a nonlinear evolution equation for T that de-
pends on three parameters:

T p + τ
%

T p +
αGτ

ηp
T p · T p = 2ηpD (6.11)

This model has gained prominence because it accurately describes
normal-stresses and gives a reasonable description of the behavior
of a viscoelastic fluid in elongational flows. The third parameter
αG formally corresponds to the introduction of a stress-dependent
relaxation time, that is also responsible for the emergence of a non-
linear term. The Giesekus model recovers the Oldroyd-B model for
αG = 0 and the Maxwell model for αG = 0 and τR = 0.
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6.2 From the dumbbell to the constitutive
equation

Simple theories that connect the dynamics of the dissolved molecules
and the macroscopic behavior can be developed by exploiting the
following assumptions [34,36]:

• the solution is dilute, so that polymer-polymer interactions
are negligible

• the concentration is uniform

• the solution is mono-disperse, i.e. there is only one kind of
polymers.

Particularly simple is the case of the dumbbell model. The evolu-
tion equation of the end-to-end vector of a polymer described with
the linear dumbbell model is:

Ṙα = − 1

2τ
Rα + Rβ∂βvα +

√
R2

0

τ
ξα(t) (6.12)

The average end-to-end vector of the polymers can be expressed
in terms of the so called conformation tensor σαβ = 〈RαRβ〉, where
the average is taken over the realizations of the thermal noise. The
evolution equation for the conformation tensor can be derived from
eq. (6.12):

∂tσ + v · ∂σ − ∂v · σ − σ · ∂vT =
%
σ = −1

τ
(σ −R2

01) (6.13)

where 1 is the identity. The conformation tensor can be inter-
preted as the effective average elongation of uniformly distributed
and non-interacting polymers, as a function of space and time.
Eq. (6.13) describes polymer deformation due to the presence of a
velocity gradient.

The polymer contribution to the total stress per unit volume is:

T p = −n〈R F 〉 − nHR2
0 1 = nH

(
σ −R2

01
)

(6.14)

where n is the number of dumbbells per unit volume and F = −HR
is the recalling force.
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From eq. (6.13) and eq. (6.14) it is easy to obtain the evolution
equation for the polymer contribution to the total stress:

T p + τ
%

T p = 2R2
0nHτD (6.15)

where R2
0nHτ ≡ ηp is the polymer contribution to the total viscosity.

Therefore the Oldroyd-B model constitutive equations correspond
to considering a dilute uniform solution of non-interacting linear
dumbbells.
The evolution equation for the stress tensor in the Giesekus model
can be derived by assuming that the relaxation time is an anisotropic
function of the stress:

τG = τ(1− αG

nkBT
T p) (6.16)

6.2.1 Evolution equations for the Oldroyd-B model

Plugging the expression for the total stress T = T n+T p into eq. (5.1)
we obtain:

∂tv + v · ∂v = −1

ρ
∂p + νn∂2v +

νp

τ
∂ · σ

R2
0

+ f

∂tσ + v · ∂σ = ∂v · σ + σ · (∂v)T − 1

τ
(σ −R2

01)

∂ · v = 0

(6.17)

where νn = ηn/ρ and νp = ηp/ρ.
The Oldroyd-B model has been recently used to successfully inves-
tigate thermal convection in viscoelastic fluids [41], the occurrence
of vortex pairing in viscoelastic Taylor-Couette flows [42], and drag
reduction in channel flows [43].
It is worth noticing that from a computational point of view the
numerical simulation of eqs. (6.17) can be expensive both for the
increased number of unknowns with respect to the Newtonian case
and for computational problems related to the evolution equation
for σ. By definition σ is a positive defined tensor: nonetheless, due
to numerical errors, its positive definiteness can be lost during the
time evolution. Alternative numerical schemes have been proposed
to prevent these instabilities such as adding an artificial diffusivity
on the tensor σ [26] or by decomposing it appropriately [25].
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6.2.2 The FENE-P models
A conceptually simple extension to the Oldroyd-B model is the
FENE-P model. When the polymer extension approaches the con-
tour length L, the linear dumbbell model fails and nonlinearity be-
comes important. In this case it is sufficient to replace the elastic
Hookean force by the Warner law (see chapter 2 and ref. [44]):

F = −H
R

1− R2

L2

(6.18)

However this would yield a nonlinear evolution equation for σ which
is not closed:

%
σ = −1

τ

(
〈 RR

1− tr(RR)
L2

〉 −R2
01

)
(6.19)

A commonly accepted closure is the Peterlin approximation [45]:
the average term of eq. (6.19) is replaced by:

σ

1− tr(σ)
L2

(6.20)

This approximation leads to the following evolution equation:

%
σ = −1

τ

(
σ

1− tr(σ)
L2

−R2
01

)
(6.21)

The FENE-P model is generally more accurate than the Oldroyd-B
model in reproducing the scaling behavior for the shear viscosity
and the normal stress differences. The FENE-P model compares
well to the experimental measurements of extensional viscosity and
is shear-thinning.



Chapter 7

Linear stability analysis of
the viscoelastic Kolmogorov
flow

In this chapter I will present my results on the stability analysis
of the viscoelastic Kolmogorov flow. In 1959 A.N. Kolmogorov sug-
gested to study this flow, which is parallel and periodic, as a toy
model for the analysis of the transition to turbulence [46]. Shortly
after Meshalkin and Sinai [47] were able to show that the Kol-
mogorov flow is linearly unstable with respect to large-scale trans-
verse perturbation, still nonlinearly stable with respect to small-
scale disturbances.
We have studied the occurrence of instabilities in a viscoelastic
Oldroyd-B fluid in the Kolmogorov flow. By means of a perturba-
tive, analytical approach, the instabilities of the Kolmogorov flow
can be captured (see refs. [48–50]). Here we aim at studying the
stability of a Kolmogorov flow of an Oldoryd-B fluid. For small poly-
mer elasticity the solution behaves like a Newtonian fluid, and the
instabilities are the same of the Newtonian case. For large polymer
elasticity we recover purely elastic instabilities that develop differ-
ently from inertial ones, and cannot be studied completely within
the analytical framework. We have performed numerical simu-
lations to better understand how linear elastic instabilities take
place.
As an introductory case, the linear stability analysis of the Newto-
nian Kolmogorov flow [47] will be performed by means of a multi-
scale approach [51]. The analysis can be repeated in the other
cases with the same spirit, but it is longer and the detailed calcu-
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Figure 7.1: The Kolmogorov flow profile.

lations will not be reported.

7.1 The Newtonian case
As the Kolmogorov flow is a plane parallel flow, the Squire’s theo-
rem applies (see chapter 5 and ref. [7]). The two-dimensional Kol-
mogorov flow is obtained by imposing a sinusoidal forcing in the
x direction, oscillating in the z direction, resulting in a sinusoidal
profile for the velocity (see fig. 7.1):

f = (
νV

L2
cos

z

L
, 0) u = (V cos

z

L
, 0) (7.1)

where 2πL is the periodicity box size.
The linearized evolution equations for the perturbations are:

∂γwγ = 0

∂twγ + ∂β(uβwγ + wβuγ) = −∂γq + ν∂2wγ
(7.2)
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Following ref. [51] we investigate the dynamics of perturbations
with a characteristic length scale much larger than L. The ratio
between the two scales will be denoted by ε. Therefore we introduce
two classes of variables: the fast (x, t) and the slow (x̃ = εx, t̃ = ε2t)
variables. The scaling of the slow time has been set to be quadratic
as we expect to end up with a diffusive equation for the large-scale
flow. With this spirit we introduce also the differential operators
with respect to the fast and slow variables:

∂i → ∂i + ε∂̃i, ∂t → ∂t + ε2∂̃t , (7.3)

The perturbation fields can then be expanded in power of ε as fol-
lows:

w = w(0)(z, t, x̃, z̃, t̃) + εw(1)(z, t, x̃, z̃, t̃) + ε2w(2)(z, t, x̃, z̃, t̃) + . . . , (7.4)

q = q(0)(z, t, x̃, z̃, t̃) + εq(1)(z, t, x̃, z̃, t̃) + ε2q(2)(z, t, x̃, z̃, t̃) + . . . , (7.5)

as we don’t expect a dependence on the fast variable x. Substi-
tuting the expansions in eqs. (7.2) we end up with a hierarchy of
equations at the various orders in ε. These must be solved together
with the corresponding solvability conditions, obtained by averag-
ing the equations at each order on the periodicity of the small scale.
At order 0 we have:

w(0)
x =

V L

ν
〈w(0)

z 〉 sin (
z

L
) + 〈w(0)

x 〉

w(0)
z =〈w(0)

z 〉
q(0) =0

(7.6)

whereas at order ε we have:

w(1)
x =3

V L2

ν
∂̃z〈w(0)

z 〉 cos (
z

L
) +

V L

ν
〈w(1)

z 〉 sin (
z

L
) + 〈w(1)

x 〉

w(1)
z =

V L2

ν
∂̃x〈w(0)

z 〉V cos (
z

L
) + 〈w(1)

z 〉

∂̃x〈w(0)
x 〉+ ∂̃z〈w(0)

z 〉 = 0

(7.7)

The solvability condition at order ε2 gives a closed equation in the
field w(0):

∂̃t〈w(0)
x 〉 =

7V 2L2

2ν
∂̃2

x〈w(0)
x 〉 − ∂̃x〈q(1)〉+ ν

(
∂̃2

z + ∂̃2
x

)
〈w(0)

x 〉

∂̃t〈w(0)
z 〉 =− 1

2

V 2L2

ν
∂̃2

x〈w(0)
z 〉 − ∂̃z〈q(1)〉+ ν

(
∂̃2

z + ∂̃2
x

)
〈w(0)

z 〉
(7.8)
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Figure 7.2: Stability diagram of the Kolmogorov flow as a function of the Reynolds
number and the angle between the perturbation and the basic flow. The colored
region is unstable and the white region is stable.

The field w(0) can be expressed in terms of a stream function:

〈w(0)
x 〉 =

1

V
∂̃zψ 〈w(0)

z 〉 = − 1

V
∂̃xψ (7.9)

and eq. (7.8) can finally be rewritten as:

∂̃t(∂̃
2
x + ∂̃2

z )ψ = ν̃αβ∂̃α∂̃βψ = (7.10)

= ν(∂̃2
z + ∂̃2

x)
2ψ +

7V 2L2

2ν
∂̃2

z ∂̃
2
xψ −

V 2L2

2ν
∂̃4

xψ (7.11)

The stability of the Kolmogorov flow is given by the sign of the oper-
ator ν̃αβ∂̃α∂̃β, where the tensor ν̃ is called eddy viscosity. Introduc-
ing the Reynolds number Re = V L/ν, and expressing the stream
function in terms of normal modes we have:

ψ = eikx̃+imz̃

k

m
= tan(θ)

(2− Re2) tan4 (θ) + (4 + 7Re2) tan2 (θ) + 2 ≥ 0

(7.12)

where θ is the angle between w and u. The sign of this quadratic
form is reported in fig. 7.2 as a function of θ and Re. The Kol-
mogorov flow is always linearly stable with respect to large-scale
perturbations below a critical value Rec =

√
2 [47,52]. For Rec >

√
2

the flow is stable only with respect to perturbation with a certain
angle, as shown in fig. 7.2.
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7.2 The viscoelastic case
The multi-scale analysis performed in the previous section can be
repeated in the viscoelastic case. A generalization of the Squire’s
theorem to the case of viscoelastic flows is given in the appendix of
the article following chapter 8. To perform the stability analysis, a
perturbation on the velocity w, the pressure q and the conformation
tensor ζ must be imposed. The corresponding linearized evolution
equations are:

∂αwα = 0

∂twα + ∂β(uαwβ + wαuβ) = −∂αq + νβ∂2wα +
(1− β) ν

τ
∂βζβα

∂tζαβ + ∂γ(uγζαβ + wγσαβ) = ∂γuαζγβ + ∂γwασγβ

+∂γwαζγβ + ζαγ∂γwβ + ζαγ∂γuβ + σαγ∂γwβ −
1

τ
ζαβ

(7.13)

where we have indicated with νβ the solvent viscosity and with
(1−β)ν the viscosity contribution of the polymers, and ζ is adimen-
sionalized with R2

0. The basic state here is defined by (see chap-
ter 6):

u = (V cos
z

L
, 0)

σ =

(
1 + 2τ 2 (∂zU)2 τ ∂zU

τ ∂zU 1

)
=

=

(
1 + 2τ 2 V 2

L2 sin2 ( z
L) −V τ

L sin ( z
L)

−V τ
L sin ( z

L) 1

)
(7.14)

The analysis follows the one of the previous section: slow and fast
variables are introduced both for space and time. For the slow time
a diffusive behavior is expected and the same scalings of the New-
tonian case are assumed. With these hypotheses the perturbation
fields can be expanded as:

w = w(0)(z, t, x̃, z̃, t̃) + εw(1)(z, t, x̃, z̃, t̃) + ε2w(2)(z, t, x̃, z̃, t̃) + . . . ,

q = q(0)(z, t, x̃, z̃, t̃) + εq(1)(z, t, x̃, z̃, t̃) + ε2q(2)(z, t, x̃, z̃, t̃) + . . . ,

ζ = ζ(0)(z, t, x̃, z̃, t̃) + εζ(1)(z, t, x̃, z̃, t̃) + ε2ζ(2)(z, t, x̃, z̃, t̃) + . . . ,

(7.15)

With the same procedure of the Newtonian case we end up with an
effective equation for the large scale stream function:

∂̃t∂̃
2Ψ = ν̃αβ ∂̃2

α∂̃2
βΨ , (7.16)
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Figure 7.3: The stability diagram for the viscoelastic Kolmogorov flow obtained by
means of multiple-scale analysis. Colored regions correspond to linear instability,
whereas white region to linear stability. Here β = 0.769.

where ν̃ = ν1+ νe, and:

νe
xx =

V 2{−L2 + ν(1− β)τ [3 + (1 + 2β)(ντ/L2)]}
2ν

νe
zz = 0

νe
xz = νe

zx =
V 2{7L2 + ν(1− β)τ [−17 + (7− 10β)(ντ/L2)]}

2ν
+ ν .

(7.17)

The basic state (7.14) is linearly stable if the operator ν̃αβ∂̃2
α∂̃2

β is
negative defined. Introducing the adimensional numbers Re and
De = V τ/L (which is the equivalent of the Weissenberg number)
and the angle between the basic flow and the perturbation, θ, we
can rewrite the stability condition on eq. (7.16) as:
(
2− Re2β2 + 3(1− β) De Re + (2β + 1)(1− β)De2

)
tan4 θ +

(
4 + 7 Re2+

+ 17(β − 1) De Re + (10β − 7)(β − 1) De2
)

tan2 θ + 2 ≥ 0

(7.18)

The resulting stability diagram is shown in fig. 7.3. For De = 0
we recover the Newtonian value Rec =

√
2 above which the flow is

linearly unstable. The curve of the diagram starting at Re =
√

2 in
the region De ∼ 0 defines the region of the so called inertial insta-
bilities. Here the elasticity of the polymers is very small and the
stability/instability mechanism is the same of the Newtonian case,
i.e. the most unstable perturbations are transverse with respect
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to the basic flow. However, the significant difference is that the
critical value above which the flow is unstable is increased. For
a given small De the critical Reynolds number is larger than

√
2.

Thus polymers have a stabilizing effect in this range.
The instabilities present in the right-hand side of fig. 7.3 are gen-
erated for Re smaller than the inertial linear stability threshold
Rec =

√
2 and for large De, and are thus purely elastic instabilities.

The occurrence of elastic instabilities has been investigated in the
past in flows with curvilinear streamlines (see for example [1,2,4]
and references therein), but has never been studied before in flows
(like the Kolmogorov flow) with rectilinear streamlines. The instabi-
lization mechanism here is different from the previous case, as the
most unstable perturbations appear at small angles, i.e. for nearly
parallel perturbations.

7.3 The validity of the scale separation
hypothesis

The stability diagram shown in fig. 7.3 refers to instabilities that
evolve at large scales. In the Newtonian case the hypothesis of
scale separation between basic flow and leading instabilities is well
verified, and within the multiple-scale approach the fastest insta-
bilities can be found. However we have no clue that for elastic
instabilities the same hypothesis holds. To check the validity of
this approach we have simulated numerically eqs. (7.13). Perform-
ing the Fourier transform of the stream function and of the field
ζ, a set of linear algebraic equations with non constant coefficients
for the spectral amplitudes of the vorticity (k2

x +k2
z)Ψ̂ and of the con-

formation tensor perturbation ζ̂ can be derived. This problem can
be reconducted to a generalized eigenvalue problem, which can be
solved by a standard Arnoldi method [53].
The results of the simulations are shown in fig. 7.4. For inertial
instabilities there is a perfect agreement between numerical sim-
ulations and analytical calculations. For larger De the two curves
detach and the stability portrait obtained by numerical simulations
is more restrictive. For even larger De there is a small region where
the two curves are close, but for very small Re the two curves are
again different. The light colored regions correspond to values of
the parameter for which the system is unstable. The multiple-scale
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Figure 7.4: The stability diagram of the viscoelastic Kolmogorov flow obtained
by means of numerical simulations (black triangles) compared to the results of
multiple-scale analysis (lines). Colored regions are unstable, whereas white re-
gions are stable. For the explanation see the text.

analysis predicts stability with respect to large-scale perturbations
for the dark regions. Nevertheless, these regions are unstable with
respect to small-scale perturbations and are not covered by the
multiple-scale approach.

