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UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR SCIENCES

Ecole Doctorale “Sciences fondamentales et appliquées”

e
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Abstract

Résumé

Cette thèse porte sur les propriétés statistiques de systèmes hors équilibre. La première
partie est dédiée à l’étude de la diffusion vers une côte rocheuse. L’invariance d’échelle, déjà
observée pour ce type de côte, est généralisée à l’invariance conforme. Cela permet d’étudier
le problème de diffusion en utilisant des résultats de l’analyse harmonique pour le potentiel
près d’une ligne invariante conforme. On montre l’intermittence spatiale du flux de polluant
qui diffuse vers la ligne de côte.
La deuxième partie porte sur le scalaire passif qui décrit les problèmes de transport réèl
comme la dispersion d’un colorant ou de la température en conditions appropriées. La
structure de grande échelle du champ ne suit pas la prédiction d’équilibre thermique. Cela
est lié à la présence de corrélations de long rayon, et d’une longue mémoire des conditions
initiales due au transport turbulent.
La troisième partie est dédiée à la condensation de gouttes dans des écoulement humides
turbulents. L’étude de ce problème est d’un grand intérêt pour la compréhension de la
formation rapide de la pluie dans les nuages chauds. Il est également d’intérêt pour des
problémes technologiques, comme l’optimisation de moteurs à injection directe. Le transport
turbulent joue un rôle important de part le fait qu’il engendre de grandes fluctuations des
conditions du milieu où les gouttes grandissent. Les théories de champ moyen ne peuvent
pas décrire les effets dûs aux corrélations entre les gouttes et le champ de vapeur.

Sintesi

Questo lavoro di tesi tratta le proprietà statistiche di alcuni sistemi fuori dall’equilibrio.
La prima parte è dedicata al problema della diffusione verso coste rocciose. L’invarianza
di scala, precedentemente osservata per questo tipo di costa, viene generalizzata a invari-
anza conforme. Questo consente di studiare il problema della diffusione utilizzando risultati
dell’analisi armonica per il potenziale in prossimità di una curva invariante conforme. Si
mostra intermittenza spaziale del flusso di inquinante che diffonde verso la linea di costa.
La seconda parte è dedicata allo scalare passivo, che descrive problemi reali di trasporto
come la dispersione di un colorante o la temperatura in condizioni opportune. La struttura
di grande scala di un campo scalare trasportato da un flusso turbolento devia dall’equilibrio
termico. La causa per questa aspettativa disattesa risiede in correlazioni a lungo raggio e
fenomeni di memoria delle condizioni iniziali.



ii ABSTRACT

La terza parte tratta il problema della condensazione e evaporazione di microgocce in am-
bienti turbolenti umidi. Il tema è di interesse per la comprensione dell’efficace processo
di formazione della pioggia nelle nuvole calde. È inoltre importante per la corretta pro-
gettazione dei motori a iniezione diretta. Il trasporto turbolento gioca un ruolo essenziale
poiché fornisce un ambiente altamente variabile per la crescita delle gocce. A causa della
presenza di correlazioni fra le gocce e il campo di vapore teorie di campo medio risultano
inadeguate a cogliere aspetti rilevanti del problema.

Abstract

The broad subject of this thesis is the statistical physics of non-equilibrium systems. The
first part is dedicated to the problem of diffusion over rocky shorelines. It turns out that the
observed fractality of a consistent portion of the world coastline can be promoted to con-
formal invariance. This allows to investigate the problem of diffusion toward the coastline
using results of harmonic analysis for the potential in the vicinity of a conformal invariant
curve. The flux of a pollutant diffusing toward the shoreline is shown to display spatial
intermittency.
The second part is dedicated to passive scalar transport, which describes real problems like
the dispersion of dilute dyes or temperature under appropriate conditions. Thermal equilib-
rium expectations for the large-scale passive scalar structure are violated. The breakdown
of Gibbs equilibrium is traced back to long-range correlations and long-lasting memories of
the initial conditions, due to the underlying turbulent velocity field.
The third part is dedicated to the problem of condensation/evaporation of microdroplets
in turbulent moist environment. This general issue is relevant for the understanding of
rain-initiation efficiency in warm clouds and for technological issues like the optimization of
spark-ignition engines. Turbulent transport is found to play a crucial role in that it provides
strong fluctuations for droplet growth. Due to correlations between droplets and vapor field,
mean-field type arguments are found to be inadequate to capture relevant aspects of the
problem.
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Introduction

The broad subject of this thesis is the statistical physics of non-equilibrium systems. I
began my PhD work by focusing on the paradigmatic examples of systems strongly out of
equilibrium: turbulence. Instances of turbulent flows are common experience of everyday
life (e.g. coffee in a cup or smoke plumes coming out from a chimney) and span the most
diverse systems from soap films to the structure of galaxies. A detailed description of a
turbulent flow is hard to be envisioned, since it is non-reproducible and highly fluctuating
both in space and time. Again, the only appropriate language seems to be the statistical one.
In most cases, non-linear couplings dominate on viscous dissipation, so that a huge range of
spatial scales are dynamically coupled and organize themselves in complex spatial structures.
Turbulence can be sustained against dissipation only by an external energy pumping and
is otherwise bound to decay. Unlike for equilibrium systems, the integrals of motion are
insufficient to describe the statistics of a turbulent flow. Indeed, they cannot capture the
distinctive features of turbulence emerging from the multi-point statistics. In general, the
latter cannot be deduced from the two-point one, at least whenever the spatial structure
of a turbulent flow is not self-similar. In the latter case, scale invariance is broken in that
strong fluctuations become more probable as the scales become smaller.

The deep differences between turbulence and equilibrium are actually straightforward.
However there is an aesthetically appealing analogy between the role of the conservation
laws in the two phenomena. From a Lagrangian point of view, one can characterize the
multi-point statistics of a turbulent field by focusing on the multi-particle evolution in the
flow. It turns out that the symmetry breaking in turbulence origins from functions of the
inter particle distance that are statistically preserved as the particles evolve in the flow.
These functions have been rigorously demonstrated to be responsible for intermittency and
anomalous scaling of scalar turbulence, as recognized almost simultaneously by different
research groups [2, 5, 12] following a stochastic model proposed by R. H. Kraichnan [6]. In
this context the statistical integrals of motion could be analytically obtained as zero-modes
of closed partial differential operators.