7.4 Generalization to finite Schmidt
numbers

The numerical implementation of the Oldroyd-B model for direct
numerical simulations presents several challenges, not only for the
introduction of additional unknowns but also for the remarkable
changes in the structure of the governing equations. Particularly
critical is the fact that the conformation tensor (which by definition
represents the second order moment of the end-to-end vector of
polymers) can loose the positive definiteness, thus leading to nu-
merical instabilities.
In ref. [26] it has been demonstrated that the addition of an artifi-
cial diffusivity term on the evolution equation for the conformation
tensor can reduce considerably these problems, but for high val-
ues of the diffusivity parameter can lead to substantial changes in
the dynamics. Here we want to investigate what is the effect of the
artificial stress diffusivity on the stability of the Kolmogorov flow.
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(a) (b)

Figure 7.5: (a) The stability diagram for two different values of Sc. (b) The compar-
ison of the stability diagram obtained from analytical perturbative methods (lines)
with the one obtained from numerical simulations (triangles) for the case with and
without diffusivity.

The stability analysis performed by means of multiple-scale tech-
niques can be extended to this case with the only addition of the ex-
tra term κ∂2σ in the evolution equation for the conformation tensor.
An additional complication arises in the resolution of the equations
at different orders due to the fact that those coming from the evo-
lution of the conformation tensor become differential rather than
algebraic. The relative strength of the artificial diffusivity is mea-
sured by the adimensional Schmidt number Sc = βν/κ.
The results of the multiple-scale approach are shown in fig. 7.5a.
The effect of the artificial diffusivity is to move the elastic instabil-
ities towards larger De and to reduce the stabilizing effect of poly-
mers in the inertial stability region. This effect is an evidence that
the action of the artificial diffusivity is to hinder polymer elonga-
tion. It is worth noticing that this observation suggests that no
spurious drag reduction should be introduced in turbulence of
Oldroyd-B fluids by the addition of this extra diffusivity.
The results of the perturbative approach have been checked in
the inertial region by numerical simulations, and are shown in
fig. 7.5b. These results confirm quantitatively the previous con-
clusions.
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7.5 Perspectives
It would be interesting to analyze the development of inertial insta-
bilities as a function of the properties of the solvent that cannot be
addressed within the context of the Oldroyd-B model (e.g. concen-
tration, length of the dissolved molecules, molecular mass), and to
extend the stability analysis to more refined models such as the
Giesekus model. Furthermore, it is known that, in high concen-
tration regimes, different kinds of instabilities take place such as
fracture. A next step toward the understanding of instability of vis-
coelastic fluids would be to analyze the stability properties of more
concentrated solutions where entanglement takes place.
Finally it would be interesting to perform a detailed analysis of the
purely elastic instabilities and on the possible emergence of elastic
turbulence.
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The stability properties of the laminar Kolmogorov flow of a viscoelastic Oldroyd-B
fluid are investigated both analytically and numerically. Linear stability with respect
to large-scale perturbations is studied by means of multiple-scale analysis. This
technique yields an effective diffusion equation for the large-scale perturbation where
the effective (eddy) viscosity can be computed analytically. Stability amounts to the
positive definiteness of the eddy-viscosity tensor as a function of the Reynolds and
the Deborah numbers. Two main results emerge from our analysis: (i) at small fluid
elasticity, the flow is more stable than in the Newtonian case; (ii) at high elasticity,
the flow is prone to elastic instabilities, occurring even at vanishing Reynolds number.
The hypothesis of scale separation is verified up to moderate elasticity, as checked
by numerical integration of the exact linearized equations by the Arnoldi method.
Finally, it is shown that the addition of a stress diffusivity counteracts the effect of
elasticity, in agreement with simple physical arguments.

1. Introduction
Flow instabilities are a classical subject in fluid dynamics (Drazin & Reid 1981)

and the theoretical study of their occurrence in polymer solutions and melts is of
paramount importance for several industrial applications (see e.g. Petrie & Denn 1976;
Larson 1992; Shaqfeh 1996). A satisfactory understanding of these flow transitions
entails taking account of the viscoelastic behaviour of such fluids.

A spectacular consequence of viscoelasticity is the drag reduction effect: addition
of minute amounts (a few tenths of p.p.m. in weight) of long-chain soluble polymers
to water leads to a strong reduction (up to 80%) of the power necessary to maintain a
given throughput in a channel (Toms 1949; Lumley 1969; Virk 1975). Despite the vast
number of studies on the subject, the understanding of drag reduction by polymers
is still incomplete (Lumley 1969; Virk 1975; Nadolink & Haigh 1995; Sureshkumar,
Beris & Handler 1997; Sreenivasan & White 2000).

Recently, some theoretical works have been aimed at establishing a link between
drag reduction and the stability properties of the flow (Govindarajan, L’vov &
Procaccia 2001; Stone, Waleffe & Graham 2002). Our goal here is to give further
evidence that the seed of drag reduction is found at the very initial stage of the
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Figure 1. The stability portrait as predicted by multiple-scale analysis (solid line) and
computed by numerical solution of the exact linearized equations (triangles). In the region
denoted by U the flow is unstable, in that denoted by S it is stable. Inside the area denoted by
CSL the flow is stable with respect to large-scale perturbations, but unstable with respect to
generic perturbations.

successive instabilities which lead to a fully developed turbulent regime. In this frame-
work, the possible occurrence of drag reduction can be detected by investigating how
the stability of the flow changes upon polymer injection.

The basic flow we focus on is the extension to viscoelastic fluids of the well-
known Kolmogorov flow (Arnold & Meshalkin 1960). Boffetta, Celani & Mazzino
(2004) have shown that the fully developed turbulent regime of this flow displays drag
reduction. Similarly to the Newtonian case (Meshalkin & Sinai 1961), the evolution of
large-scale perturbations – the most unstable ones for moderate fluid elasticity – can
be formally described by an effective viscous dynamics. Instabilities are thus associated
with the loss of positive definiteness of the eddy-viscosity tensor, whose analytical
expression can be explicitly derived from the equations of motion by means of
multiple-scale analysis (Bensoussan, Lions & Papanicolaou 1978). In the Newtonian
case, the eddy-viscosity tensor is a function of the Reynolds number, Re, and long-
wave transverse instabilities occur above the threshold Rec =

√
2 (Meshalkin & Sinai

1961). In the viscoelastic case studied here, the effective viscosity depends on both the
Reynolds and the Deborah, De, numbers. (The latter is related to the typical polymer
relaxation time.) The boundary between stable and unstable regions in the Re–De
phase space is determined by the parameter values such that the viscosity tensor loses
its positive definiteness.

We anticipate our main result in figure 1, showing the phase-space portrait obtained
by multiple-scale methods (see § 4). For moderate De, the critical Reynolds number
is an increasing function of the Deborah number: this demonstrates the stabilization
of the flow field induced by the polymers (Govindarajan et al. 2001; Stone et al.
2002). The asymptotic result obtained for large-scale perturbations is confirmed by
the numerical solution of the full linear stability problem (see § 6). Discrepancies in
figure 1 between perturbative and numerical results are due to lack of scale separation,
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i.e. instabilities occurring at small or moderate scales, which cannot be captured by
multiple-scale methods.

2. The Oldroyd-B model
The Oldroyd-B model is based on the assumption that a polymer solution can be

treated as a dilute suspension of elastic dumbbells, i.e. pairs of microscopic beads con-
nected by harmonic springs (Bird et al. 1987). The elastic constant of the spring is in-
versely proportional to the typical polymer relaxation time τ , controlling the response
of the polymers to the stretching effects exerted by the local shear in the flow.

The distance between the two beads, here denoted by R, evolves according to the
stochastic equation

Ṙ = (R · ∂)u − 1

2τ
R +

√
R2

0

τ
ξ . (2.1)

On the right-hand side, the first term is the stretching/compression term, originating
from the spatial variation of the flow experienced at R. The second is a relaxation
contribution, where one considers only the largest – and thus the most effective in the
interaction with the flow – characteristic time τ . The last term, ξ , is a white-in-time
random process mimicking the effect of thermal noise on the polymers. R0 denotes the
equilibrium spring length, in the absence of advecting flow. This description remains
valid and no other physical effects (such as the nonlinearity of the springs) need to
be taken into account as long as we consider moderate polymer elongations.

Averaging (2.1) over the statistics of the thermal noise ξ , the following evolution
equation for the conformation tensor σ ≡ 〈RR〉/R2

0 is obtained:

∂tσ + (u · ∂)σ = (∂u)T · σ + σ · (∂u) − 1

τ
(σ − !), (2.2)

where (∂u)αβ ≡ ∂αuβ and tr∂u = ∂ · u = 0.
The dynamical effect of the polymers on the flow is due to the elastic contribution

to the stress tensor. In the Oldroyd-B model (see e.g. Bird et al. 1987), that is for
Hookean springs, this contribution per unit density is

T =
ν(1 − β)

τ
(σ − !), (2.3)

where ν is the total kinematic viscosity of the solution, νβ and ν(1 − β) are the
contribution of the solvent and of the polymers to the total viscosity, respectively.
Here we have introduced the dimensionless parameter β = ηs/(npkBΘτ + ηs), np being
the polymer concentration, kB denoting the Boltzmann constant, Θ the temperature
and ηs the dynamic viscosity of the solvent. The resulting momentum equations are

∂t u + (u · ∂)u = −∂p + νβ∂2u +
ν(1 − β)

τ
∂ · (σ − !) + f . (2.4)

3. Basic equilibrium state
As a first step in investigating the effect of polymers on the stability of the flow, we

need to find a basic equilibrium state that will then be perturbed and the resulting
perturbation growth evaluated exploiting a multiple-scale analysis.

Finding a basic equilibrium state for a generic forcing f is already a formidable
problem for the Navier–Stokes equations without polymers. The task is further
complicated here by the additional term in (2.4) and the coupling with (2.2).
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The problem simplifies for f ≡ (f (z), 0, 0) that induces a parallel flow U = (U (z),
0, 0), trivially annihilating the nonlinear term in (2.4). A further substantial simpli-
fication is introduced by the viscoelastic version of Squire’s theorem (Squire 1933),
which states that for parallel flows the most unstable perturbations are two-dimen-
sional. We shall therefore restrict consideration to the two-dimensional flow (ux, uz),
without prejudicing generality. We further specialize by assuming f (z) = F0 cos(z/L),
producing the well-known Kolmogorov flow (Arnold & Meshalkin 1960) U (z) ≡
ux(z) = V cos(z/L), uz = 0.

The conformation tensor at equilibrium has then the form

σ =

(
1 + 2τ 2(∂zU )2 τ∂zU

τ∂zU 1

)
=





1 + 2τ 2 V 2

L2
sin2

(
z

L

)
−τ sin

(
z

L

)

−τ
V

L
sin

(
z

L

)
1




, (3.1)

and F0 = νV/L2.

4. Multiple-scale analysis
Let us now consider the linearized equations for the system of perturbations

(w, q, ζ ) of the basic state (u, p, σ ). Equations (2.2) and (2.4), together with the
incompressibility condition, lead to

∂ · w = 0, (4.1)

∂tw + ∂ · (uw + wu) = −∂q + νβ∂2w + ν (1 − β)τ−1∂ · ζ , (4.2)

∂tζ + ∂ · (uζ + wσ ) = (∂u)T · ζ + (∂w)T · σ + ζ · (∂u) + σ · (∂w) − τ−1ζ . (4.3)

We shall study the behaviour of perturbations with a characteristic length scale much
larger than L, the periodicity of the basic flow. The ratio of small to large scales will
be denoted by ε. In the spirit of multiple-scale expansions (Bensoussan et al. 1978),
we introduce a set of slow variables (x̃ = εx, t̃ = ε2t) in addition to the fast variables
(x, t) of evolution of the basic flow. The scaling of the slow time t̃ is suggested
by physical reasons: we are expecting a diffusive behaviour at large scales and the
relation between space and time is thus assumed to be quadratic.

The multiple-scale technique (Bensoussan et al. 1978) treats slow and fast variables
as independent, in order to capture the secular effects shaping the macroscopic
dynamics. The differential operators appearing in (4.1)–(4.3) transform according to
the chain rule as

∂i → ∂i + ε∂̃i , ∂t → ∂t + ε2∂̃t , (4.4)

where i = 1, 2 denotes x and z. In the following, we assume that the amplitude of the
fields in (4.1)–(4.3) are small enough to neglect nonlinear effects (their analysis will
be reported elsewhere). The amplitudes can then be rescaled out so that the fields w,
q and ζ are expanded as

w = w(0)(z, t, x̃, z̃, t̃) + εw(1)(z, t, x̃, z̃, t̃) + ε2w(2)(z, t, x̃, z̃, t̃) + . . . ,

q = q (0)(z, t, x̃, z̃, t̃) + εq (1)(z, t, x̃, z̃, t̃) + ε2q (2)(z, t, x̃, z̃, t̃) + . . . ,

ζ = ζ (0)(z, t, x̃, z̃, t̃) + εζ (1)(z, t, x̃, z̃, t̃) + ε2ζ (2)(z, t, x̃, z̃, t̃) + . . . ,





(4.5)

where all the functions have the same periodicity as the basic state.
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Figure 2. The stability diagram obtained by multiple-scale analysis for (a) β = 0.77 and
(b) β = 0.167, with the notation of figure 1. Higher β corresponds to very low polymer
concentrations while lower β means high concentrations.

Inserting (4.5) into (4.1)–(4.3) and exploiting (4.4), we end up with equations in
which both fast and slow variables appear. By a further average over z, we obtain a
set of equations involving large-scale fields only, i.e. depending on x̃ and t̃ .

Using incompressibility, the large-scale velocity perturbations 〈w(0)〉 can be
described via the large-scale stream function Ψ (x̃, z̃, t̃) as

〈
w(0)

x

〉
= ∂̃zΨ,

〈
w(0)

z

〉
= −∂̃xΨ. (4.6)

The evolution equation for Ψ is obtained as a solvability condition (Fredholm
alternative) at order ε2. After lengthy, but straightforward, algebra we obtain

∂̃t*̃Ψ = ναβ∂̃
2
α∂̃

2
βΨ, (4.7)

where ν = ν! + νe, and

νe
xx =

V 2{−L2 + ν(1 − β)τ [3 + (1 + 2β)(ντ/L2)]}
2ν

, νe
zz = 0,

νe
xz = νe

zx =
V 2{7L2 + ν(1 − β)τ [−17 + (7 − 10β)(ντ/L2)]}

2ν
+ ν.

The perturbations in (4.7) decay if the operator ναβ∂̃2
α∂̃

2
β is negative. The condition of

stability of the system is obtained by introducing the Reynolds number Re=V L/ν,
the Deborah number De= V τ/L and rewriting (4.7) in Fourier space:

(2−Re2β2 +3(1−β) De Re+(2β+1)(1−β)De2)s2 +(4+7Re2 +17(β−1) De Re

+ (10β − 7)(β − 1) De2)s + 2 > 0 ∀s ! 0. (4.8)

Here, s1/2 = tan θ , and θ is the angle between the perturbation and the basic flow, i.e.
θ =0 corresponds to longitudinal perturbations, θ = π/2 to transverse perturbations.
The stability diagram in the Re–De plane is given in figure 2 (note that the topology
of the phase space changes above βc ≡ 7/10).

Two types of instabilities are predicted by our multiple-scale analysis:
(i) Hydrodynamic-like transverse instabilities take place for sufficiently large values

of the Reynolds number, that is above the upper critical line in figure 2(a). In
particular, we observe that the critical Reynolds number is an increasing function
of the Deborah number: the elastic component tends to stabilize the flow. We can
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interpret such behaviour as a prelude to the drag reduction effect observed in the
fully turbulent regime (Boffetta et al. 2004). The lowest critical Reynolds number
for such instabilities is attained for the Newtonian case (De= 0), where we recover
the well-known result that the Kolmogorov flow is linearly stable below Rec =

√
2

(Meshalkin & Sinai 1961).
(ii) Purely elastic instabilities emerge for sufficiently high values of the Deborah

number and small Reynolds numbers (bottom-right region of figure 2a), that is
instabilities that arise for purely elastic effects. Those instabilities were discussed in
Shaqfeh (1996) and Groisman & Steinberg (1996, 1997, 1998a, b, 2004) for curvilinear
streamlines. The present case is, to our knowledge, the first evidence of elastic instabili-
ties for rectilinear streamlines.