The concepts of intermittency and the breakdown of scale invariance gathered from
turbulence, versus thermal equilibrium and mean field approach are the leitmotifs of my
work. The whole thesis focuses on phenomena out of equilibrium. The main concern is
to find out whether equilibrium and non-equilibrium features come out consistently with
the expectations. Thermal equilibrium is supposed to be restored for scalar turbulence at
large scales. Intermittency is not an immediate property of scale-invariant systems. Particles
interacting with fields advected by turbulent flows, might be expected to qualitatively match
mean field type predictions. In this thesis I will show systems where these quite reasonable
expectations turn out to be wrong. The large-scale structure of passive scalar turbulence
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deviates from Gibbs equilibrium. The flux of a scalar concentration diffusing toward self-
similar coasts displays spatial intermittency. Condensing droplets in a turbulent environment
are segregated in moist regions. Their history is strongly determined by correlations between
fields and particles.

I present the works in inverse chronological order, starting from the most recent ones.
The thesis is divided in three parts that can be read as a progressive addition of ingredients.
I start with diffusion of a scalar concentration toward rocky coasts in part I. In part II, with
the inclusion of advection, I treat the large-scale structure of passive scalar turbulence. Then
I add particles, interacting with the passive scalar field and present condensation in turbulent
flows in Part III.

Part I: Diffusion toward rocky coastlines

(a) (b) (c)

Figure 1: (a) Image from the sink of the Prestige tanker on 13th November 2002 off the Galician coast.
The oil spill, estimated in roughly 64, 000 tons, polluted thousands of kilometers of the Spanish, Portuguese
and French coasts. (b) Image of the west coast of Britain, the paradigmatic example of fractal shoreline. (c)
Flux of pollutant over the shoreline shown in (b), resulting from the study of diffusion toward rockycoasts,
presented in Part I. The spatially intermittent flux of pollutant is indicated by the different colors.

In the first part of the thesis I present a theoretical treatment of the problem of pollutant
diffusion toward rocky shorelines. Diffusion is a key ingredient of pollutant dispersion whose
paramount importance immediately emerges when listing data of oil spill from tanker sinks
(see figure 1(a)).
Since the first conjectures of Richardson and the successive work of Mandelbrot [7], a con-
sistent portion of the world shoreline has been observed to be fractal. This means that there
is no statistical difference among subsequent magnified views of the coastline. Fractality
is a very common property of physical curves. The cauliflower, the structure of fern and
other leaves, the branches of a bolt of lightning are all examples of fractals. Mathematically
a fractal is a scale-invariant object, i.e. an object whose properties do not change under
contractions or dilatations.
In a recent work [11], a stochastic model for the erosion of rocky coasts by wave quarrying
has been proposed. Starting from a flat line, the dynamics of erosion build step by step
an increasingly complex coastline. The self-stabilization of the dynamics results in a fractal
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stationary state. The simple model proposed for rocky coasts erosion strongly reminds of
percolation, a well-known statistical model that applies to the flow of a fluid through a
porous material, such as honey seeping through beeswax.
The observed fractal structure of rocky coasts, along with the percolation-like simple model
mentioned above, call for conformal invariance, an interesting upgrade of scale invariance. A
conformal invariant object does not change its properties under any angle-preserving (con-
formal) transformation. Conformal transformations have been widely used in cartography
since Mercator’s 16-th century map. While conformality turns out to be a strong constraint
when the space dimension d is higher or equal to 3, something special happens for d = 2:
the group of two-dimensional conformal transformations is infinite dimensional. Therefore
a conformal invariant object in two dimensions enjoys a rich degree of symmetry. In turn,
conformal field theories in two dimensions turn out to be extremely powerful in producing
analytical results.

The work I performed in this framework is divided in two steps. The first one is the numerical
proof that rocky shorelines are not only mere fractals but can be promoted to conformal
invariant curves. To prove that I first analyzed the real world coastline by means of high
resolution satellite data. I selected the portions of the coasts good candidates for conformal
invariance that are the rocky coasts, characterized by fractal dimension D = 4/3 (like the
one shown in figure 1(b)). I analyzed the statistics of these curves and proved that this is
consistent with the results holding for conformal invariant curves [3]. To further sustain this
idea I analyzed the artificial shorelines obtained by simulating the stochastic model men-
tioned above. The results confirm consistency with conformal invariance.
As a second step I could apply to rocky coasts the results of harmonic analysis for the
potential in the vicinity of a conformal invariant line. Indeed, the electrostatic potential
generated by a conductor with the shape of the rocky coast is formally equivalent to a scalar
concentration (e.g. a pollutant) diffusing toward the coast. The results of this analysis show
that in the vicinity of the rocky coast, the flux of pollutant is spatially intermittent, as shown
in figure 1(c), a property already observed for real pollutant dispersion in [9]. Intermittency
is here quite surprising, since it results from diffusion and self-similarity, two ingredients that
would not call for intermittency at first sight.

Part II: large-scale structure of passive scalar transport

The second part of the thesis is devoted to the problem of the passive scalar at large scales.
It is of general physical interest to study the large scale properties of a field generated at
much smaller scales. For instance, the properties of the actual universe have originated
during a fast event, concerning a tiny volume and have then propagated in time and space
(see figure 2(a)). The large scale properties of the propagation of seismic signals have been
traced back to the microscopic structure of crystals in mantle rocks.
A passive scalar is a quantity that is transported by the flow but does not back react on
it. This scheme can be used to describe real scalar transport in the case where the back
reaction of the scalar on the velocity field is negligible. Examples of passive scalars are dilute
dyes, pollutants (see figure 2(b)) or temperature in the case where buoyancy is negligible.
Scalar structures are bound to decay in the absence of any external source of fluctuations.
If an external pumping is considered, at scales smaller than the injection lenghtscale, a flux
of scalar fluctuations develops. The presence of the flux indicates that these spatial scales
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(a) (b) (c)

Figure 2: (a) Large scale anisotropy of the cosmic microwave background radiation is supposed to trace
back to the origin of the universe. (b) Instance of real scalar turbulence. (c) Scalar snapshot obtained by
the direct numerical simulations described in part II, chapter 2. Notice the elongated structure, preferentially
aligned in the vertical direction.

cannot be in equilibrium. In this range of scales the passive scalar phenomenology strongly
resembles that of hydrodynamic turbulence, hence the meaning of the expression “scalar
turbulence”. On the contrary, thermal equilibrium is expected at scales larger than the
injection scale, where no upscale flux is present. Surprisingly enough, this is not the general
case, as I will show in part II.

Part II is devoted to describe two sets of results obtained for the large-scale structure
of passive scalar turbulence. In the isotropic case, the violation of equilibrium occurs at
the level of the multipoint statistics. This has been firstly obtained in the Kraichnan model
for passive scalar advection in [4]. I generalized this result to realistic flows through direct
numerical simulations of a passive scalar advected by a two-dimensional turbulent flow in
the inverse cascade. The breakdown of Gibbs equilibrium is here related to the presence of
long-range correlations between two evolving scalar blobs within the turbulent flow.
The violation of equilibrium expectation is even more dramatic for the anisotropic case,
since it occurs already at the level of the two-point statistics. I obtained the result first
analytically in the framework of Kraichnan model. The Lagrangian interpretation of the result
suggested that the same result may hold for realistic flows as well. I performed a numerical
analysis of the problem that showed consistency with the theoretical results. From a single
scalar snapshot one can detect elongated structures much larger than the scalar injection
scale (see figure 2(c)). This means that a small degree of anisotropy introduced at small
scales propagates toward large scales where it eventually dominates the structure of the
concentration field.

Part III: turbulent transport of condensing droplets

The third part is dedicated to the theoretical problem of droplet condensation/evaporation
in a turbulent moist environment. Applications of this general issue cover the most diverse
fields from cloud physics [10] to meteorology, engineering [13] and health care [8] (see fig-
ure 3). For instance, medicines assumed by inhalation undergo dramatic size changes by
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Figure 3: Turbulent condensation/evaporation in different physical systems. From left to right: aerosol
drug (cyclosporine) deposition in the lungs; engine injector of fuel droplets; water droplets in warm clouds.

condensation/evaporation. This modifies the fraction of particles depositing on the walls of
the respiratory tract. Therefore, their correct dose assessment requires a detailed descrip-
tion of transport and size dependent deposition in human airways. Additionally, exposure
to atmospheric particulate and pollution may lead to inhalation of toxic particles. The lo-
cal pattern depositions of inhaled particles are considered crucial in the formation of lung
cancer [1]. Note that turbulence may locally develop inside human airways according to the
rhythm of breathing and this can deeply affect the process of particle change in size.
As another instance, the evaluation of evaporation in turbulent flows is crucial for engi-
neering. A correct design of spark ignition engines requires to account for turbulence [13].
Indeed this is essential to enhance the fuel-air mixing and the rate of fuel vaporization inside
the combustion chamber.
Though in a completely different framework, the same ingredients are relevant to cloud
physics as well. In particular, the rapidity of the rain initiation process still eludes a full the-
oretical understanding. In order to become raindrops, droplets must grow from 1 µm till few
mm in size. Although collisions can be a very effective growth mechanism, their initiation
requires sufficiently large and different droplets. Before the collision stage, droplets grow
by condensation. Mean field type arguments, applied to the condensational growth, lead to
a fast narrowing of the droplet size distribution. On the basis of this wrong expectation,
condensation would produce a population of almost identical droplets, that would hardly
collide and would be eventually unable to produce rain. My suggestion is that a spreading
of droplet size distribution can be ascribed to turbulence. However, due to the hard in situ
measurements, to the lack of analytical description of turbulence and to the huge number of
degrees of freedom that prevents a detailed numerical analysis, the evaluation of turbulent
effects on cloud droplet condensation has been only partial until now.

In order to evaluate the strong couplings typical of turbulent transport, I chose a nu-
merical approach. I considered a simple model of condensation accounting for small water
droplets and a vapor field advected by a turbulent flow. The vapor field is considered as a
passive scalar. Despite the simple setting, I could obtain non-trivial effects that are direct
consequences of turbulent transport. The first observation is that droplets are segregated
in moist regions. To justify this mechanism, I simply supposed that droplets dwelling in dry
regions evaporated completely, leaving dry regions void of particles. This argument implicitly
requires the presence of correlations: droplets persist for long enough time in dry regions, so
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that they disappear. I quantitatively verified the presence of correlations tracing back their
origin to the underlying velocity field. The consequence of these correlations are twofold:
(i) despite the presence of a vapor field with zero average, the population of droplets can
grow on average; (ii) droplets inside moist regions grow much faster than droplets inside dry
regions, thus broadening the size spectrum.
By enlightening correlations mechanisms providing a fast growth and broadening of the size
distribution I showed that mean field arguments cannot capture, here, crucial features of
condensation/evaporation in turbulent flows.
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Part I

Diffusion toward rocky coastlines





Introduction

This part of the thesis is devoted to the issue of diffusion toward rocky coasts, view as a
problem of theoretical physics. The dispersion of pollutants in the environment is an issue
of great importance for life on Earth. Pollution in the oceans has a great impact on marine
life, as demonstrated by many examples of disasters occurred all over the world. The famous
Prestige tanker began to leak large amounts of oil off the Galician coast on 13 November
2002. The spill polluted thousands of kilometers of coastline and more than one thousand
beaches on the Spanish, Portuguese and French coasts, causing great damage to the local
fishing industry. The amount of oil spill was estimated in roughly 64, 000 tons, and the
ecological and economic consequences are still far from over [6]. Newspapers were flooded
of pictures of dead birds, of fishermen trying to hold back the waves of oil with their hands,
of huge black slicks along one of Europe’s most beautiful coastlines, and of thousands of
volunteers struggling with the clean up.

(a) (b) (c)

Figure 4: (a) Images of the oil spill originating from the stricken Prestige tanker, lying 100 km off the
North-Western Spanish coast. (b) Volunteers cleaning a beach in Galicia in the aftermath of the catastrophe.
(c) Oil spills are also responsible for the death of fish and sea birds.