Note that in this case the direction of the most unstable mode is at a small angle
with respect to the basic flow, at variance with the purely hydrodynamic transverse
instabilities.

5. Generalization to finite Schmidt numbers
Adding a stress diffusion term κ∂2σ to the equation of motion for the conformation

tensor (2.2) was suggested by Sureshkumar & Beris (1995b) to avoid Hadamard
instabilities which may emerge when (2.2) and (2.4) are integrated numerically. Such
instabilities are triggered when the positive definiteness of the conformation tensor is
lost due to the accumulation of numerical errors. How does the artificial diffusivity
alter the stability portrait? We can address this question by exploiting the multiple-
scale expansion to obtain an analytical answer.

The results shown in the previous section have been obtained for an infinite Schmidt
number Sc= νβ/κ , where we recall that νβ is the solvent viscosity and κ the stress
diffusivity. The latter appears on the right-hand side of (4.3) as an extra term κ∂2ζ .
The analysis proceeds exactly as in the case κ = 0. A source of technical difficulty
is that the equations stemming from (4.3) now have a differential character, rather
than algebraic as for κ = 0, making the computation more cumbersome and tedious.
However, the final result is still a diffusion equation like (4.7), with an eddy-viscosity
tensor dependent on the Schmidt number. The resulting stability portrait for the
hydrodynamic regime is shown in figure 3 for two different values of Sc. The case
Sc= ∞ (i.e. κ = 0) has been treated in the previous section, where it has been shown
that the multiple-scale expansion provides reliable predictions up to Deborah numbers
of order unity.

From figure 3 it is evident that the presence of the diffusivity reduces the stabilizing
action of the polymers. In plain words, a non-zero stress diffusion in the equation of
motion for the conformation tensor brings the system back toward the Newtonian
behaviour. The physical reason is quite intuitive: the presence of a non-vanishing
diffusivity tends to destroy the alignment between the stretching directions and the
polymers, wiping out their capability to interact with the flow by selecting preferential
orientations and making them behave, in practice, as point particles. The tendency to
reach this limit for Sc * 1 has been observed in our computations and simulations
(not shown).

6. Numerical analysis
For a plane parallel flow such as the basic flow of § 3 it is possible to compute

the exact, linear, rate of growth of a perturbation with arbitrary wavenumber, by
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Figure 3. The stability portrait for finite Schmidt numbers. Symbols represent the numerical
result based on the Arnoldi method, whereas solid lines are the prediction for large-scale
instabilities.

means of a procedure that closely resembles the derivation of the Orr–Sommerfeld
equations. Additionally, this will allow us to check if the first unstable modes are
localized at the large scales and the onset of the instability of the laminar flow can
be captured by the multiple-scale analysis developed in § 4.

The starting point is again the set of equations (4.1)–(4.3). Neglecting the nonlinear
terms we have to deal with a set of linear partial differential equations with
periodic boundary conditions. The first step is to take the Fourier transform of
the perturbations w and ζ (denoted, respectively, by ŵ and ζ̂ ), e.g.

wx = ∂zψ +→ ŵx = ikze
i(k · x−ct)ψ̂(kx, kz), (6.1)

wz = −∂xψ +→ ŵx = −ikxe
i(k · x−ct)ψ̂(kx, kz), (6.2)

ζij +→ ei(k · x−ct)ζ̂ij (kx, kz). (6.3)

Accordingly, the equation for the vorticity, ω̂≡ (k2
x +k2

z )ψ̂ , and for ζ̂ are easily derived
from (4.1)–(4.3). For the sake of brevity, we report here the equation for ω̂ only:

− iV kx

2L2

[
L2k2

x + (Lkz − 1)2 − 1
]
ψ̂(kx, kz − 1/L) − νβ

(
k2

x + k2
z

)2
ψ̂(kx, kz)

− iV kx

2L2

[
L2 k2

x + (L kz + 1)2 − 1
]
ψ̂(kx, kz + 1/L) +

ν (1 − β) kx kz

τ
ζ̂xx(kx, kz)

− ν (1 − β)

τ

((
k2

x − k2
z

)
ζ̂xz(kx, kz) − kxkzζ̂zz(kx, kz)

)
= −i c

(
k2

x + k2
z

)
ψ̂(kx, kz). (6.4)

Equations with a similar structure hold for ζ̂ as well. The complete set of equations
constitutes an infinite hierarchy of linear algebraic equations with non-constant
coefficients, which shows a foliation in terms of kx . Upon truncating all modes
|kz| >kmax, for each kx , we end up with a closed linear system of 4(2kmax + 1) equations
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of the form

Aφ = cBφ, (6.5)

where φ =φp(kx) (p ∈ [1, 2kmax + 1]) is a vector constructed from ψ̂ and ζ̂ and A and
B are two (2kmax + 1) × (2kmax + 1) matrices. A particularly convenient choice is to
arrange the fields in the form

φ4kz+4kmax+1(kx) = ψ̂(kx, kz), (6.6)

φ4kz+4kmax+2(kx) = ζ̂xx(kx, kz), (6.7)

φ4kz+4kmax+3(kx) = ζ̂xz(kx, kz), (6.8)

φ4kz+4kmax+4(kx) = ζ̂zz(kx, kz), (6.9)

for kz integer and kz ∈ [−kmax, kmax]. With this choice, the matrix B turns out to be
diagonal and A is band diagonal: only (8/L) − 1 upper-diagonal and (8/L) + 2 sub-
diagonal survive. Note that these numbers do not depend on kmax. The matrix B has
no null diagonal elements, and can be inverted:

B−1Aφ = cφ. (6.10)

To obtain non-trivial solutions for φ, we are thus reduced to a standard eigenvalue
problem, whose eigenvalues, c(kx), give the dispersion relation.

An effective solution to our eigenvalue problem is to use Krylov subspace methods
for computing a subset of the eigenvalues. Here, we use the Arnoldi method,
which has been successfully applied to the linear stability of Newtonian coating
flows by Cristodoulou & Scriven (1988) and for viscometric viscoelastic flows by
Sureshkumar & Beris (1995a). This method consists of the generation, via a Krylov
sequence, of a system of reduced dimension whose eigenvectors approximate those of
the whole system. The Arnoldi method is the generalization to asymmetric eigenvalue
problems of the Lanczos algorithm for symmetric matrices, which is proved convergent
(see e.g. Parlett 1980). This procedure yields the whole spectrum of eigenvalues c(kx)
for every kx . The stability region for a given set of parameters is defined by the
condition max{Im[c(kx)]} < 0 for every kx .

To obtain the results reported in figures 1 and 3 (triangles) we worked in a bi-
periodic square box of side 2π with L = 2π/64 and kmax = 512. Larger values of both
L−1 and kmax did not produce appreciable differences in the results.

Some remarks on figure 1 are useful. Up to De . 2.3 (for β = 0.77), the marginal
curve obtained by the multiple-scale expansion is practically indistinguishable from
the one obtained by the numerical solution of the full linearized equations. For larger
Deborah numbers, multiple-scale analysis fails; this is the fingerprint of the lack of
scale separation between the basic Kolmogorov flow and the perturbations. For large
elasticity the leading instabilities do not occur at large scales: this is the realm of
elastic instabilities, the first step toward the elastic turbulence regime (Groisman &
Steinberg 2000).

7. Conclusions
We have investigated the linear stability of a viscoelastic fluid flowing in a channel

with periodic boundary conditions. The flow is maintained by an external source
and, for the particular choice f = (F0 cos(z/L), 0), it gives rise to the well-known
Kolmogorov flow. Under the hypothesis that the most unstable perturbations evolve
on scales much larger than L, we exploited an asymptotic perturbative strategy (the
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multiple-scale expansion) to obtain an effective equation for the temporal evolution
of the large-scale perturbation. The stability problem is thus reduced to the study of
the sign of the eddy viscosity appearing in the large-scale equation.

Two different kinds of instabilities are captured by the multiple-scale expansion:
(i) hydrodynamic-like instabilities that, in the limit of small elasticity, give the well-
known Rec =

√
2 corresponding to the Newtonian limit of the theory; (ii) purely

elastic instabilities occurring for large values of the elasticity. The major effect of
elasticity on hydrodynamic instabilities is to increase their critical Reynolds number.
In plain words, polymers stabilize the flow, a prelude to drag reduction (Govindarajan
et al. 2001; Stone et al. 2002).

Our results hold for finite Schmidt numbers as well. On decreasing Sc, the effect
of stabilization reduces and for Sc → 0 polymers behave as a suspension of spherical
particles. Finally, our perturbative predictions have been corroborated by numerical
analysis carried out on the original differential equations for the perturbations, by
means of the Arnoldi method. The hypothesis of scale separation is verified up to
Deborah numbers of order unity. For larger De, scale separation does not hold
and multiple-scale methods fail. Nonetheless, at least qualitatively, the occurrence of
purely elastic instabilities is captured by the asymptotic expansions.

This work has been supported by Cofin 2003 “Sistemi Complessi e Problemi a Molti
Corpi” (AM), and by the European Networks “Stirring and Mixing” HPRN-CT2002-
00300 (AC) and “Non-ideal turbulence” HPRN-CT-2000-00162 (MV). Numerical
simulations have been performed at CINECA (INFM parallel computing initiative).
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Chapter 8

Nonlinear stability analysis of
the viscoelastic Kolmogorov
flow

The linear stability analysis for the Newtonian Kolmogorov flow pre-
dicts the occurrence of instabilities for transverse perturbations
above the critical Reynolds number. The dynamics of these in-
stabilities should be investigated by means of a weakly nonlinear
analysis. It is known that the weakly nonlinear dynamics displays
a particularly rich behavior already for Newtonian fluids [52,54,55],
showing a Cahn-Hilliard dynamics (see [56] or [57] for a recent re-
view) for the large-scale transverse perturbation. Cahn-Hilliard dy-
namics can be found in the theory of phase-ordering kinetics as
well as in the context of fluid dynamics [58,59].
In this chapter I will present my results on the weakly nonlinear
analysis of the viscoelastic Kolmogorov flow, starting from the well
known Newtonian case as an example. I will show that in the vicin-
ity of the marginal stability curve presented in the previous chap-
ter, the transverse large-scale perturbation obeys a Cahn-Hilliard
equation, and that when the flow becomes strong enough, higher
order nonlinearities should be accounted for, leading to a gener-
alized Cahn-Hilliard dynamics. Analytical (perturbative) as well as
numerical results will be presented.
Furthermore the linear stability analysis of the viscoelastic Kol-
mogorov flow has shown that the effect of polymers is stabilizing,
suggesting that drag reduction can be found in the turbulent state.
In the last section of this chapter I will introduce the results on the
analysis of the friction coefficient, confirming the qualitative pic-
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(a) (b)

Figure 8.1: (a) Sketch of crystal growth, regulated by the Cahn-Hilliard equation.
Kinks and anti-kinks are interface structures that annihilate, giving rise to larger
ones. (b) Annihilation of structures in Cahn-Hilliard dynamics extracted from nu-
merical simulations. The pictures are taken from ref. [60].

ture of the linear case.

8.1 Weakly nonlinear analysis:
the standard Cahn-Hilliard dynamics

The complete nonlinear evolution equation for the perturbations in
the Newtonian case are:

∂ ·w = 0

∂tw + ∂ · (uw + wu + ww) = −∂q + ν∂2w
(8.1)

As the most unstable direction in the linear case is the transverse
direction, it can be assumed that this will hold for the nonlinear
case too. Thus we will focus on a one-dimensional dynamics for the
perturbation wz. For Re smaller than the linear stability threshold
we have:

∂̃t〈wz〉 ∼ −A∂̃2〈wz〉 − C∂̃4〈wz〉 . (8.2)

where the coefficients A and C are known functions of Re. When we
move slightly above Rec, the coefficient A changes sign and the cor-
responding growth of the perturbation, if a stationary state exists,
must be saturated by another term. Physical constraints (momen-
tum conservation and space-inversion symmetries) set this term to
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Figure 8.2: The energy spectrum of the lowest modes in the Cahn-Hilliard equa-
tion, obtained from numerical integration of eq. (8.7)

have the form:
B∂̃x

(
〈wz〉2∂̃x〈wz〉

)
(8.3)

To derive the large-scale equation for the perturbation with a
multiple-scale approach, we introduce the slow and fast space-
derivative operators, as in the previous chapter. Note that here
we should find how to expand the fields in the scale separation pa-
rameter and the scaling relation for the slow time. The prescription
comes from the balance between the three terms of the equation.
Performing a Taylor expansion in the vicinity of the marginal curve
yields:

A - ∂A

∂Re


Rec

(Re− Rec) (8.4)

and the balance, expressed in terms of ε reads:

Bε2ε3
w ∼

∂A

∂Re


Rec

(Re− Rec)ε
2εw ,

∂A

∂Re


Rec

(Re− Rec)ε
2εw ∼ Cε4εw .

(8.5)
where εw is the scaling of the velocity perturbation. These two re-
lations set the scaling εw = ε, the distance from the marginal curve
Re = Rec(1 + ε2). The scaling of the pressure perturbation is equal
to the one of the velocity perturbation. The balance of any of these
terms with the large-scale time derivative gives t̃ = ε4t.
The field expansion is thus:

w = εw(1)(z, x̃, t̃) + ε2w(2)(z, x̃, t̃) + . . . ,

q = εq(1)(z, x̃, t̃) + ε2q(2)(z, x̃, t̃) + . . .
(8.6)
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(a) (b) (c)

Figure 8.3: The velocity perturbation profile wz at different times obtained by the
same simulation of fig. 8.2. An annihilation process between small modes occurs,
leading to a transition from a k = 2-dominated state to a k = 1-dominated state.

Substituting these expansions into the nonlinear evolution equa-
tions (8.1), solving the equations at the different orders and the
corresponding solvability conditions, yields a closed equation in
the perturbation obtained as the solvability condition at order 5:

∂̃t〈w(1)
z 〉 = ∂̃x

{(
−A + B〈w(1)

z 〉2
)
∂̃x〈w(1)

z 〉
}
− C∂̃4

x〈w(1)
z 〉 (8.7)

This is a “standard” Cahn-Hilliard equation and its dynamics and
phenomenology are known [57].
The existence of a stationary state is related to the existence of an
extremal formulation for eq. (8.7). In this case a so called Lya-
punov functional exists and the evolution of the perturbation pro-
file can be described as a superposition of so called kink and anti-
kink structures which correspond to local minima of the Lyapunov
functional. As qualitatively shown in fig. 8.1, kinks and anti-kinks
are structures of the described field that interact with each other
leading to a coarsening dynamics.
The energy associated to each wavenumber for a Cahn-Hilliard
equation is shown in fig. 8.2: a sequence of metastable states ap-
pears, where the amplitude of each mode grows abruptly, lasts for
a certain time and then gives way to the following smaller mode,
until a stationary state is reached, where only the smallest possi-
ble mode is excited.
The dynamics of the transverse velocity perturbation is presented
in fig. 8.3, where the field wz containing initially the harmonic k = 2
evolves in time arriving at a stationary state containing only the
mode k = 1. This dynamics corresponds to small counter-rotating
vortices that interact and give rise to larger structures [55].

In the viscoelastic case, for small polymer elasticity, the same
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procedure can be applied. The evolution equations for the pertur-
bations are:

∂ ·w = 0

∂tw + ∂ · (uw + wu + ww) = −∂q + νβ∂2w +
(1− β) ν

τ
∂ · ζ

∂tζ + ∂ · (uζ + wσ + wζ) = (∂u)T · ζ + (∂w)T · σ + (∂w)T · ζ+

+ζ · (∂u) + σ · (∂w) + ζ · (∂w)− τ−1ζ ,

(8.8)

where as usual νβ is the solvent viscosity and (1−β)ν is the polymer
effective viscosity. The reasoning on the scaling of the fields in ε is
almost identical to the Newtonian case and yields the same scaling
of w for the perturbation ζ. Expansions (8.6) hold together with the
one for the conformation tensor perturbation ζ:

ζ = εζ(1)(z, x̃, t̃) + ε2ζ(2)(z, x̃, t̃) + . . . (8.9)

This must be plugged together with the other expansions in eqs. (8.8)
to yield a hierarchy of equations at different orders in ε which can
be solved together with the corresponding solvability conditions.
Following this procedure we obtain a large-scale evolution equation
for the perturbation wz which is analogous to eq. (8.7), where the
coefficient A, B and C are known complicated functions of De and β
and will not be derived here (see the following article, p. 133). The
phenomenology is the same as in the Newtonian case, except that
the dynamics is slowed down by the presence of polymers.
It is worth noting that in this equation the growth of the perturba-
tion is saturated if two conditions are met (see fig. 8.4a):

(i) The coefficient C must be positive, to ensure the saturation of
small scale instabilities (still at larger scale with respect to the
basic flow)

(ii) As the coefficient A is non-negative because we are slightly
above the marginal curve, the coefficient B must be positive
so that when the perturbation becomes O(

√
A/B) the growth

in eq. (8.7) can be saturated.

8.2 A novel Cahn-Hilliard dynamics
When the two conditions on the sign of the coefficient are not sat-
isfied a next-order nonlinearity must be introduced, to stabilize
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(a) (b)

Figure 8.4: (a) The sign of the coefficients of the Cahn-Hilliard equation computed
by a multiple-scale analysis. The coefficient B changes sign at De∗ (circled point).
(b) The stability portrait around the point P ∗ where the lines A = 0 crosses the line
B = 0: the regions I, II, III and IV are all characterized by different dynamics.

eq. (8.7). The situation is sketched in fig. 8.4b. Region I is linearly
unstable and the condition (ii) is not satisfied, so that a fifth order
nonlinearity should be accounted for. Region II is linearly stable,
nevertheless condition (ii) is not satisfied, and a fifth order nonlin-
earity must be introduced to stabilize the third order term which is
unstable in this regime. Zone III is linearly and nonlinearly stable
and in region IV a fifth order nonlinearity must be introduced ap-
proaching the line B = 0.
Expanding around De∗ (see fig. 8.4a) we can repeat the reasoning
performed in the previous section to find the scaling for the expan-
sions of velocity, pressure and conformation tensor perturbation
(ε1/2) and for the slow time scaling (ε4). With the same spirit of the
previous section, the solvability condition at order 9/2 gives (for
regions I and II):

∂̃t〈w(1/2)
z 〉 = ∂̃x

[(
−A + B〈w(1/2)

z 〉2 + D〈w(1/2)
z 〉4

)
∂̃x〈w(1/2)

z 〉
]
− C∂̃4

x〈w(1/2)
z 〉 ,
(8.10)

where the coefficients A, B, C and D are known analytical functions
of the parameters of the system. In region IV the same equation
holds except that the cubic nonlinearity is assumed to be negligi-
ble.
Equuation (8.10) belongs to the class of Cahn-Hilliard equations
as defined by Bray [57]. Nevertheless, the dynamics is significantly
slowed down with respect to a standard Cahn-Hilliard dynamics,
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(a) (b)

Figure 8.5: Direct numerical simulations (points or thicker lines) compared with
numerical integration of the respective Cahn-Hilliard equations (β = 0.769). (a) The
spectral energy of each mode for the standard Cahn-Hilliard dynamics: De = 1.4
and Re/Rec = 1.14. (b) Spectral energy of each mode for the generalized Cahn-
Hilliard equation around P ∗: De = 1.62 and Re = 2.5159.

due to the presence of the fifth order nonlinearity. Note also that
a fully analytical (perturbative) approach can be applied only pro-
vided that Re ∼ Rec and De ∼ Dec. The general case should be
treated by means of numerical simulations.

8.3 Numerical simulations
The perturbative analytical results have been checked by means of
direct numerical simulations of eqs. (6.17), via a pseudo-spectral
method in a two-dimensional rectangle of dimensions Lx×64Lx. The
growth rates of the perturbations have been numerically measured
by imposing an initially small white noise in space as a perturba-
tion. The direct numerical simulations have also been compared
to numerical integration of eqs. (8.7) and (8.10). The validity of the
scale separation hypothesis assumed in the studied range, Re - Rec

and De - De∗, can be checked.
The comparison between the standard Cahn-Hilliard dynamics and
direct numerical simulations of the whole system of equations have
been performed. The agreement is perfect, as shown in fig. 8.5a.
The results of the comparison of direct numerical simulations and
numerical integration of the generalized Cahn-Hilliard equation (8.10)
are presented in fig. 8.5b also showing a perfect agreement. In
these simulations a major technical difficulty emerges because the
position of P ∗ needs to be determined precisely, a very difficult task
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Figure 8.6: The drag coefficient in the weakly nonlinear regime (Re - Rec, De <
De∗) computed within the multiple-scale approach.

in direct numerical simulations.

Clues of “drag reduction”
Following ref. [61] we have computed the drag coefficient f , defined
as follows:

f =
F0L

U2
(8.11)

where F0 is the forcing amplitude, L is the forcing periodicity scale
and U is the mean flow amplitude. In the laminar regime we have
f = Re−1. For the regime Re - Rec and De < De∗ the drag coeffi-
cient can be computed analytically, yielding the results shown in
fig. 8.6. As predicted by direct numerical simulations of ref. [61]
the drag coefficient decreases as De increases, even if the flow is
barely in the nonlinear regime. This indication is confirmed by the
numerical data (not shown).

8.4 Perspectives
This research suggests that polymers can generate non trivial ef-
fects even in the absence of material boundaries, and hints at the
existence of a rich phenomenology of the turbulent case. This issue
is addressed within the next chapter.
Furthermore it would be interesting to investigate the nonlinear
dynamics of purely elastic instabilities, and to analyze the possible
emergence of elastic turbulence.
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The weakly nonlinear regime of a viscoelastic Navier–Stokes fluid is investigated. For
the purely hydrodynamic case, it is known that large-scale perturbations tend to the
minima of a Ginzburg-Landau free-energy functional with a double-well (fourth-order)
potential. The dynamics of the relaxation process is ruled by a one-dimensional Cahn–
Hilliard equation that dictates the hyperbolic tangent profiles of kink-antikink structures
and their mutual interactions. For the viscoelastic case, we found that the dynamics still
admits a formulation in terms of a Ginzburg–Landau free-energy functional. For suffi-
ciently small elasticities, the phenomenology is very similar to the purely hydrodynamic
case: the free-energy functional is still a fourth-order potential and slightly perturbed
kink-antikink structures hold. For sufficiently large elasticities, a critical point sets in:
the fourth-order term changes sign and the next-order nonlinearity must be taken into
account. Despite the double-well structure of the potential, the one-dimensional nature
of the problem makes the dynamics sensitive to the details of the potential. We analysed
the interactions among these generalized kink-antikink structures, demonstrating their
role in a new, elastic instability. Finally, consequences for the problem of polymer drag
reduction are presented.

1. Introduction
The derivation of coarse-grained equations of motion, averaging out microscopic de-

grees of freedom and retaining only those features relevant to the process of interest, is a
major goal in many different scientific domains. A first classical example is the dynamics
of celestial bodies, the physical problem which motivated the introduction of asymptotic
techniques to systematically average over rapidly rotating, angular degrees of freedom.
More recently, many interesting phenomena in biological contexts (e.g. related to do-
main formation in lipid membrane, bilayer fusion, and cooperative motions associated
with phase changes) have been found to occur on times and length scales much larger
than the typical times and scales where the classical molecular-dynamics methods are
applicable (Vattulainen & Karttunen 2005). To reach those larger length-scales, one re-
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sorts to coarse-grained models that employ effective interaction potentials (Karttunen
et al. 2004).

Another relevant example of coarse-grained model comes from climatology. The current
numerical models for prediction of weather and climate involve general circulation mod-
els. They consist of coupled, nonlinear partial differential equations, discretized in space
and time for the purpose of numerical simulations. The current generation of supercom-
puters supports mesh spacing of the order of 200 km for short-term climate simulations.
However, many important physical processes occur on smaller scales (e.g. the cloud cover
in the boundary layer) and they significantly affect the large-scale dynamics of resolved
fields. A powerful way to incorporate the unresolved dynamics is provided by suitable
coarse-grained stochastic models (Khouider et al. 2003).

Finally, in the framework of phase-ordering kinetics, the concept of coarse-grained de-
scription plays a crucial role for the order-parameter dynamics. Coarsening is intimately
related to the fact that domain growth is a scaling phenomenon: domain patterns at dif-
ferent times differ solely by a global scale factor (see the review by Bray 2002). A suitable
coarse-grained description for systems where the order parameter is not conserved (e.g. for
anti-ferromagnetic ordering) is provided by the time-dependent Ginzburg–Landau equa-
tion. When the order parameter is conserved, as in phase separation, the coarse-grained
dynamics is ruled by the Cahn–Hilliard equations (Bray 2002):

∂w

∂t
= ∂2

x
δF

δw
, (1.1)

where w(x, t) is a suitable coarse-grained order-parameter and F a Landau free-energy
functional:

F [w] =
∫

dx
[
λ

2
|∇w|2 + I(w)

]
. (1.2)

The potential I(w) typically has a double-well structure, whose minima correspond to
two equilibrium states. λ is a positive constant related to the distance between the
equilibrium states and thus the size of the interface between them.

In fluid mechanics, the Cahn–Hilliard equations (1.1) play a fundamental role in the
stability analysis of large-scale perturbations. In a variety of situations, it turns out
that the evolution of large-scale perturbations is governed by equation (1.1), with a
fourth-order potential I(w) (see Nepomnyashchyi 1976; Sivashinsky 1985; Pedlosky 1987;
Manfroi & Young 1999). The structure of the potential controls the profile and the
interactions of the so-called kink-antikink structures observed in snapshots of the flow
(She 1987).

In the present paper, we focus our attention on a simple model of viscoelastic flows,
the so-called viscoelastic Kolmogorov flow. Its linear stability analysis has been recently
investigated by Boffetta et al. (2005a), while the turbulent regime and its massive drag
reduction effects have been studied by Boffetta et al. (2005b). Here, we analyse the
weakly nonlinear dynamics, intermediate between the linear stage of evolution and the
fully turbulent regime.

The starting points of our analysis are three results obtained by Boffetta et al. (2005a)
for the linearized stage: i) The most unstable perturbation has a long wavelength (large-
scale) compared to the period of the basic Kolmogorov flow; ii) Its linear evolution is
captured by asymptotic multiscale methods, at least up to moderate elasticities of the
flow; iii) The most unstable perturbation is transverse with respect to the basic flow.

Multiscale asymptotic methods can be applied, as in the Newtonian case, to show
that the evolution in the presence of polymers obeys a one-dimensional Cahn–Hilliard
equation of the form (1.1). The point demonstrated here is that there exists a critical
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value of the elasticity, where the potential I(w) passes from the fourth to the sixth order
in the field w. This corresponds to a triple critical point. Due to the one-dimensional
character of the nonlinear dynamics, the transition strongly impinges on the dynamics
of the large-scale perturbation.

Above the critical elasticity, “hydrodynamic” kink-antikink structures are replaced by
generalized kinks and anti-kinks and their annihilation processes are shown to be severely
slowed down. Moreover, below the critical value of the elasticity, the mechanism of insta-
bility is linear and nonlinear terms stabilize the flow. Conversely, above the critical value,
we show that a sub-critical, nonlinear mechanism of instability takes place, provided the
initial amplitude of the perturbation be sufficiently strong.

The paper is organized as follows. In § 2 and 3, we describe the viscoelastic model
considered in the sequel and briefly review the results by Boffetta et al. (2005a) needed
here. In § 4, we use multiscale methods to derive the coarse-grained equations for the
perturbations. In § 5, we study the system around the triple critical point and work out
the evolution equations in its neighborhood. In § 6 and 7, we reformulate the asymptotic
behaviour of the coarse-grained equations in terms of variational analysis and present the
numerical results that corroborate our analytical predictions. Finally, in § 8 we address the
problem of drag reduction and show that, even for the weakly unstable regime considered
here, the injection of polymers induces an enhancement of the mean flow amplitude.

2. The viscoelastic Navier–Stokes equations
Several models have been introduced (see e.g. Hinch 1977) to describe viscoelastic

fluids. A powerful class describes the fluid as non-Newtonian, accounting for the reaction
of the polymers onto the flow via an extra-term in the stress tensor. A popular and often
employed model within this class is the Oldroyd-B (Oldroyd 1950), which is the one
considered in the sequel. We briefly review it here for the sake of completeness.

In the Oldroyd-B model, it is assumed that viscoelastic flows can be treated as a dilute
suspension of elastic dumbbells, i.e. identical pairs of microscopic beads connected by
Hookean springs. The flow is considered “external” to the molecule, neglecting the effects
of the finite size of the polymers on the flow. Furthermore, the polymer concentration is
supposed to be uniform and low enough to neglect polymer-polymer interactions.

The reaction of the dumbbells on the fluid is treated at a mean-field level and the
study of the dynamics is limited to scales much larger than the inter-polymer distance.
The polymer solution is regarded as a continuous medium, whose reaction on the flow is
described by an elastic contribution T to the total stress tensor of the fluid. Its value per
unit density depends on the free energy of the molecule and the thermal noise as (see
e.g. Bird et al. 1987):

T = −np〈RF 〉 − npkBΘ 1 , (2.1)
where np is the polymer density, kBΘ is the energy associated with thermal noise, Fi is
the dumbbell relaxation force and Ri its elongation vector. The average is taken over the
statistics of the thermal noise. Assuming the force between the beads to be Hookean with
dynamical coefficient K0, the average in the elastic stress reduces to 〈RF 〉 = −K0〈RR〉.
The latter is proportional to the conformation tensor σ ≡ 〈RR〉/R2

0, where R0 denotes
the equilibrium spring length. The inclusion of the extra elastic stress term in the Navier–
Stokes equations leads to the following equation for the viscoelastic flow:

∂tv + (v · ∂)v = −∂p + νβ∂2v +
ν(1− β)

τ
∂ · (σ − 1) + f . (2.2)

Here, ν is the total kinematic viscosity of the solution, while νβ and ν(1−β) are the sepa-
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rate contributions by the solvent and the polymers, respectively, and we have introduced
the dimensionless parameter β = ηs/(npkBΘτ + ηs), ηs being the dynamic viscosity of
the solvent. τ is a parameter depending on K0 and R0, representing the typical relax-
ation time of the polymers. A more precise definition of τ and σ comes in the following.
Throughout the paper, it is understood that (∂v)αβ ≡ ∂αvβ and tr (∂v) = ∂ · v = 0.

An equation for the dynamics of the polymer conformation tensor σ is needed to
close the system of equations. Simple physical reasoning by Bird et al. (1987) gives the
following stochastic equation for the separation R between two beads:

Ṙ = (R · ∂)v − 1
2τ

R +

√
R2

0

τ
ξ . (2.3)

On the right-hand side, the first term is the stretching/compression term, originating
from the spatial variation of the flow experienced by R, and the last one, ξ, is a white-in-
time random process mimicking the effect of thermal noise on the polymers. The second is
the relaxation due to the force between the beads, proportional to the elongation deriva-
tive of the dumbbell free energy −∂E/∂Ri = −∂(1/2K0R2)/∂Ri. A quadratic form of
the potential, and thus a linear Hookean force, is an approximation valid for moderate
polymer elongations. The dynamical coefficient τ is the same as the one appearing in
(2.2). Considering it constant amounts to assume that the polymers have only one relax-
ation time. Numerical and theoretical studies point out that this hypothesis is reasonable
(Geraschenko et al. 2005). Experiments (see Lumley 1969; Virk 1975; Nadolink & Haigh
1995) show that polymers have a spectrum of typical relaxation times, but they also
show that interactions with the fluid mostly depend on the largest one, that is the one
we are retaining.

Multiplying (2.3) by R and averaging over the statistics of the thermal noise ξ, the
following evolution equation for the conformation tensor σ = 〈RR〉/R2

0 is obtained (see
Bird et al. 1987):

∂tσ + (v · ∂)σ = (∂v)T · σ + σ · (∂v)− 1
τ

(σ − 1) . (2.4)

Summarizing, the set of equations (2.2) and (2.4) constitutes the Oldroyd-B model
that we shall be considering in the sequel.

Our first step in the investigation of the effect of polymers onto the stability of the
flow will be to find out the basic equilibrium state. The state will then be perturbed and
the resulting equations analysed using multiscale methods.

2.1. A basic equilibrium state
Finding analytically the basic equilibrium state for a generic forcing f is a hopeless
task already for the Navier–Stokes equations without polymers. The problem is further
complicated here by the additional term in (2.2) and the coupling with (2.4).