Diffusion is one of the mechanisms that contribute to the dispersion of pollutant and is
of crucial importance for the understanding and prediction of this problem. The well-known
equation of diffusion relates this phenomenon to apparently unconnected physical processes
like heat transfer, electrostatics and wave propagation. This long-studied equation has trivial
solutions when the domain of interest has some special geometry. However, it remains a
challenging problem when the geometry of the system becomes complex, which is definitely
the case for coastlines. The same equation in an abstract context defines a class of functions
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of special interest in complex analysis, which are called harmonic functions. The branch of
mathematics dealing with this kind of problems has developed a theory of what is called
harmonic measure of a fractal curve, providing a set of useful results for our problem.
Rocky coasts possess a special nature, whose importance has been recognized long ago,
by Mandelbrot [19], following some empirical observations by Richardson [22]. They are
fractals, i.e. each portion can be considered as a reduced-scale image of the whole. In other
words, the level of complexity of the spatial structure of the coastline is invariant under scale
transformations (corresponding to zooms of the coastlines showing more and more details).
There is a number of different examples showing how the understanding of problems in
physics can greatly benefit from the concept of symmetry. The key-idea guiding my work is
that rocky coasts might enjoy a much richer degree of symmetry than mere scale invariance
i.e. conformal invariance. Conformal invariance is the symmetry with respect to the class of
transformations that preserve angles. Since this is a strong constraint for a transformation,
typically the group of conformal transformation is finite. In two dimensions something special
happens: the angle-preserving condition reduces to the Cauchy-Riemann relations, so that
the whole class of analytic functions in the complex plane fulfills the requirement, thus
providing an infinite-dimensional group of conformal transformations. In turn, the set of
conformal invariant objects enjoys a consistently high degree of symmetry and conformal
field theories in two dimensions are extremely powerful in providing analytical results (see [4,
7, 9, 20] and references therein).
The fractal nature of rocky shorelines has been studied in a recent paper [24], where a
stochastic model for the erosion dynamics has been proposed, whose strong connection with
percolation is a further hint at conformal invariance. Indeed, in mathematics percolation
theory describes the behavior of connected clusters in a random graph, which have been
proved to be conformally invariant objects [25].
I proved that the above picture is correct: rocky shorelines display a conformally invariant
statistics. I obtained the result by analyzing real satellite data of the world coastlines and
synthetic data we obtained by direct numerical simulations of a model of erosion adapted
from [24]. The conformal invariance of rocky shorelines not only represents a theoretical
advancement, but also allows to apply the powerful theory of conformal invariant curves in
two dimensions to characterize the diffusion process toward rocky coasts.

In this part of the thesis I will first describe some background results concerning conformal
invariance (chapter 1) and diffusion to random curves (chapter 2). Diffusion and conformal
invariance are the two ingredients at the basis of the results I obtained for diffusion toward
rocky shorelines, that are presented in chapter 3. These have been collected in the paper
presented at the end of this part which is now under revision.



Chapter 1

Conformal invariant curves

One of the most common properties of natural curves is scale invariance, i.e. fractality. Frac-
tal curves like those shown in figure 1.1 are widespread in nature. Conformal invariance is
an interesting “upgrade” of scale-invariance, especially in two dimensions (2D). A conformal
map is a transformation that locally preserves angles between lines and pure scale transfor-
mations are only a subset of the whole group of conformal maps. Therefore a conformal
invariant curve enjoys a much richer degree of symmetry than a simple fractal. In particular
in 2D the group of conformal transformations is infinite dimensional and conformal invari-
ance allows for substantial analytic advancements. This is the case for many systems in
two-dimensional physics spanning from quantum gravity to string theory, statistical mechan-
ics and two-dimensional turbulence [5]. In this chapter I review some background concepts
related to conformal invariance. I first define the group of conformal transformations and
describe them in two dimensions. Then I introduce conformally invariant curves and briefly
sketch the contexts where they were originally considered and exhaustively characterized. I
finally show hallmarks of these curves that can disclose their conformal invariant nature.

(a) (b) (c)

Figure 1.1: Examples of natural fractal curves and surfaces: (a) a cauliflower (b) a bolt of lightening (c)
frost on the branches of a tree.
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1.1 Conformal mappings

Let D be a generic manifold and let f be a mapping from D to another manifold D′. The
transformation f is a conformal mapping if it locally preserves relative angles between vectors
in the tangent space. Note that this is a useful concept in a well-known ancient application
like cartography. A map projection faithfully reproducing all features of the globe would
have the property that distances between every two points would keep the same ratio on
both map and sphere. Therefore, all shapes would also be preserved. On a flat map this
property is simply not possible (as proved by points at the map’s edges). For many mapping
applications - like navigation, where it is more important to aim in the right direction than
to know the exact distance left - a lesser constraint may be required. Namely, the angle
between any two lines on the sphere may be required to be the same as the angle between
their projected counterparts on the map. Such map would be a conformal map. If we ask for
a conformal map, we cannot put any other constraint on the surfaces. Therefore in different
conformal projections of the globe continents possess different surfaces (compare e.g. the
surface of Greenland and Africa in figure 1.2)

(a) (b) (c)

Figure 1.2: Examples of conformal projections of the globe into a planar map. (a) Mercator map - 1569
(b)“Lagrange” projection, due to Lambert - 1772; (c) Oblique Guyou map - 1925.

For our purposes it is sufficient to imagine D and D′ as subsets of a d-dimensional
Euclidean space with metric tensor gµν . Let f be an infinitesimal transformation defined in
coordinates by:

xµ → x′µ = xµ − αµ(x) (1.1)

Here we shall always assume that (1.1) is sufficiently differentiable and that the determinant
does not vanish so that, at least locally, the mapping is one to one. Under these assumptions
we can use the xµ as coordinates in D′ also, corresponding points on the two manifolds will
thus have the same coordinates. We define the matrix of derivatives Jµ

ν = ∂αµ/∂xν . Its
components Jµν can be written as a sum of three terms:

• a diagonal part
1
d
Jλ

λgµν which corresponds to a dilatation or to a contraction;

• an antisymmetric part
1
2
(Jµν − Jνµ) corresponding to a local rotation;
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• a traceless symmetric part
1
2
(Jµν + Jνµ −

2
d

Jλ
λgµν).

The last part may be thought of as the components of a local shear and therefore this must
vanish in order to preserve the angles. From this argument, we conclude that, in order for f
to be a conformal map, it should satisfy the condition:

∂αµ

∂xν
+

∂αν

∂xµ
− 2

d

∂αλ

∂xλ
gµν = 0. (1.2)

A mapping by equal coordinates between two Riemannian spaces can also be given another
interpretation: the inverse mapping from D′ to D can be used to produce a second metric
g′µν in D. In this way we can consider, instead of a mapping between two spaces, a single
manifold with coordinates xµ, equipped with two alternative metrics g and g′. In this
framework, it is easy to show that, in order for a given f to preserve angles between vectors,
the metric tensor should transform under f as:

g′µν(x) = Ω(x)gµν(x). (1.3)

Since Ω(x) is a (positive) scalar quantity, although the transformation changes the vectors’
length, it does not change the relative angles. Indeed the angle θ between vectors u and v
is defined by

cos θ =
gµνuµvν

√
|gµνuµuν ||gµνvµvν |

The same angle, measured with the alternative metrics g′ is simply:

cos θ′ =
g′µνu

µvν

√
|g′µνu

µuν ||g′µνv
µvν |

=
Ω(x)gµνuµvν

√
|Ω(x)gµνuµuν ||Ω(x)gµνvµvν |

= cos θ (1.4)

Therefore, if f satisfies equation (1.3), then it is a conformal map. It is easy to show that
when the metric tensor transforms as in (1.3), we have:

∂x′µ

∂xγ

∂x′ν

∂xλ
= Ω(x)−1δµ

γ δν
λ (1.5)

Note that, after saturation of index µ with index γ and index ν with index λ, equation (1.5)
tells us how Ω depends on the transformation:

Ω−1 =
(

∂x′µ

∂xµ

)2 1
d2

⇒ Ω ≈ (1− 2
d

∂αµ

∂xµ
) for infinitesimal αµ given by (1.1). (1.6)

By focusing on an infinitesimal transformation, it is easy to show that (1.3) is equivalent to
the no-shear condition (1.2). Indeed given the map (1.1) and considering αµ infinitesimally
small, we can explicitly write the increment of the metric tensor:

g′µν =
∂xγ

∂x′µ
∂xλ

∂x′ν
gγλ = (δγ

µ−
∂αγ

∂x′µ
)(δλ

ν −
∂αλ

∂x′ν
)gγλ = gµν − (

∂αγ

∂x′µ
δλ
ν + δγ

µ
∂αλ

∂x′ν
)gγλ +O(α2).
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Hence the increment of the metric tensor is:

δgµν = g′µν − gµν = −(
∂αν

∂x′µ
+

∂αµ

∂x′ν
) = −2

d

∂αλ

∂xλ
gµν

where in the last passage we have used the condition (1.3) with the expression (1.6) for the
constant Ω in the limit of infinitesimal transformation. This equation is exactly the no-shear
condition (1.2).

By direct calculation, it is easy to show that solutions of equation (1.2) are:

- translations: αµ constant

- rotations: αµ = ωµνxν , with ω antisymmetric

- scale transformations: αµ = Λxµ

- special transformations: αµ = xµ/(gγλxγxλ)

One can show that these are generators of a finite-dimensional group if d > 2. Indeed,
conditions (1.2) are very restrictive in high dimensions. This is not the case for d = 2,
where a special simplification of conditions (1.2) occurs. By writing explicitly the d × d
conditions (1.2) for d = 2, we note that there are only two independent pieces of information,
one for µ = ν and one for µ &= ν:

∂α1

∂x1
=

∂α2

∂x2
(1.7)

∂α1

∂x2
= −∂α2

∂x1
(1.8)

If we define a complex function f(z) = α1(x+ iy)+ iα2(x+ iy), relations (1.7)-(1.8) corre-
spond to the Cauchy-Riemann equations. Therefore every analytic function in the complex
plane represents a conformal mapping in 2D. Hence the peculiar character of conformal
invariance in two dimensions.

1.2 Conformally invariant random curves

A conformally invariant curve is defined as a curve whose measure does not vary after a
conformal transformation. More precisely, let γ be a curve in a subset D of '2 and γ′ the
image of γ under a conformal map f . Let µ be a measure on '2 with restrictions µD and
µD′ in D and D′ respectively. The transformation f induces a measure of curves in D′ -
the image measure, denoted by f ∗ µD, and defined by (f ∗ µD)(γ′) = µD(γ = f−1(γ′)). γ
is a conformally invariant curve if the image measure of γ′ is exactly the measure of γ′:

(f ∗ µD)(γ′) = µD′(γ′) (1.9)

Note that this definition of conformal invariance applies also to random curves, given that
a measure µ exists. Note that in two dimensions a non-intersecting curve is the bound-
ary between two domains and can be interpreted as an interface separating two coexisting
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phases of a physical system. Prominent examples of conformally invariant random curves
are widespread in statistical mechanics of 2D critical systems. We present here a brief de-
scription of critical phenomena in order to give an idea of a context where all these ideas
can be applied to physical systems.

Critical phenomena occur in statistical systems undergoing higher order phase transi-
tions, e.g. Ising spins, Potts or O(n) models or percolation. Typically one can deal with the
problem at hand by dividing the volume of interest in boxes and defining on this discrete
lattice all the physical observables (e.g. the spin for the Ising model). The dynamics of the
system creates clusters of sites characterized by a certain value of some defined observable.
For instance, for the Ising model, clusters are characterized by spin up or spin down. When
the system attains its critical point, the correlation length on the lattice tends to diverge and
there is a non-zero probability that a single cluster can extend from one side of the volume
to the opposite side (see. e.g. [7]). The physical observables in this regime typically display
a power-law behavior with respect to some parameter measuring the “distance” from the
critical point. One of the most intriguing facts is that the scaling exponents of these power
laws enjoy a universal character, whose motivation and quantitative description has been
object of intense research.Indeed, in spite of their seemingly unrelated nature, systems with
very different constituents and microscopic interactions can exhibit the same critical behav-
ior. This provides a classification of critical phenomena in different universality classes.
When the renormalization group ideas were proposed and developed for critical phenom-
ena [29], it turned out that at criticality the microscopical details of the specific dynamics
on the lattice may become irrelevant from a macroscopic point of view. In this framework
classical critical systems were put in relation with quantum field theories and these ideas
opened the doors of a substantial unification of the theoretical basis of statistical mechan-
ics and particle physics. Moreover it was observed that when the lattice spacing tends to
zero - i.e. in the scaling limit - since the dynamics is not restricted to a lattice, critical
phenomena may enjoy a higher degree of symmetry. In particular at criticality, due to the
divergence of the correlation length, scale invariance may be promoted to conformal symme-
try. This conjecture was rigorously proven for the scaling limit of some critical phenomena
(e.g. for percolation in [26]). In this case one can apply a corresponding conformal field
theory (CFT) [4] that turns out to be extremely powerful in two dimensions (see [4,7,9,20]
and references therein). In particular 2D CFTs are characterized by a single real parameter
- the central charge - that provides a natural label for the different classes of universality of
critical behavior.