The problem simplifies for f ≡ (f(z), 0, 0), inducing a parallel flow U = (U(z), 0, 0),
which trivially annihilates the advective nonlinear term in (2.2). A further substantial
simplification comes from the viscoelastic version of Squire’s theorem (see Appendix A),
stating that, for parallel flows, the most unstable perturbations are two-dimensional. We
shall therefore restrict to a two-dimensional flow (ux, uz), without any lack of generality
(see also Boffetta et al. 2005a). We further assume f(z) = F0 cos(z/L), producing the
well-known Kolmogorov flow (Arnold & Meshalkin 1960) U(z) ≡ (V cos(z/L), 0), where
V = F0 L2/ν. The corresponding conformation tensor at equilibrium is:

σ =
(

1 + 2τ2 (∂zU)2 τ ∂zU
τ ∂zU 1

)
=

(
1 + 2τ2 V 2

L2 sin2 ( z
L ) −τ V

L sin ( z
L )

−τ V
L sin ( z

L) 1

)
. (2.5)
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This choice also allows to precisely define the Reynolds number of the flow as Re = V L/ν.
In this model the elasticity of the polymers is taken into account by the relaxation
time τ only. We can thus introduce an adimensional parameter, the Deborah number
De = τV/L, to characterize the elastic properties of the flow.

3. Some previous results on the linear stability analysis
It has long been known that the Newtonian Kolmogorov flow becomes unstable for

Reynolds numbers Re >
√

2 (Meshalkin & Sinai 1961): the evolution of large-scale per-
turbations is formally described by an effective diffusive dynamics and instabilities are
associated to the loss of positive-definiteness of the eddy-viscosity tensor.

In the presence of polymers, performing a multiscale analysis (Bensoussan et al. 1978;
Bayly et al. 1988) on the linearized Oldroyd-B model, one obtains an explicit expression
for the eddy-viscosity tensor, valid for sufficiently low elasticity (Boffetta et al. 2005a).
The resulting stability curve in terms of the Reynolds and the Deborah number is re-
ported in figure 1.

3.1. Multiscale analysis
Substituting v = u + w into (2.2,2.4), the equations for the perturbation fields read:

∂ · w = 0 , (3.1)

∂tw + ∂ · (uw + wu + ww) = −∂q + νβ∂2w + ν (1− β) τ−1 ∂ · ζ , (3.2)

∂tζ + ∂ · (uζ + wσ + wζ) = (∂u)T · ζ + (∂w)T · σ + (∂w)T · ζ +
+ζ · (∂u) + σ · (∂w) + ζ · (∂w)− τ−1ζ , (3.3)

where q and ζ are the perturbations associated to the pressure term p and the basic stress
tensor σ. In the linear stability analysis, the nonlinear terms containing the product of
two perturbation fields are supposed to be negligible (see Boffetta et al. 2005a).

As in the Newtonian case, it is assumed that the first unstable perturbations have
periodicity much larger than that of the basic flow. The validity of this assumption
has already been investigated by Boffetta et al. (2005a) and is satisfied in the range of
parameters considered here.

In addition to the usual “fast” space/time variables x, t, describing the basic flow,
multiscale techniques introduce “slow” variables x̃ = εx, t̃ = ε2t, to describe the large-
scale flow, and prescribe to treat the two sets as independent. This leads to the expansion
of the differential operators:

∂i → ∂i + ε∂̃i, ∂t → ∂t + ε2∂̃t , (3.4)

and of the fields:
w = w(0)(z, t, x̃, z̃, t̃) + εw(1)(z, t, x̃, z̃, t̃) + ε2w(2)(z, t, x̃, z̃, t̃) + . . . ,
q = q(0)(z, t, x̃, z̃, t̃) + εq(1)(z, t, x̃, z̃, t̃) + ε2q(2)(z, t, x̃, z̃, t̃) + . . . ,
ζ = ζ(0)(z, t, x̃, z̃, t̃) + εζ(1)(z, t, x̃, z̃, t̃) + ε2ζ(2)(z, t, x̃, z̃, t̃) + . . . .

(3.5)

All of the functions have the periodicity of the basic flow and are independent of x.
Inserting (3.5) into (3.1)-(3.3) and collecting terms of the same order in ε, the coarse-

grained equation for a large-scale perturbation is obtained as the solvability condition at
the order ε2. In terms of the stream function Ψ, the perturbation evolves according to
the non-isotropic diffusion equation:

∂̃t∆̃Ψ = ναβ ∂̃2
α∂̃2

βΨ , (3.6)



6 A. Bistagnino, G. Boffetta, A. Celani, A. Mazzino, A. Puliafito, M. Vergassola

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  0.5  1  1.5  2

Re

De

S

U

Figure 1. The linear stability diagram for β = 0.769. Stable and unstable regions are denoted by
S and U, respectively. The bullets represent direct numerical simulations (DNS) of the complete
Oldroyd-B system of equations, confirming theoretical predictions for this window of parameters.

where the eddy-viscosity tensor ναβ is not positive-definite for Re >
√

2 (in the absence
of polymers). In general, there exist critical values of Re and De where perturbations
start growing in time.

The phase-space (Re,De) is thus divided in regions where the eddy-viscosity tensor is
positive-definite (the system is linearly stable with respect to any small perturbation)
and where there exists at least one unstable mode, as shown in figure 1 for low Deborah
numbers. The diagram reveals two kinds of instabilities. When the Deborah number is
sufficiently low, the flow experiences hydrodynamic-like large-scale transverse instabili-
ties, captured by multiscale analysis. In this region, the critical Reynolds number where
the flow becomes unstable, grows with De: polymers stabilize the flow. This has been
interpreted by Boffetta et al. (2005a), and will be shown in § 8, to be a prelude to the
drag reduction effect observed in the turbulent regime.

For high values of the Deborah number (not shown in figure 1) the multiscale anal-
ysis predicts the flow to be unstable, even for very low Reynolds numbers. However,
numerical simulations show that the assumption of scale separation does not hold and
multiscale techniques are not applicable. This region, possibly characterized by purely
elastic instabilities, will not be the concern of the present investigation which focuses on
0 ≤ De ≤ 2.

If the amplitude of the large-scale perturbation is strong enough and/or the eddy-
viscosity is negative, nonlinear effects are important and should be taken into account.
These two situations correspond to different scalings of the fields and will be treated
separately in the next sections.

4. Nonlinear dynamics: the standard Cahn–Hilliard equation
Linear stability analyses, by their very definition, are not able to capture the full-time

dynamics of unstable perturbations: as perturbations grow in time, their magnitude
becomes large and nonlinearities ought to be taken into account. In the Newtonian case
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(Sivashinsky 1985; She 1987), the lowest-order nonlinearity (third-order) is sufficient to
stabilize the linear exponential growth and lead to a steady state. Here, we show how
this occurs and generalize it first to the viscoelastic case. The next section will then be
devoted to the case where the lowest-order nonlinearity does not stabilize the flow and
higher-order nonlinearities become relevant.

A careful analysis of the linear eddy-viscosity tensor ναβ derived in (3.6) ensures that
for low enough Deborah numbers the first modes to become linearly unstable are the
large-scale transverse ones. For barely unstable flows we may expect that the perturba-
tions involved in the nonlinear dynamics will be confined to these modes. This suggests
that the result will be a one-dimensional diffusion equation for the averaged transverse
modes, linearly stable for small-scale modes, involving at least one nonlinear term.

Assume now that the initial amplitude of the large-scale perturbation is sufficiently
small and the system we consider is in the surroundings of a point of the critical curve.
According to (3.6), the average transverse velocity perturbation 〈wz〉 linearly evolves
according to a diffusion equation:

∂̃t〈wz〉 ∼ −A∂̃2〈wz〉 , (4.1)

where A is a positive coefficient representing the linear eddy-viscosity tensor of (3.6),
restricted to low Deborah numbers (as explained in the end of § 3). It vanishes on the
stability curve, being positive above it and negative below it.

In this equation, all modes are linearly unstable. It needs to be modified to keep track
of the multiscale hypothesis, which requires small-scale modes to be stable. This is done
introducing a bi-Laplacian term into (4.2) to stabilize the small scales (the fourth-order
derivative ensures that this term will be dominant on the small-scale perturbations only):

∂̃t〈wz〉 ∼ −A∂̃2〈wz〉 − C∂̃4〈wz〉 . (4.2)

In general, close to the linear instability threshold, where the coefficient A changes sign,
we do not expect C to vanish. To comply with the stability requirements, we will request
it to have a finite, positive value in the region of interest.

We expect to find the presence of a nonlinear term, eventually stabilizing this growth.
This part cannot be played by the advective nonlinearity because of the one-dimensional
character of the equation. The next-order nonlinearity is cubic and must contain at least
two space derivatives: one before the whole term, to ensure momentum conservation,
and an additional one to respect space-inversion symmetries. This yields a nonlinear
term: B∂̃x

(
〈w(1)

z 〉2∂̃x〈w(1)
z 〉

)
, where B is some constant related to the (nonlinear) eddy-

viscosity.
We can now introduce, as in § 3, the “slow” variables x̃ = εx and t̃ (notice that we still

do not know the scaling between t and t̃). The space derivatives must again be expanded
as ∂i → ∂i + ε∂̃i. We now have to look for a prescription on how to expand the different
fields in terms of ε.

In the vicinity of the marginal eddy-viscosity curve A ≈ 0, and a Taylor expansion
gives A ∼ ∂A

∂ν


νc

(ν − νc), where νc indicates the critical viscosity. Balances between the
term A∂̃2〈wz〉 and both the cubic nonlinearity and C∂̃4〈wz〉 yield:

Bε2ε3w ∼
∂A

∂ν


νc

(ν − νc)ε2εw ,
∂A

∂ν


νc

(ν − νc)ε2εw ∼ Cε4εw . (4.3)

Here, εw is the scaling of the amplitude of the velocity perturbation w.
Equations (4.3) completely define the scaling for the velocity perturbation and the
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distance from the critical viscosity:

ε = εw ,
ν − νc

ν
∼ ε2 ⇒ ν = νc(1− ε2) . (4.4)

It follows from (4.4) that the Reynolds number Re = Rec

(
1 + ε2

)
. The comparison of

any of the previous terms with the (slow) time derivative of w gives the scaling t̃ = ε4t.
As for the scaling of the polymer conformation tensor, balancing ζ/τ and (∂wz) · σ, we
obtain that the scaling of ζ coincides with εw. The same equality holds for the pressure
field.

Summarizing, the fields are expanded as:

w = εw(1)(z, x̃, t̃) + ε2w(2)(z, x̃, t̃) + . . . ,
q = εq(1)(z, x̃, t̃) + ε2q(2)(z, x̃, t̃) + . . . ,

ζ = εζ(1)(z, x̃, t̃) + ε2ζ(2)(z, x̃, t̃) + . . . .
(4.5)

The next step to obtain a coarse-grained equation for the large-scale dynamics is
to plug (4.5) into (3.1)-(3.3). Exploiting the chain rule, the definitions of x̃ and t̃ and
averaging along z, we end up with a set of equations involving solely the large-scale fields.
The equation for the large-scale transverse perturbation 〈w(1)

z 〉(x̃, t̃) is obtained from
the solvability condition at order ε5. For details on the Newtonian case and solvability
conditions, see Gama et al. (1994).

We can summarize the whole procedure in the following schematic way:
(a) Solve the continuity equation. The explicit expression of w(n)

z is thus obtained in
terms of known functions of z.

(b) Solve the equation for ζ(n)
zz ; this can always be done algebraically as ζ(n)

zz is slaved
to the w(n)

z field.
(c) Solve the evolution equation for w(n)

z . This field is obtained from (a); we are then
able to obtain the expression for the pressure field perturbation q.

(d) Solve the system for ζ(n)
xz and w(n)

x by direct integration.
(e) Algebraically obtain the explicit expression for ζ(n)

xx .
(f) Impose solvability condition at order n + 1 on the continuity and the velocity field

equations. Such condition is automatically fulfilled by the polymer conformation tensor,
as it is slaved to the velocity field at the previous order.

The final equation has the form of a “standard” Cahn–Hilliard equation:

∂̃t〈w(1)
z 〉 = ∂̃x

[(
−A + B〈w(1)

z 〉2
)

∂̃x〈w(1)
z 〉

]
− C∂̃4

x〈w(1)
z 〉 . (4.6)

“Standard” is meant to stress that the structure of (4.6) (including the cubic non-
linearity) emerges in a variety of hydrodynamic situations (see Nepomnyashchyi 1976;
Sivashinsky 1985; Pedlosky 1987; Manfroi & Young 1999). The parameters A, B, C are
known functions of the parameters De and β, as shown in figure 2. It is worth noting
that A is non-negative as the system is supposed to be slightly above the threshold of
instability and we have explicitly incorporated a negative sign in (4.6).

The saturation of the instability requires two conditions. First, C must be positive
to ensure that the instability be saturated at sufficiently high wave-numbers (still much
smaller than those of the basic flow, of order unity). Second, B ought to be positive to
ensure that, as 〈w(1)

z 〉 becomes O(
√

A/B), the nonlinear eddy-viscosity −A + B〈w(1)
z 〉2

change sign and the growth be again saturated. Both these conditions are satisfied up to
a critical value of the Deborah number, De∗ (see figure 2).
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Figure 2. The parameters A,B and C appearing in the coarse-grained Cahn-Hilliard equation
(4.6) as a function of the Deborah number (for β = 0.769).

Up to the critical Deborah number De∗, the equation (4.6) for the large-scale pertur-
bations has the same structure as in the Newtonian case and the only difference is in
the numerical value of the parameters A, B, C. As we shall see in the next sections, this
property ceases to be true above De∗.

To conclude, we stress the fact that all the fields up to order four are expressed in
terms of explicit functions of the fast variables and of the large-scale field 〈w(1)

z 〉, obeying
the Cahn–Hilliard equation (4.6).

5. Generalized Cahn–Hilliard dynamics
We have observed in the previous section that, along the marginal linear stability curve,

there exists a critical value of the Deborah number, De∗, where the cubic nonlinear term
becomes negative. Furthermore, the change of sign is taking place in the region where
the small-scale operator is stable. The problem is thus well-posed and lends to multiscale
methods.

For De > De∗, the field keeps growing at sufficiently large scales, until it reaches ampli-
tudes where the next-order nonlinearity becomes important. Its structure is dictated by
the conservation of momentum and the symmetries of the basic flow: ∂̃x

(
〈wz〉4∂̃x〈wz〉

)
,

with a regular coefficient D in the neighborhood of the critical point P ∗, where both the
eddy-viscosity and the coefficient of the third-order nonlinearity change sign.

Four regions can be identified around P ∗ (see figure 3). The eddy-viscosity A = 0 curve
has been obtained by means of the linear stability analysis (§ 3). The linear approximation
of the curve B = 0 in the vicinity of P ∗ is obtained from the analytic expression of B on
the marginal curve and the marginal curve itself.

Zone I is linearly unstable (A > 0), has a third-order destabilizing term (B < 0) and
we can guess that a fifth-order term will enter into play to stabilize the growth. Zone II is
particularly interesting as it is linearly stable (A < 0), but has a third-order destabilizing
contribution (B < 0). Perturbing with a field of sufficiently strong amplitude, the system
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Figure 3. The phase-space around the critical point P ∗ where both the eddy-viscosity and
the coefficient of the third-order nonlinearity change sign. The region is divided in four regions
schematically sketched here by the two critical curves A = 0 and B = 0. The former is found
from the linear stability analysis in section 3. The latter is found locally, around the A = 0
curve, by solving (5.5), and is linearly extrapolated for graphical purposes as a dashed line. For
β = 0.769, the curve B = 0 is inclined at approximately 60◦ with respect to the De axis.

jumps to the asymptotic steady state where the two nonlinear terms (third and fifth-
order) balance each other. Zone III is completely stable (A < 0, B > 0). In the last
region, IV, as De approaches the critical value, the coefficient B goes to zero and cannot
saturate the exponential growth from the linear instability. The fifth-order nonlinearity,
which is negligible far from the critical point, must enter again into play.

5.1. Zone I
When both the Reynolds and the Deborah numbers exceed their critical values, previous
considerations suggest the following structure for the coarse-grained equation:

∂̃tw = −A∂̃2
xw − |B|∂̃x(w2∂̃xw)− C∂̃4

xw + D∂̃x(w4∂̃xw) . (5.1)

Confining the analysis to the surroundings of the critical point P ∗, we may represent
the position in phase space as:

ν = ν∗(1−K1εν −K2ε
2
ν) , (5.2)

De = De∗(1 + εDe) . (5.3)

Adequately choosing the K1 and K2 parameters, any point around P ∗ can be reached
as ε varies. The reason why we need to incorporate in (5.2) the additional contribution
of order ε2 will be clear shortly.

In the neighborhood of P ∗, the coefficients A and B are expanded as:

A =
∂A

∂De
(De−De∗) +

∂A

∂ν
(ν − ν∗) , (5.4)

B =
∂B

∂De
(De−De∗) +

∂B

∂ν
(ν − ν∗) , (5.5)

where all derivatives are computed at P ∗.
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The scaling in ε of the velocity field amplitude, εw, and the parameters εν , εDe is found
by requiring that all terms in (5.1) be of the same order in the scale-separation small
parameter ε.

The comparison between the last two terms in (5.1) fixes the relation between ε and
εw:

D ε2ε5w ∼ C ε4εw ⇒ εw = ε1/2 . (5.6)
The parameters εν and εDe are found by comparing the terms associated to A, B and

D in (5.1). Using (5.2)-(5.6), we obtain:

D ε2ε5/2 ∼
[

∂A

∂De
(εDeDe∗)− ∂A

∂ν
(K1ενν∗)

]
ε2ε1/2 (5.7)

D ε2ε5/2 ∼
[

∂B

∂De
(εDeDe∗)− ∂B

∂ν
(K1ενν∗)

]
ε2ε3/2 . (5.8)

Choosing εν = εDe = ε and setting K1 to ensure
[

∂A
∂DeDe∗ − ∂A

∂ν K1ν∗
]

= 0, both
equations (5.7) and (5.8) are satisfied. Equation (5.7) is balanced by the second-order
term of the ν expansion (5.2), dependent on K2. The scalings of time, pressure and
polymer conformation tensor perturbation, ε4, ε1/2 and ε1/2, respectively, are derived as
in § 4.

Once the scalings have been determined we can proceed as in § 4 to obtain the large-
scale equation for 〈w(1/2)

z 〉(t̃, x̃). The evolution equation emerges now from the solvability
condition at the order ε9/2:

∂̃t〈w(1/2)
z 〉 = ∂̃x

[(
−A + B〈w(1/2)

z 〉2 + D〈w(1/2)
z 〉4

)
∂̃x〈w(1/2)

z 〉
]
− C∂̃4

x〈w(1/2)
z 〉 , (5.9)

where the coefficients are explicit functions of β. For β = 0.769, they read:
{

A = 0.5106 + 1.965K2 , B = −8.979 ,
C = 0.9439 , D = 23.11 , K1 = 0.594 .

}
(5.10)

Although (5.9) belongs to the class of the Cahn–Hilliard equations (1.1), the emergence
of the new, sixth-order nonlinearity will be responsible for new dynamical aspects, not
present for De < De∗, which will be discussed in detail in § 6.

5.2. Zone II
For Deborah numbers above the critical value, perturbations are nonlinearly unstable:
B < 0. This is true regardless of the sign of the linear term and strong enough pertur-
bations may then grow even if the system is linearly stable.

Let us then consider systems with ν > ν∗ and De > De∗. No major difference with
respect to case I is expected. At zero-th order, the coefficients A and B vanish and equa-
tions (5.4)-(5.5) hold. Again, we define the position in phase-space via the two parameters
εν and εDe. As the viscosity is now larger than the critical value, a positive sign appears
in the expansion of the viscosity:

ν = ν∗(1 + K1εν −K2ε
2
ν) , (5.11)

while (5.3) holds. The parameter K2, as we shall point out later, can take any value
compatible with the condition A > 0.

The same calculations discussed in the previous subsection can be carried out to derive
the coarse-grained equation for the transverse velocity. As one might expect, its form is
exactly the same as (5.9), a generalized Cahn–Hilliard equation. The only difference is
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in the value of the parameters. For β = 0.769, they read:
{

A = −0.2202 + 1.965K2 , B = −35.62 ,
C = 0.9439 , D = 23.11 , K1 = 0.5974 .

}
(5.12)

Only A and B have changed with respect to (5.10), as expected since they are the only
parameters which depend on ε (and thus on Re and De) in physical coordinates. Notice
that there is an upper bound on the values we can choose for K2, reflecting the linear
stability requirement.

5.3. Zone IV
What happens when the Deborah number is barely smaller than the critical value De∗?
Sufficiently close to it, the third-order instability can be made subdominant with respect
to the fifth-order and our aim here is to work out the scaling coefficients corresponding
to such situation.

For this purpose, let us assume that the cubic nonlinearity is negligible. At leading
order, the terms associated to A, C and D must be of the same order. This means:

ε4εw ∼ ε2εw

[
∂A

∂De
(De−De∗) +

∂A

∂ν
(ν − ν∗)

]
, (5.13)

ε2ε5w ∼ ε2εw

[
∂A

∂De
(De−De∗) +

∂A

∂ν
(ν − ν∗)

]
, (5.14)

and implies:
ν = ν∗(1−K2ε

2) , De = De∗(1− ε2) . (5.15)
Additionally, the velocity field scales as ε1/2, as the pressure and polymer fields do. The
time derivative scales as ε4.

To be consistent, we are left to check that the third-order nonlinearity is negligible.
Using the previous scalings and the ensuing fact that B ∼ O(ε2), we have to verify that:

O(B∂2w3) , O(D∂2w5) ⇒ O(ε11/2), O(ε9/2) , (5.16)

which holds true. It is now possible to apply the strategy discussed in § 4 to derive the
large-scale equation and obtain (at order ε5):

∂̃t〈w(1/2)
z 〉 = ∂̃x

[(
−A + D〈w(1/2)

z 〉4
)

∂̃x〈w(1/2)
z 〉

]
− C∂̃4

x〈w(1/2)
z 〉 , (5.17)

where C and D have the same value as before and A = 1.1740 + 1.965K2.

6. Variational formulation
It is well-known that the “standard” Cahn–Hilliard equation admits a variational

formulation in terms of a Ginzburg–Landau potential (Cahn & Hilliard 1958). Equa-
tion (4.6), after appropriate rescalings, w → (A/B)1/2w, t → A−1t, λ = C/A, is recast
in the form (1.1) with the Lyapunov functional:

F [w] =
∫ [

λ

2
(∂xw)2 + I(w)

]
dx , I(w) = −w2

2
+

w4

12
. (6.1)

Note that mean fields only are considered, that is w must be read as the rescaled leading
contribution 〈w(1)

z 〉(x̃, t̃).
The existence of a Lyapunov functional implies the existence of an asymptotic state
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for w, if boundary conditions are periodic and stationary. Such state corresponds to a
minimum of the Lyapunov functional and it is calculated by the following equations:

I ′(w) = λ∂2
xw ↔ ∂xI =

λ

2
∂x(∂xw)2 . (6.2)

When w is a maximum (or a minumum), I(wmax) is constant and wmax is obtained
solving I ′ = 0 as wmax = ±

√
3. Considering this boundary condition, equation (6.2) can

be easily solved. Its solutions are the well-known kink and anti-kink structures, namely:

w = ±
√

3 tanh

[√
1
2λ

x

]
. (6.3)

The issue now is whether or not a Lyapunov extremal formulation exists in the gener-
alized Cahn–Hilliard case (5.1) as well, and how it relates to the standard one. In partic-
ular, a Painlevé test (Ablowitz & Clarkson 1991) can be performed on the equation to
check its integrability. The calculation consists in checking that all movable singularities
(whose location depends on initial and/or boundary conditions) are poles (see for details
Ablowitz & Clarkson 1991). The test is based on a well-known connection between the
integrability property of a nonlinear differential equation and its analytic structure for
complex values of the independent variable (Kowalesvki 1889, 1890; Painlevé 1897). The
explicit calculation is performed in Appendix B. The generalized Cahn–Hilliard equation
indeed enjoys the Painlevé property and is thus integrable.

Let us then write the equation (5.1) after the rescalings w → (A/B)1/2w, t →
A−1t, λ = C/A, γ = AD/B2:

∂tw = −∂2
xw − 1

3
∂2

xw3 − λ∂4
xw +

γ

5
∂2

xw5 . (6.4)

Integrability of this equation is related to the existence of the following Lyapunov func-
tional, similar to that of the standard case, yet with a sixth-order potential:

F [w] =
∫ [

λ

2
(∂xw)2 + I(w)

]
dx , I(w) = −w2

2
− w4

12
+

γ

30
w6 . (6.5)

The calculation of the function corresponding to its minimum is performed using again
(6.2).

All solutions tend to final steady states which minimize F . The approach to the so-
lution is however nontrivial and the structure is made of plateaux having velocity ±W0

(I ′(W0) = 0), separated by positive and negative kinks (see figure 4). The amplitude of
the velocity w in the plateaux is:

W 2
0 =

5 +
√

25 + 180γ

6γ
. (6.6)

Note that, at small γ’s, the asymptotic velocity W0 diverges as 1/
√

γ. This is quite
intuitive: the field amplitude equilibrating the third and the fifth-order nonlinearities
increases as the coefficient of the fifth-order nonlinearity reduces.

The explicit expression of the profiles for kinks and anti-kinks is obtained from the
integration of equations (6.2),(6.5). For the sake of example, when λ = 1/2 and γ = 10/9
the profiles read:

w = ±
√

15
e2
√

3x − 1√
5e4

√
3x + 26e2

√
3x + 5

. (6.7)
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Figure 4. The “generalized” (solid) and “standard” (dotted) kinks for λ = 1/2 and γ = 10/9.
The former has a manifestly shorter range. It is shown in the body of the text that this entails
longer time-scales for their annihilation with the corresponding anti-kinks.

I(w
)

w

a

b

c

Figure 5. The potentials associated to the different evolution equation. Curve a is related to
the standard Cahn–Hilliard equation (fourth-order potential); curve b represents the generalized
Cahn–Hilliard equation (sixth-order potential). Curve c is the characteristic triple-well potential
of the purely nonlinearly unstable case. The plots are in arbitrary units, to ease the comparison
between the curves.

The generalized kink-antikink structures, e.g. those given by equation (6.7), will be
dubbed “generalized” kinks and anti-kinks.
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6.1. Dynamics of generalized kink/antikink annihilation and approach to equilibrium
Detailed calculations are performed following Legras & Villone (2003), who in turn based
theirs on Kawasaki & Ohta (1982). They are lengthy, yet quite simple in their basic idea,
sketched hereafter.

During metastable transitions, the kinks do not satisfy (6.2) exactly, due to the pres-
ence of other kinks and/or anti-kinks. The deviation of the amplitude in the plateau is
proportional to e−sΛ, where Λ = 4|x| and x denotes the distance to the point where
w = 0. Here, s is the inverse of the typical length scale of this deviation (for details,
see Appendix A of Legras & Villone 2003). The quantity s turns out to be crucial as
neighboring kinks and anti-kinks attract proportionally to e−s∆x, where ∆x is the dis-
tance between neighbouring kinks and anti-kinks (for details, see Appendix B of Legras
& Villone 2003).

The behavior of the kink size s is grasped as follows. Consider a metastable state of the
Cahn–Hilliard equation. The potential felt by a kink w(x) close to the plateau w = W0

is estimated by the Taylor expansion:

I(w −W0) . I(W0) + I ′(W0)(w −W0) + I ′′(W0)
(w −W0)2

2
, (6.8)

where we know that I ′(W0) = 0. Note also that the dynamics of w does not change if we
add an arbitrary constant to the potential I, so that we can set I(W0) ≡ 0.

Let us now calculate the shape of the profile between w and W0. For a metastable
state, ∂t(w −W0) = 0, that implies:

λ

2
(∂x(w −W0))2 + [I ′′(W0)

(w −W0)2

2
] = 0 . (6.9)

Interpreting ∂x as the inverse of the typical length scale s for (w−W0), one easily obtains
s =

√
λ/I ′′(W0). The second-order derivative can be explicitly calculated using (6.6):

I ′′(W0) = 4 +
2
3
W 2

0 . (6.10)

Qualitative properties of s are easy to grasp. At large γ’s, the size of the kinks tends
to a constant, independent of γ. At small γ’s, the kinks get steeper and steeper, their
size scaling as γ1/2. This implies that the convergence to equilibrium will be slower and
slower as γ is reduced (recall that the kinks attract proportionally to e−s∆x).

For the same band of unstable modes, i.e. keeping λ fixed, it holds that the convergence
to equilibrium is slower for the generalized than for the standard Cahn–Hilliard equa-
tion. Indeed, for the Cahn–Hilliard potential ICH = −w2/2 + w4/12, the second-order
derivative I ′′CH(W0) = 2. As for (6.10), we can use the identity 1 + W 2

0 /3 = γW 4
0 /5,

following from the very definition I ′(W0) = 0, to obtain I ′′(W0) > 2. This implies that
the interactions for the generalized kink-antikink structures have a shorter range and
their dynamics of annihilation is thus slower.

A special remark applies to the linearly stable case (zone II). In this case, the equation
is associated to an uncommon triple-well potential. The typical nonlinear kink-antikink
dynamics appears only if the initial perturbation will be energetic enough to let the
system “jump” out of the central well and fall into one of the side wells.

7. Numerical results
The analytical results presented in this work have been obtained by multiscale tech-

niques. Their basic assumption is the strong scale separation between the basic flow and
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Figure 6. Growth rates g of the transverse Fourier modes k for a simulation with De = 1.4 and
β = 0.769. The simulations are performed in a rectangular domain with aspect ratio 1/64. The
distance to the critical point Re/Rec − 1 is 0.28. The solid line represents the linear prediction
(7.1). The circles representing the numerically computed growth rates have been obtained with
a DNS simulation by a linear fit of the logarithm of the energy for each mode versus time, in
the early stages of their exponential growth.

the most unstable perturbations. In this section, we shall present the numerical simula-
tions performed to check the validity of this assumption.

The linear analysis results have already been checked in Boffetta et al. (2005a) by re-
ducing the original linear partial differential equation to a generalized eigenvalue problem
and computing its eigenvalues/eigenvectors. The scale separation hypothesis is found to
be well verified up to Deborah numbers of order unity (De ≈ 2.3 for the value β = 0.769
used in this study). For larger De, scale separation does not hold and multiscale methods
are not applicable.

To check the nonlinear results derived here, we have numerically simulated the complete
Oldroyd-B model equations (2.2)-(2.4) via a pseudospectral algorithm (see Canuto et al.
1988, for details on the numerical method). In the following, we will refer to these as to
Direct Numerical Simulations (DNS), while numerical integration of the one-dimensional
Cahn–Hilliard equation (4.6) will be referred to as CH simulations.

To enforce a transverse perturbation, we integrated the equations on a rectangular
slab with L = Lx = 2π and Lz = 64Lx. The aspect ratio r is then fixed at 1/64. The
simplest check of our results concerns the growth rates of the instability which, in the
linear regime, can be obtained by the Cahn–Hilliard equation. Neglecting the nonlinear
term, the dispersion relation for the transverse Fourier modes k reads:

g = A

(
Re
Rec

− 1
)

k2 − Ck4 (7.1)

In figure 6, we report the growth rates of the first modes for a (white-noise in space)
small initial perturbation. We are then able to observe also negative g (stable modes). The
comparison with the linear prediction is excellent, even for modes whose scale separation
is not very small.
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Figure 7. The energy associated to the lowest wavenumber modes resulting from a CH sim-
ulation. The values of the coefficients have been arbitrarily chosen for conveniency of display.
The quasi-stationary states can be clearly seen up to the asymptotic one corresponding to the
largest periodicity. In this simulation, De = 1.4 and Re/Rec − 1 = 0.28.

Let us now consider the nonlinear stage of the perturbation growth. It is well known
that the time evolution of the Cahn–Hilliard equation shows a succession of long-lasting
metastable states characterized by a well defined periodicity. For sufficiently small initial
perturbations, the wave-number k associated to the maximum growth-rate g will be the
first to reach the balance between the destabilizing linear term A∂̃2〈wz〉 and the stabiliz-
ing non-linear one B∂̃2〈wz〉3. When such equilibrium is reached, the energy associated to
that mode is constant and the system is quasi-stable. In the meanwhile the other modes
kmax − 1, kmax − 2, . . . keep growing. When the mode kmax − 1 balances the two terms,
the energy associated to the mode kmax drops. This new state is again quasi-stationary
and has a well-defined periodicity kmax − 1.

The process continues until a state with the box periodicity is reached (see figure 7);
such a state is stationary and corresponds to the asymptotic behaviour in § 6. The kink
structures described there, are characteristic of all of these stages. Indeed, any transition
between two quasi-stationary states can be seen as a kink-antikink annihilation, yielding
a decrease in periodicity, as in figure 8 (She 1987).

To check the results obtained in § 4, we have performed a DNS simulation for a partic-
ularly long lapse of time. The excellent agreement between the DNS and the prediction
of the Cahn-Hilliard equation is shown in figure 9.