The application of CFT to critical phenomena produced an enormous amount of exact
results for the properties of conformally invariant critical clusters (see, e.g. [4, 7, 9, 20]).
However, the universal properties of critical systems reflect also on the geometry of the
interfaces between different clusters and this aspect of conformal symmetry is not apparent
from the viewpoint of CFT. Recently, an alternative approach to conformal invariant systems
was developed [25], whose focus is exactly on the random curves which form the boundaries
of clusters on the lattice (see a schematic of percolation in figure 1.3 for instance). From
this viewpoint, the question is what should be the properties of the measure on such curves
in the continuum limit. It was shown by Löwner [18] in the 1920s that any conformally
invariant curve, conditioned to start at the boundary of the domain and not to cross itself,
can be described by a dynamical process called Löwner evolution. This process turns out to
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Figure 1.3: Sketch of percolation on hexagonal lattice. The focus of SLE is on the boundaries between
dark and light clusters, like the one marked in red.

be completely determined by a real continuous function at. For random curves, at itself is
a random process. Schramm showed that for random curves satisfying a further Markovian
condition, if the measure on the curve is conformally invariant in the sense defined by (1.9),
then at is a one-dimensional Brownian motion, whose diffusion constant k remains as the
only parameter left undetermined, as we shall describe in section 1.3. This extension of the
Löwner evolution is known as stochastic-Löwner-evolution (SLE) and the curves defined by
this process appear to be1 essentially the only possible candidates for the scaling limits of
interfaces of two-dimensional critical systems (see e.g. [23] for a review). There is a one-
parameter family of SLEs, indexed by the positive real number k, that provides a natural
classification of the different universality classes of critical phenomena. This yields a con-
nection between the central charge of CFT and the diffusion constant of SLE, which is only
one aspect of the intimate relation between these two theories [1, 2].
In the context of critical phenomena, the curves γ and γ′ of equation (1.9) are therefore the
continuum limit of the random boundaries of clusters on a lattice. Different realizations of
the equilibrium state of the system provide an ensemble of realizations of the curves, thus a
probability concept for the discrete curves. The measure µ is derived from this same concept
in the limit of vanishing lattice spacing. In this context, the meaning of conformally invariant
curves (1.9) can be paraphrased as follows: the continuum limit γ of a random boundary is
conformally invariant if its measure does not change when we perform the scaling limit on
one lattice or on any of the conformal images of that lattice. In order to establish whether
a curve is conformally invariant in the sense defined by (1.9), one can greatly benefit from
SLE. In particular SLE gives useful information on the statistics of the winding angle, as
described in the next section.

1This statement was proved for some models of critical phenomena. For instance, it was proved in [26] that
the continuum limit of 2D critical percolation interfaces - whose conformal invariance was first conjectured
by Schramm [25] - are indeed SLE6. The scaling limit of loop-erased random walks have been proven to be
SLE2 in [17], where they also prove that SLE8 describes the boundaries of uniform spanning trees.



1.3 Stochastic-Löwner evolution 19

1.3 Stochastic-Löwner evolution

In the following we will focus on the main ideas of SLE without dwelling on the detailed
mathematical proofs that can be found either in the original paper by O. Schramm [25] or in
recent reviews with a more physical (e.g. [3,8,12]) or mathematical (e.g. [14,27]) viewpoint.

SLE describes conformally invariant curves in the sense defined by (1.9), with a further
Markovian property:

Property. Denoting by γ a curve from r1 to r2, and dividing it in two disjoint parts γ1 from
r1 to τ and γ2 from τ to r2, the conditional measures on γ1 and γ2 satisfy: µD(γ2|γ1) =
µD\γ1

(γ2).

If the measure on γ satisfies both Markov property and conformal invariance then we can
define a process through which γ can be mapped into a Brownian walk. Because of conformal
invariance it suffices to describe this in a standard domain, e.g. the upper half plane H.

1.3.1 Löwner’s equation

Let us consider a curve γ ⊂ D connecting two points r1 and r2 on the boundary ∂D. The
conformal image of this curve in the upper half plane will connect a point r1 on the real
axis with the point at infinity. Let us consider the parametric description of the curve and
let us indicate with γ(t) ⊂ H the portion of the curve that is defined by the values of the
parameter from 0 until t. We indicate with τt the tip of the curve γt. When t → ∞, the
tip tends to the point at infinity. We do not assume the simplicity of γ, so in general it can
touch itself as in figure 1.4 but still we assume that it cannot cross itself2. The hull of γ is
defined as the set of points that cannot be reached from infinity without hitting the curve
plus the curve itself (see 1.4 for a schematic representation).

Hγ
t

τ t
t γK t

Figure 1.4: Schematic of a curve γ touching itself in the upper half plane H. The hull of the curve minus
the curve itself is colored.

The upper half plane minus the hull of γ is an open, simply connected domain and can
therefore be mapped onto the upper half plane itself by Riemann theorem. The map is
unique upon imposing the following behavior as z →∞:

2For critical phenomena this comes from the fact that it represents the continuum limit of an interface,
so the minimum distance between two points on the curve is the space lattice. When we take the continuum
limit, the curve can touch itself, but still cannot cross itself.
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gt(z) ∼ z +
2t

z
+ O

(
1
z2

)
.