The same comparison can be realized in the neighborhood of the critical point P ∗.
This kind of simulation is much harder than for the standard Cahn–Hilliard, because it
involves a very precise knowledge of the position of the critical point, and there is no easy
way to obtain this from the simulations. Moreover, any system we simulate will be at a
finite distance from the critical point. The parameter that will mostly feel this difference
will be D, as we have chosen it to be approximately constant around P ∗. We have been
able to overcome this weakness via a limited tweaking of the D parameter in the CH
simulation. As shown in figure 10, an excellent agreement between the curves is again
achieved.
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Figure 8. Instantaneous transverse velocity field at different times. The simulation is the same
as in figure 7. The transition between two metastable states can be regarded as a kink-antikink
annihilation. In this figure a transition from a k = 2 to a k = 1 state is represented, the x-axis
being the physical x direction of the integration box and the y-axis being the amplitude of the
w perturbation. The time figure set over the graphs refers to the evolution shown in figure 7.
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Figure 9. The comparison between DNS simulations of the Oldroyd–B model and the coarse–
grained Cahn–Hilliard equation derived in the body of the text. The thicker lines represent the
evolution of the lowest-energy modes in a DNS simulation, while the thinner lines are the result of
a CH simulation. Its dynamical parameters have been set with the results obtained in section 4.
This particular figure refers to a simulation with De = 1.4, β = 0.769 and Re/Rec − 1 = 0.14.

8. Clues on drag reduction
One of the most striking properties of viscoleastic fluids is the drag reduction effect. In

1949, Toms found that the injection of minute amounts of polymers in turbulent fluids
flowing in a channel was able to increase the mean flow by an amount soaring up to 80%.
Even if this phenomenon has been known for over fifty years (Toms 1949; Lumley 1969;
Virk 1975), a satisfactory understanding of its fundamental mechanisms is still lacking.

A large number of experiments has been performed to study this effect (see, e.g. Virk
1975; Nadolink & Haigh 1995; Sreenivasan & White 2000), but a burst in its theoretical
analysis occured after drag reduction was found in numerical simulations of viscoelastic
fluids (Sureshkumar et al. 1997). The activity is being spurred both by fundamental
interest and industrial applications (Larson 1992).

Drag reduction is commonly associated to channel flows and boundary effects. Still, it
is now clear that the phenomenon is present even for free flows (Boffetta et al. 2005b).
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Figure 10. The generalized Cahn–Hilliard equation reproduces the dynamics of the Oldroyd-B
model around the critical point P ∗. As in figure 9, the thicker lines are DNS simulations while the
thinner ones are CH simulations. This comparison was realized for De = 1.62 and Re = 2.5159.

What we show here is that, even at relatively small Reynolds numbers, an increase in
the Deborah number produces an enhancement in the mean flow amplitude. Simply
looking at the linear stability diagram (1) we may already conclude that, as the polymer
elasticity grows, so does the critical Reynolds number and the flow is stabilized. Let us
further investigate this effect analytically using the results of § 4.

A parameter that can be employed to study the mean flow properties in free flows is
the drag coefficient f (Boffetta et al. 2005b):

f =
F0L

U2
. (8.1)

The drag coefficient can be seen as the ratio between the energy input (through the
forcing F0) and the mean energy of the flow. As we are interested in mean effects only,
we will average U2 over the basic flow periodicity. This will ensure that only mean effects
will be taken into account.

When the state is linearly stable (low Reynolds numbers) we know that no perturbation
can alter the basic flow, U = V = F0L2/ν and thus f = Re−1.

In § 4, we have solved all the equations of motion up to the fourth order. They give
the following form of the flow (up to the second order):

Ux(z) = V cos(
z

L
) +

V (L2 + (β − 1)ντ)
νL

〈w(1)
z 〉 sin (

z

L
) + (8.2)

−De[L4 + ντ(β − 1)(2L2 + ντβ)]
ν2τL

〈w(1)
z 〉2 cos(

z

L
) +

+
DeL(β − 1)

2
(∂̃x〈w(1)

z 〉) sin(
2z

L
) .

The first term is the basic, stationary Kolmogorov flow. Averaging over all possible initial
conditions, component proportional to sin(z/L) and sin(2z/L) disappear. The resulting
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Figure 11. The drag coefficient f plotted versus the Deborah number De at constant Re. As
the polymer elasticity grows, the drag coefficient diminishes. This implies that the mean flow
grows with De.

expression for the mean flow in the x direction reads:

Ux(z) = (V + h(De, β)
〈w(1)

z 〉2
V

) cos(
z

L
) = Veff cos(

z

L
) , (8.3)

where the quantity 〈w(1)
z 〉2 follows from the Cahn–Hilliard equation in the stationary

state:

0 = −∂2
x〈w

(1)
z 〉Aε2 +

B

3
∂2

x〈w
(1)
z 〉3 − ∂4

x〈w
(1)
z 〉C . (8.4)

As 〈w(1)
z 〉 is periodic, we can integrate twice over the domain and notice that, on the

plateau, the last term is zero. The field amplitude must then satisfy:

0 = −Aε2 +
B

3
〈w(1)

z 〉2 ⇒ 〈w(1)
z 〉 =

√
3ε2A

B
(8.5)

Since the analytical expression of A and B is known, as well as how ε changes with De
for a fixed Reynolds number, the analytical expression for f is obtained:

f =
νFL

V 2
eff

=
V 2

ReV 2
eff

=
1

Re(1 + h 3A
BV 2

Re−Rec

Rec
)2

, (8.6)

where h, A, B and Rec are explicit functions of the Deborah number and β.
As we want to investigate how the polymer elasticity affects the flow, a meaningful

approach is to keep the Reynolds number fixed, while varying the Deborah number. This
allows studying how the same flow reacts when different kinds of polymers are injected.
Once β and Re are chosen, it is possible to plot f versus De on the basis of analytical
results, as in figure 11. The drag coefficient is clearly decreasing with the Deborah number
even though the flow is barely in its nonlinear regime.

Numerical simulations have been performed to check the consistency of these results
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Figure 12. CH simulations at fixed De. the drag coefficient f is found to increase with the
Reynolds number. The comparison between the various curves shows that the drag coefficient
reduces with the Deborah number.

and their outcome is summarized in figure 12. Here, the Deborah number has been fixed
at different values and the drag coefficient has been plotted versus the Reynolds number.
While f increases with Re, as expected, larger Deborah numbers are always found to be
associated to smaller drag coefficients.

9. Conclusions
The weakly nonlinear dynamics of a viscoelastic Kolmogorov flow has been analysed

both analytically and numerically. The physical reasons for considering this flow are that,
despite the fundamental difference consisting in the absence of material boundaries, it
has several analogies with channel flows and is one of the few well-known exact solutions
of the Oldroyd-B model.

The linear stability analysis for the Kolmogorov flow had already been developed by
Boffetta et al. (2005a). No insights had however been given for the weakly nonlinear stage
of evolution. This regime amounts to considering values of the Reynolds number close to
the marginal stability curve separating stable from unstable regions of the phase-space.
In the general nonlinear case (i.e. for arbitrarily large distances from the marginal curve),
there is no way to solve the fully nonlinear equations. Conversely, close to the marginal
curve, asymptotic perturbation techniques can be employed to capture the weakly non-
linear dynamics.

We found that the weakly nonlinear dynamics is described by Cahn–Hilliard-like equa-
tions, with coefficients dependent on the Deborah number. The behaviour of these coeffi-
cients with respect to De reveals that there exists a critical value of the Deborah number,
where the system bifurcates to another regime. The resulting nonlinear equation still has
a Cahn–Hilliard form, but contains a novel, fifth-order nonlinearity.

Above the critical De, the “hydrodynamic” kink-antikink structures are replaced by
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generalized structures. We have shown that their processes of annihilation are slowed
down with respect to the standard Cahn-Hilliard equation. We also found a purely non-
linear, subcritical mechanism of instability, which occurs for sufficiently large amplitudes
of the initial perturbation.

Our results demonstrate that, for hydrodynamical systems governed by a standard
Cahn–Hilliard equation, the presence of an additional parameter might lead to higher-
order nonlinear dynamics. A system where similar phenomena are to be expected is the
stratified Kolmogorov flow investigated by Balmforth & Young (2005), with the role of
elasticity played by stratification.

Our results have been obtained both exploiting the multiscale expansion and via direct
numerical simulations of the original equations and their coarse-grained version. The
agreement between the Cahn–Hilliard dynamics and the full-resolved one is excellent
even at large times. This is true for both the standard Cahn–Hilliard and the generalized
one. The asymptotic analysis is thus able to capture all of the relevant features of the
flow.

In the last part of the work, we have presented some consequences for the problem
of drag reduction. Although it is not common to talk about this effect in non-turbulent
flows, we have shown that, even in the weakly nonlinear case, the injection of polymers
induces a reduction in the drag coefficient, via the stabilization of the basic flow. Using
the results of the nonlinear analysis, we have been able to give an analytical expression
for the flow enhancement due to the polymers. The main qualitative conclusion is that
drag reduction stems from a stabilization of the flow and appears to be a phenomenon
coupling large and small scales.
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Appendix A. Squire’s theorem for Oldroyd-B
Consider a parallel flow U = (U(z), 0). To investigate its stability properties one writes

the linearized, nondimensional equations

∂tw + (u · ∇)w + (w · ∇)u = −∇q + βRe−1∆w +
+(1− β)Re−1 De−1 ∇ · ζ (A 1)

∂tζ + (u · ∇)ζ + (w · ∇)σ = (∇u)T · ζ + (∇w)T · σ +
+ζ · (∇u) + σ · (∇w)−De−1ζ (A 2)

where w is the perturbation of the basic profile u, and ζ is the perturbation of the basic
stress tensor σ.
We now perform a Fourier transform in the directions x and y, and in time,

wi(x, y, z, t) =
∫

dω dkx dky e−iωt+kxx+kyy ŵi(kx, ky, ω, z) (A 3)

ζij(x, y, z, t) =
∫

dω dkx dky e−iωt+kxx+kyy ζ̂ij(kx, ky, ω, z) (A 4)

Introducing the notation

k =
(

kx

ky

)
u =

(
U(z)

0

)
ŵ =

(
ŵx

ŵy

)

t̂ =
(

ζ̂xz

ζ̂yz

)
ẑ =

(
ζ̂xx ζ̂xy

ζ̂yx ζ̂yy

)
r =

(
σxz

σyz

)
s =

(
σxx σxy

σyx σyy

) (A 5)

the linearized equations in normal modes take the form

(−iω + i kT · u)ŵ + ŵz
du

dz
= −ikq̂ + βRe−1(−k2 +

d2

dz2
)ŵ +

+(1− β)Re−1 De−1

(
iẑT · k +

d

dz
t̂

)
(A 6)

(−iω + ikT · u)ŵz = −dq̂

dz
+ βRe−1(−k2 +

d2

dz2
)ŵz +

+(1− β)Re−1 De−1

(
ikT · t̂ +

d

dz
ζ̂zz

)
(A 7)

(−iω + ikT · u + De−1)ẑ + ŵz
d

dz
s = t̂ · du

dz

T

+
du

dz
· t̂T +

+i(s · k)ŵT + iŵ(kT · s) + r
d

dz
ŵT +

dŵ

dz
rT (A 8)

(−iω + ikT · u + De−1)̂t + ŵz
d

dz
r = ζ̂zz

du

dz
+

+i(s · k)ŵz + iŵ(rT · k) + r
d

dz
ŵz +

d

dz
ŵ (A 9)

(−iω + ikT · u + De−1)ζ̂zz = 2i(rT · k)ŵz + 2
d

dz
ŵz (A 10)
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Consider the following transformation

kx = |k| wx = kT ·ŵ
|k| wz = ŵz q = |k|

kx
q̂

Re = kx
|k|Re De = kx

|k|De ω = |k|
kx

ω

tx = kx
|k|

kT ·̂t
|k| ζxx = kx

|k|
kT ·ẑ·k
|k|2 ζzz = kx

|k| ζ̂zz

(A 11)

From (A 6)-(A 10) one can derive the equations for the overlined variables

[
−iω + i kxU(z)

]
wx + wz

dU

dz
= −i kxq + βRe−1(−k

2
x +

d2

dz2
)wx +

+(1− β)Re−1 De−1
(

i kxζxx +
d

dz
tx

)
(A 12)

[
−iω + i kxU(z)

]
wz = −dq̂

dz
+ βRe−1(−k

2
x +

d2

dz2
)wz +

+(1− β)Re−1 De−1
(

i kxtx +
d

dz
ζzz

)
(A 13)

[
−iω + ikxU(z) + De−1

]
ζxx + wz

dsxx

dz
= 2tx

dU

dz
+ 2ikxsxxwx + 2rx

dwx

dz
(A 14)

[
−iω + ikxU(z) + De−1

]
tx + wz

d

dz
rx = ζzz

dU

dz
+ isxxkxwz + ikxwxrx

+rx
dwz

dz
+

dwx

dz
(A 15)

[
−iω + ikxU(z) + De−1

]
ζzz = 2ikxrxwz + 2

dwz

dz
(A 16)

where we introduced the quantities

sxx =
kT · s · k

|k|2 = 1 + De2[U ′(z)]2, rx =
kT · r
|k| = De2

U ′(z) (A 17)

Equations (A 12)-(A16) are exactly the same as (A 6)-(A 10) but with ky = 0, ŵy =
0,ζxy = ζyy = ζyz = 0. Therefore they describe a two-dimensional linear disturbance
of the basic flow at smaller Reynolds and Deborah numbers. If the three-dimensional
perturbation w, ζ is unstable at (Re,De), then the two-dimensional disturbance w, ζ is
unstable at (Re,De) and its rate of growth is larger (Im(ω) ≥ Im(ω) > 0).

Appendix B. Painlevé analysis
We perform a Painlevé analysis to ascertain whether the fifth-order equation (5.1) is

integrable as the usual cubic Cahn–Hilliard equation (4.6).
After rescaling dependent and independent variables, the stationary equation takes the

form:

−u− u3

3
− λ∂2

xu +
γ

5
u5 = 0 . (B 1)

The Painlevé test consists in checking whether the structure of the solution around
singularities in the complex plane has the form of a Laurent series. A simple balance of
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the last two terms in the equation indicates that the singularity has order −1/2. The
putative Laurent series should then be sought as:

u(z) = z−1/2
[
u0 + u1z + u2z

2 + u3z
3 + · · ·

]
, (B 2)

where z is the complex variable denoting the separation from the singularity z∗. When
the series (B 2) is inserted into equation (B 1), a hierarchy of equations of the form
akuk = bk is obtained. The ak’s and bk’s can be calculated in terms of uk−1, · · · , u0.
The impossibility for an arbitrary equation to have a Laurent series expansion is due to
resonances, i.e.values of k such that ak = 0. Integrability is equivalent to checking that
bk = 0 for the orders corresponding to resonances. In our case, it is easy to check that

ak = −λ

(
k − 1

2

) (
k − 3

2

)
+γu4

0 ; u0 =
(

15λ

4γ

)1/4

0→ ak = −λ(k+1)(k−3) . (B 3)

The resonance is therefore at the third order and we need to perform the explicit calcu-
lation up to that order to check whether or not b3 = 0. The algebra is elementary and
the coefficients are:

u1 =
u3

0

12λ
, u2 =

u0

λ

[
1
3

+
5

128γ

]
. (B 4)

Using these values, one can verify that

b3 = 2γu2
0u

3
1 + 4γu3

0u1u2 − u1 − u2
0u2 − u0u

2
1 (B 5)

vanishes and the Painlevé test is satisfied.
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Chapter 9

The viscoelastic turbulent
Kolmogorov flow

The results of the stability analysis presented in the previous chap-
ters suggest that drag reduction by polymer additives can be found
in the viscoelastic turbulent Kolmogorov flow. A recent break-
through has been the observation of drag reduction in channel
flows by means of viscoelastic fluids models [43,62] in good agree-
ment with experimental measurements.
In this chapter I will present my research result on the study of
turbulence of a polymer solution in a Kolmogorov flow by means
of two simple viscoelastic fluid models. Here we aim at simplify-
ing as much as possible both the geometry of the problem and the
viscoelastic model to isolate a physical mechanism yielding drag re-
duction. The first objective is met by considering the turbulent Kol-
mogorov flow [63], whereas the second is met by choosing both the
Oldroyd-B model and a further simplification, the uniaxial model.
The results of direct numerical simulations are presented, focusing
on the comparison with the corresponding results obtained in the
channel flow.

9.1 The Newtonian case

In the Newtonian case, below Rec =
√

2, the Kolmogorov flow is lam-
inar, the velocity profile being sinusoidal. Above the critical value
the profile remains sinusoidal but it is independent of the Reynolds
number [63]. The flow is highly turbulent and intermittent even at
large-scales.

159
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(a) (b)

Figure 9.1: (a) The mean velocity profile for the Newtonian and viscoelastic cases
fitted with two sinusoidal profiles. (b) The friction coefficient as a function of the
Reynolds number for different values of El, Sc and η = νp/ν.