The function gt(z) maps the whole boundary of Kt onto the real axis, thus in particular the
tip τt is mapped onto a real number at. Löwner’s idea was to describe the curve γt and its
tip in terms of the conformal mapping gt(z), whose evolution is described by the Löwner
equation:

dgt(z)
dt

=
2

gt(z)− at
. (1.10)

The proof of this equation directly comes by building the conformal map gt as the compo-
sition of a series of infinitesimal conformal maps that grow infinitesimally small slices of the
curve. From equation (1.10) it turns out that the map gt is fully characterized by the driving
function at.

1.3.2 Stochastic-Löwner evolution

When γ is a stochastic curve, the tip τt is mapped onto a random variable at. The remarkable
result obtained by Schramm in [25] is that, if conformal invariance and Markov property
hold, the increments of at must be independent and identically distributed, i.e. at must be
a Brownian motion

at =
√

kBt

The locality in time of the Brownian motion translates into the local scale invariance of SLE
curves, namely conformal invariance. Therefore the variance of at is given by 〈(at1−at2)2〉 =
k|t1 − t2|. Given a growing path, one can in principle determine the hull Kt and the map
gt(z). Then one can find the image of the tip at and observe its probability distribution
and its variance. A discretized version of the map gt(z) can be computed numerically, thus
giving an algorithm to state whether a curve is conformally invariant or not.

There are variants of the chordal SLE described above, that apply to different situations.
Until now we have characterized curves γ connecting two points of the boundary of a simply
connected domain (a point of the real axis and the point at ∞ on the upper half plane H).
One can also consider a curve connecting a point r1 on the boundary of the domain to a
given internal point r2. In this case the most convenient standard domain where we can
describe the growing process is a unit disk U, where r1 is a point on the boundary of the
disk and we can take r2 to be the origin. By Riemann mapping theorem we can now map
U\Kt into the unit disk itself (Kt being the hull). In this case, the growing tip of the curve
is mapped onto a point of the unit circle and we can impose gt(0) = 0 and a normalization
such that:

dgt(z)
dt

= −gt(z)
gt(z) + eiat

gt(z)− eiat
,

which defines a precise parameterization t of what is called radial SLE. It can be argued, as
before, that given conformal invariance and Markov property at must be proportional to the
standard Brownian motion. One property of radial SLE, that is not present in chordal SLE,
is that the path can wind around the origin, as defined in the following.
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1.3.3 Winding angle statistics

The winding angle Θ(t) around the origin, starting from point r1, is defined as Θ(t) =
arg(τt) − arg(τ0). It turns out (see [25]) that, in the limit of large t, | log |τt|| → t, and
Θ(t)/

√
kt tends to a Gaussian with unit variance. Putting together the two informations we

have that the variance of the winding angle is:

〈Θ2〉 ∼ kt ∼ k| log Rt|.

where Rt = |τt|. Going back to the original domain D, the winding angle is now Θ =
arg(r1) − arg(x) (see [11]), where now r1 is not forcely a point of the unit circle and
x ∈ γ. One can also define a winding angle around an internal point xw ∈ γ simply by:
Θ = arg(xw)−arg(x), as schematically represented in figure 1.5. It has been proved in [28]
that the winding angle around a point xw ∈ γ where m strands of the curve come together3,
is again normally distributed, with variance:

〈Θ2〉 =
k

m2
log R (1.11)

where R is the euclidean distance between xw and x. Equation (1.11) and the Gaussianity
of the winding angle are properties of γ that can be useful to prove its conformal invariance.
Note that the relation between the linear distance R and the length of the curve L between
xw and x is L ∼ RD, where D is the fractal dimension of the curve γ. Also note that the
winding angle is defined up to an additive constant which is determined by the orientation
of the coordinate system and does not affect the variance of the winding angle.

r

xw

1θ(R,  )x=

D

r2
γ

Figure 1.5: Schematic of the winding angle around a generic point xw of the curve γ.

3For m = 1 we have that xw is a boundary point of the curve, for m = 2 it is a simple point, for m > 2
it is a point where the curve touches itself.
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Chapter 2

Diffusion toward random boundaries

The problem of diffusion to a fractal curve has been long studied, yet it still poses great
challenges in mathematical physics. This mechanism is at the basis of diffusion-limited
aggregation (DLA) where particles undergoing a random walk due to Brownian motion
cluster together to form aggregates. DLA clusters are a pervasive feature of the living as
well as the non-living world. Examples of spatial structures observed in DLA growing clusters
are shown in Figure 2.1.
The problem of diffusion in the stationary state can be mathematically formulated as a
Laplace partial differential equation with Dirichlet boundary conditions. The solution is the
concentration field undergoing diffusion over the fractal line, but can be equivalently reread
as the electrostatic potential generated by a charged conductor with the same fractal curve
as boundary. The self-similar structure of the curve is reflected in a multifractal behavior of
the potential near the curve. In the context of DLA the potential actually determines the
growth process and its scaling properties are intimately related to those of the cluster itself.
For the case where the fractal curve is conformally invariant in two dimensions, conformal
field theory provides helpful tools to investigate the structure of diffusion in the vicinity of
the curve. In this chapter I first pose the problem and establish the connection between
electrostatics and diffusion, then I describe the background results for the diffusing field and
its flux obtained in the context of CFT.

2.1 Diffusion and electrostatics

The problem of diffusion of the concentration ρ (for instance a pollutant diffusing toward
coastlines) is governed by the well-known diffusion equation:

∂tρ = k∆ρ + f (2.1)

where k is the diffusion constant and f is the source/sink of pollutant. We now wish to
study the problem in two dimensions, with a constant source of pollutant f = f0δ(R−R0)
at a very large distance R0 from a region C, delimited by a fractal boundary ∂C, where
we consider absorbing boundary conditions. The stationary state is reached when the flux
coming from the source is entirely absorbed on ∂C. In this case equation (2.1) reduces to:
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(a) (b) (c) (d)

Figure 2.1: (a) High-voltage dielectric breakdown within a block of plexiglas. (b) Pattern formed by bacteria
grown in a Petri dish. (c) Copper aggregate formed from a copper sulfate solution in an electrodeposition
cell. (d) Snowflake.