The velocity profile in the laminar case is:

v = (
FL2

ν
cos (

z

L
), 0, 0) (9.1)

At large Re the flow becomes turbulent and a fluctuating Reynolds
stress 〈vxvz〉 is produced, which can be expressed as:

〈vzvz〉 = −νeff
d〈vx〉
dz

(9.2)

where νeff is a nearly constant effective viscosity. The r.m.s. values
of the fluctuations are proportional to a + b cos (2z/L) where a and b
are appropriate constants. The same holds for the total turbulent
kinetic energy and for the averaged energy dissipation rate.
The analogies between a channel flow and the Kolmogorov flow are
the following:

• the forcing amplitude F plays the role of the pressure gradi-
ent, maintaining the flow rate

• the periodicity box width is the equivalent to the channel height

• the velocity amplitude U represents the centerline velocity.
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Figure 9.2: The drag coefficient as a function of the rescaled Reynolds number.

9.2 The viscoelastic case

9.2.1 Oldroyd-B model

Here I present the results for the viscoelastic Kolmogorov flow of
the Oldroyd-B fluid. The evolution equations read:

∂tv + v · ∂v = −1

ρ
∂p + νn∂2v +

νp

τ
∂ · σ

R2
0

+ F

∂tσ + v · ∂σ = ∂v · σ + σ · (∂v)T − 1

τ
(σ −R2

01) + κ∂2σ

∂ · v = 0

(9.3)

where νn and νp are the solvent and polymer viscosity contribution
respectively, and the artificial diffusivity κ is added to prevent nu-
merical instabilities (see chapter 6 and 7) .
We perform direct numerical simulations of equations (9.3) in a pe-
riodic cube of size 2π with 643 collocation points by a fully dealiased
pseudo-spectral method. The averages are performed over a hun-
dred to a thousand eddy-turnover times.

The measured mean velocity profile is increased with respect to
the Newtonian case, due to the presence of polymers as shown in
fig. 9.1a. The main difference with wall bounded flows is in the
profile shape: in the channel flow, the region close to the wall (vis-
cous sub-layer) is not altered by polymers, but the central region
is characterized by the emergence of a so called elastic sub-layer,
and the centerline velocity is enhanced. Here the profile is changed
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(a) (b)

Figure 9.3: Representative snapshots of velocity component ux for a Newtonian (a)
and viscoelastic Kolmogorov flow (b). Here Re - 350, El = 0.019, Sc = 0.016, η = 0.5.

by a uniform multiplication factor [61].
The friction coefficient in the Kolmogorov flow can be defined as

follows:

f =
FL

U2
(9.4)

For the laminar Newtonian case we have f = Re−1. At Re " 50
the flow is turbulent and the friction coefficient becomes almost
independent on Re as shown in fig. 9.1b (black dots). The friction
coefficient for the viscoelastic case (η (= 0) is shown in fig. 9.1b as a
function of the polymer elasticity:

El =
De

Wi
=

ντ

L2
(9.5)

and of the Schmidt number Sc = νn/κ. For small El the behavior is
almost identical to the Newtonian case, whereas large El are char-
acterized by a notable reduction in the friction factor. For fixed El,
smaller Sc correspond to higher reductions. The dependence on
νp cannot be extracted from these simulations. Our data show a
maximum drag reduction of 75%.
The dependence of the friction coefficient on the fluid parameter
can be found following simple observations and a physical argu-
ment given in ref. [15]. For moderate Re the presence of polymers
does not affect the drag coefficient, whereas for larger Re drag re-
duction occurs. Therefore there exists a critical Reynolds number
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separating these two regimes, that can be estimated as [61]:

Rec ∼
(

1

El
+

1

Sc

)2/3

(9.6)

Rescaling the Reynolds number with Rec allows to collapse the data
as shown in fig. 9.2. The curve can be fitted by the following rela-
tion:

f =

{
β Re ! Rec

γ( Re
Rec

)2 + δ Re " Rec

(9.7)

where the coefficients δ, γ and β can be extracted from the mea-
surement of the stresses (see below).

The amplitude of the transverse fluctuations 〈u2
y〉 and 〈u2

y〉 is re-
duced with respect to the Newtonian case, whereas longitudinal
fluctuations 〈u2

x〉 − 〈ux〉2 are enhanced (see fig. 9.3).
The momentum balance of the first of eqs. (9.3) in the x direction
gives:

Fx = −νn∂2
z 〈vx〉+ ∂z〈vxvz〉 −

νp

τ
〈σxz〉 (9.8)

and from numerical measurements we obtain:

〈vxvz〉 = S sin (
z

L
) (9.9)

νp

τ
〈σxz〉 = −T sin (

z

L
) (9.10)

Therefore the balance (9.8) becomes:

F = νn U

L2
+

S

L
+

T

L
(9.11)

where the first term in the right hand side is relevant only for lam-
inar flows, and can be neglected here.
The balance between these terms and the behavior as a function of
the rescaled Re are shown in fig. 9.4.

9.2.2 Uniaxial model

A further simplification of the Oldroyd-B model has been proposed
in ref. [15]. When polymer elongation is much larger than the equi-
librium length R0, the tensor σ can be decomposed in the product
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Figure 9.4: Oldroyd-B model: (a) Reynolds and polymer stress amplitudes
rescaled with the total stress amplitude FL as a function of the rescaled Reynolds
number. (b) The Reynolds stress: the oblique line is S/U2

c = β(Re/Rec)2 whereas
the horizontal line is S/U2

c = γ. (c) The polymer contribution to the stress. The
line is T/U2

c = δ(Re/Rec)2. Uc is the critical velocity corresponding to the critical
Reynolds number.

of two identical vectors B = R/R0, and the obtained model is called
uniaxial. Its evolution equations read:

∂tv + v · ∂v = −1

ρ
∂p + νn∂2v +

νp

τ
B · ∂B + F

∂tB + v · ∂B = B · ∂v − 1

τ
B + κ∂2B

∂ · v = 0

(9.12)

It has been noted that these equations are equivalent to those of
magneto-hydrodynamics with magnetic diffusivity κ [64], except for
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(a) (b)

(c)

Figure 9.5: Uniaxial model: in these simulations the viscosity is kept fixed, F = 2
and Sc = 100. (a) The velocity fluctuations variance as a function of De. (b) The
friction coefficient as a function of De. (c) The Reynolds and polymer stress as a
function of De.

the dumping term B/τ .
The numerical investigation of the previous section can be repeated
for the uniaxial model, with the only difference that here we use
hyper-viscosity and hyper-diffusivity to stabilize the small-scale
dynamics of eqs. (9.12), and to reduce the artificial diffusivity. Here
we did not investigate the dynamics as a function of the Reynolds
number. The results of the simulations are shown in fig. 9.5 and
are qualitatively similar to the Oldroyd-B case, suggesting that the
drag reduction mechanism can be studied within the simple uni-
axial model as well.
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9.3 Perspectives
It would be interesting to raise the numerical resolution of the sim-
ulations within the Oldroyd-B model. This could be useful to study
the mechanism of transverse momentum transfer and to verify if
this is a crucial mechanism in the occurrence of drag reduction in
unbounded flows. Moreover, higher resolution simulations in the
case of the uniaxial model would permit to compare the results of
the two models more accurately, and to better establish the dy-
namical similarities with magneto-hydrodynamics.
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1 Introduction

In 1949 the British chemist Toms reported that the turbulent drag could be
reduced by up to 80% through the addition of minute amounts (few tenths of
p.p.m. in weight) of long-chain soluble polymers to water. This observation
triggered an enormous experimental activity to characterize this phenomenon
(see, e.g., [1][2][3][4][5]). In spite of these efforts, no fully satisfactory theory of
drag reduction is available yet. However, a recent breakthrough has been the
observation of drag reduction in numerical simulations of the turbulent channel
flow of viscoelastic fluids [6]. Most of the features of experimental flows of
dilute polymer solutions are successfully reproduced by these models, even at
the quantitative level [7][8].

Here we present the results of an extensive numerical investigation of the
viscoelastic turbulent Kolmogorov flow. This flow is realized by driving the
fluid through a parallel force with a sinusoidal profile. We will show that drag
reduction takes place notwithstanding the absence of material boundaries.

2 The viscoelastic turbulent Kolmogorov flow

To describe the dynamics of a dilute polymer solution we first consider the linear
viscoelastic model (Oldroyd-B) [9]

∂tu + (u ·∇)u = −∇p + ν0∆u +
2η ν0

τ
∇ · σ + F (1)

∂tσ + (u ·∇)σ=(∇u)T · σ + σ · (∇u)− 2
σ − 1

τ
+ κ∆σ, (2)

where σ is the conformation tensor of polymers σij = 〈RiRj〉/R2
0, being R the

end-to-end separation and R0 the equilibrium gyration radius of the polymer
molecule. The parameter τ is the (slowest) polymer relaxation time. (∇u)ij =
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Figure 1: Mean velocity profiles for a Newtonian (η = 0) and a viscoelastic
simulation (η = 0.3, El = 0.019) at given forcing amplitude F = 1.5. The
measured profiles are undistinguishable from 〈ux〉 = U cos(z/L) (full lines) in
both cases. The effect of elasticity is to increase the peak value U with respect
to the Newtonian case: in the present case this corresponds to a reduction of
the drag coefficient, defined in eq. (3), of about 40%. In the inset, the pro-
files of the Reynolds stress 〈uxuz〉 = S sin(z/L) and the mean polymer stress
2ν0ητ−1〈σxz〉 = −T sin(z/L). In this case the Reynolds stress is reduced upon
polymer addition to approximately 70% of its Newtonian value, consistently
with experimental results at comparable drag reduction. The ”missing” turbu-
lent shear stress is compensated by the contribution of the polymer stress: the
sum of S and T is equal to F in both the Newtonian and viscoelastic case. Data
result from the numerical integration of eqs. (1) and (2) in a periodic cube of side
2π by means of a fully dealiased pseudospectral code with 643 collocation points.
The mean flow lengthscale is L = 1 and the viscosity is ν = 0.015625. Start-
ing from an initial configuration with a small amount of energy on the smallest
modes, after the system evolved into a statistically stationary state, time aver-
ages over 100 to 1000 eddy-turnover times have been performed to obtain the
mean velocity profiles.

∂iuj and 1 is the unit tensor. The solvent viscosity is denoted by ν0 and η is the
zero-shear contribution of polymers to the total solution viscosity ν = ν0(1+ η).
The diffusive term κ∆σ is added to prevent numerical instabilities [10]. The
forcing F maintains the system in a statistically stationary state and has the
form Fx = F cos(z/L), Fy = Fz = 0.

As shown in Fig. 1 the mean velocity profile measured in numerical exper-
iments is 〈ux〉 = U cos(z/L), 〈uy〉 = 〈uz〉 = 0, where 〈· · ·〉 denotes the time
average. The drag coefficient is thus defined in terms of the centerline mean
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velocity as

f =
FL

U2
. (3)

As shown in Fig. 2 the viscoelastic flow is characterized by drag reduction for
several values of fluid parameters (for further details see Ref. [11])
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Figure 2: The drag coefficient for different viscoelastic fluid parameters.

3 The limit of strong polymer elongation

An even simpler model of viscoelastic flow is obtained by taking the limit of
strong polymer elongation, or, equivalently, of vanishingly small equilibrium
gyration radius [12]. In this case the governing equations take the following
form:

∂tu + (u ·∇)u = −∇p + ν0∆u +
2η ν0

τ
R ·∇R + F (4)

∂tR + (u ·∇)R=R ·∇u− R
τ

+ κ∆R (5)

where R denotes the typical end-to-end separation of a polymer molecule.
In spite of the crude approximation, drag reduction is observed in this system

as well, as shown in the table below. These results point to the conclusion that
the basic mechanism for drag reduction does not depend neither on boundary
conditions nor on the particular choice of the model.



4 Drag reduction in the turbulent Kolmogorov flow

τ 〈u′2x 〉 〈u′2y 〉 〈u′2z 〉 U DR[%] f f̃ −τR −τP νe µe

0.1 4.01 3.21 3.56 3.57 0 0.16 0.1 2.0 0 0.57 0
1 4.01 3.1 3.74 3.64 3.8 0.15 0.1 2.0 0 0.55 0
2 3.78 2.72 3.32 3.61 2.2 0.15 0.12 1.97 0.06 0.55 0.02
4 4.16 2.11 2.27 4.04 28.1 0.12 0.16 1.80 0.22 0.45 0.05
5 4.25 1.81 1.98 4.25 29.4 0.11 0.19 1.72 0.3 0.40 0.07
10 5.89 1.41 1.36 5.31 54.8 0.07 0.21 1.5 0.54 0.28 0.10
∞ 8.81 0.78 0.80 8.66 83 0.03 0.26 0.69 1.29 0.08 0.15

Table 1: Results from the integration of Eqs. (4) and (5) at Sc = 100 and
F = 2. The columns are: the polymer relaxation time τ , the velocity variance
in the three directions, the centerline mean velocity U , the drag reduction DR,
the friction factor f , the ratio between energy input and velocity fluctuations
f̃ = (FU/2)/u3

rms, the peak Reynolds stress τR = −〈uxuz〉, the peak polymer
stress τP = 2ηντ−1〈RxRz〉, the eddy viscosity defined by τR = νe∂z〈ux〉, and
the effective polymer viscosity defined by τP = µe∂z〈ux〉.
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Abstract

Résumé

Cette thèse regroupe des travaux numériques et théoriques s’inscrivant dans le cadre général de la
dynamique des polymères en écoulement. La première partie est dédiée à l’étude de la dynamique
de molécules isolées dans des écoulements, situation d’intérêt pour la rhéologie et la biophysique.
Le mouvement individuel d’une molécule a été analysé en détail grâce à des méthodes stochastiques
et à de nouveaux algorithmes numériques. Ces études ont permis d’obtenir les distributions de
probabilité de l’élongation et de l’orientation des molécules et de caractériser les temps dynamiques
du système dans des écoulements laminaires et aléatoires.
La deuxième partie de la thèse porte sur les solutions diluées de polymères, qui jouent un rôle essentiel
dans les applications industrielles et pour l’étude de la dynamique des fluides complexes en général.
La stabilité de l’écoulement de Kolmogorov viscoélastique a été étudiée à l’aide d’une approche
perturbative multi-échelles. On a ainsi montré que les polymères peuvent stabiliser l’écoulement
mais aussi générer des instabilités purement élastiques. L’état turbulent correspondant a été analysé
par des simulations numériques, qui mettent en évidence les différences entre les cas viscoélastique
et newtonien.

Sinossi

Questa tesi contiene uno studio teorico e numerico della dinamica di polimeri in flussi. La prima
parte è dedicata allo studio del moto di un singolo polimero in flussi esterni, argomento di interesse
nella caratterizzazione delle proprietà meccaniche di biomolecole e in reologia. Il moto di una singola
molecola e le quantità statistiche relative sono state analizzate in dettaglio grazie a metodi stocastici
e a nuovi algoritmi numerici. Tali strumenti permettono di accedere alla distribuzione di probabilità
della lunghezza e dell’orientamento della molecola e di studiare i tempi dinamici del problema in
flussi laminari e aleatori.
Nella seconda parte della tesi affronterò il problema della dinamica di soluzioni diluite di polimeri,
tematica di grande interesse per le sue applicazioni industriali nonché nello studio della meccanica di
fluidi complessi in generale. Ho studiato la stabilità del flusso di Kolmogorov di una soluzione poli-
merica con metodi perturbativi a scale mutiple. La presenza di polimeri può aumentare la stabilità,
ma può dare anche luogo a instabilità di tipo puramente elastico. Ho analizzato il corrispondente
regime turbolento per mezzo di simulazioni numeriche, che mettono in evidenza come tale stato sia
differente dal caso newtoniano.

Abstract

This thesis encompasses numerical and theoretical work within the general framework of polymers
in fluid flows. The first part concerns the study of single polymer dynamics and statistics, a subject
of interest in the research on mechanical properties of biomolecules and in rheology. By means of
stochastic methods and of new numerical algorithms the motion of a single molecule in an external
flow has been analyzed in detail, and its statistics has been studied. In particular the probability dis-
tribution functions of extension and orientation of the molecule, as well as the dynamical timescales
of the system, can be derived both in laminar and random flows.
The second part of the thesis refers to the dynamics of dilute polymer solutions which appears in
technological and industrial applications as well as in complex fluid dynamics. The stability prop-
erties of a polymer solution in a Kolmogorov flow have been inferred by means of multiple-scale
perturbation techniques. The presence of polymers results in a stabilization of the flow, but can also
generate purely elastic instabilities. The correponding turbulent dynamics is analyzed via direct
numerical simulations, and the viscoelastic and the Newtonian cases are compared.
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