∆ρ = − φ0

2πR0
δ(R−R0) (2.2)

where φ0 = 2πR0f0/k is the flux coming from the source1. Equation (2.2) can then be
translated into an equivalent Laplace equation with Neumann boundary conditions at R0

and Dirichlet boundary conditions on the cluster:

∆ρ = 0 for z ∈ B(R0) \ C (2.3)

∂rρ|R0 =
φ0

2πR0
for z ∈ ∂B(R0) (2.4)

ρ = 0 for z ∈ ∂C (2.5)

where B(R0) is a circle with radius R0 and ∂B(R0) is its boundary i.e. the circumference
with radius R0. We will focus on the field ρ in the vicinity of C, i.e. at a distance R from
∂C such that R 0 R0.
As mentioned above, equations (2.3)-(2.5) are equivalent to the electrostatic problem of
finding the potential generated by a perfect conductor with surface C, where in this case φ0

has the meaning of the total charge of the conductor C. Indeed, the electrostatic potential
H, by Maxwell equations, satisfies the Laplace equation in every point out of C, where no
electric charge is present. The electric field E = ∇H in the circumference of radius R0 is
φ0/(2πR0) by Gauss theorem. Finally the condition at the boundary of the conductor gives
a constant potential, that can be chosed to vanish yielding the problem (2.3)-(2.5).

1This is the total flux coming from infinity, as one can easily see by simply integrating equation (2.2) over
a circle of radius R0:

R
∇ ·∇ρR dR dθ = φ0. The first member can be written by divergence theorem as an

integral over the circumference:
R 2π

0
R0dθ∂rρ. This finally provides 2πR0∂rρ|R0 = φ0: φ0 has the meaning

of the flux of pollutant emitted by the source, and entering the volume of interest from far.
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2.2 Theory of the potential for conformally invariant curves

In the context of conformal field theory, a whole class of fractal structures arise. Indeed, in
two dimensions, statistical systems at their critical point are expected to produce conformally
invariant fractal clusters whose prominent examples are the continuum limit of random
walks, critical percolation, Ising or Potts clusters, as discussed in chapter 1. Inquiries into
the stochastic geometry of these structures are relatively recent and make use of both
traditional CFT [9, 10] and SLE [15, 16]. In this framework, C represents a critical random
cluster produced by a statistical system and ∂C is its fractal boundary. Classical potential
theory of electrostatic and diffusion fields near these random fractal boundaries represents in
this context a refined way of accessing their random geometry. Indeed the self-similarity of
the latter is reflected in a multifractal spectrum of the potential. The electrostatic potential
H generated by a unit charge distributed along the boundary ∂C of a conductor occupying
the region C satisfies the Laplace equation in each point out of the cluster, and Dirichlet
boundary conditions H|∂C = 0. Let us define H with a further2 boundary condition on a
circle of radius R0 1 1: H||z−w|=R0

= 1. The concentration ρ of the diffusion problem is
therefore proportional to H

ρ = φ0H (2.6)

As is well known [13], in each point the potential is the probability that a Brownian walk
starting from that point escapes to infinity without hitting the curve ∂C. One can also
consider the harmonic measure H(w, r) which is the integral of the Laplacian of H in a disk
of radius r centered at w ∈ ∂C. In the analogy with electrostatics, the harmonic measure
corresponds to the total charge contained in the portion of ∂C delimited by the circle of
radius r centered at w ∈ ∂C (see figure 2.2(a)). The potential and the harmonic measure
in the vicinity of ∂C have the same scaling properties. With the help of the multifractal
formalism, these scaling properties in the vicinity of the cluster define a local Hölder exponent
α such that:

H(z → w ∈ ∂Cα) ≈ |z − w|α

Rα
0

(2.7)

The analysis of a simplified shape of the boundary ∂C allows for a simple geometrical
interpretation of α. Let us focus on a wedge of opening angle θ, centered in w. The complex
potential ψ(z) is defined so as to satisfy H = 2ψ and |∇H| = |ψ′(z)|. Note that ∇H
corresponds to the local flux vector for diffusion and to the electric field for electrostatics.
Inside the wedge the complex potential is ψ = (z − w)(π/θ), so that in polar coordinates as
in Figure 2.2(b):

H(r, β) = rπ/θ sin(βπ/θ) (2.8)

Comparing equation (2.8) with equation (2.7) we can conclude that the Hölder exponent α
locally defines an angle θ = π/α, and the curve ∂C can be considered as a superposition
of wedges of different openings. In this sense the study of the potential H in the vicinity of
the cluster captures the local geometrical properties of the curve ∂C.
Let f(α) be the Hausdorff dimension of the subset of ∂C characterized by Hölder exponent
α - that we indicate with ∂Cα. By assuming conformal invariance of ∂C, one can relate the

2In the limit for large R0 the solution of this problem coincides with the solution of the problem (2.3)-(2.5)
with φ0 = 1.
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Hausdorff dimension f(α) to the central charge c of the underlying conformal field theory
(or equivalently to the parameter k of the corresponding Stochastic Löwner Evolution). This
result has been first obtained in [9]:

f(α) = α + b(1− α2

2α− 1
) (2.9)

where b = (25− c)/12 and c is the central charge.
We can equivalently express b as a function of the fractal dimension D of the boundary ∂C
remembering that c = (3D − 4)(7 − 4D)/(D − 1), so that b = (2D − 1)2/[4(D − 1)]. In
this way we end up with an expression which does not appeal to the physics of the statistical
process generating the cluster, but only to the geometrical properties of the conformally
invariant random curve ∂C.

2.3 Flux over conformal invariant curves
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Figure 2.2: (a) Scheme of the meaning of symbols in equation (2.10). (b) Schematic picture of the
particular case where the curve γw,R is a wedge.

Let us now focus on the flux φr of the electric field E = ∇H over the portion of the curve
γw,r ∈ ∂C delimited by a circle of radius r 0 1, centered in w ∈ ∂C (see Figure 2.2(a)):

φr =
∫

γ(w,r)
E · dn̂ (2.10)

Note that by equation (2.6) the flux of the diffusing field ρ is proportional to φr by ∇φ =
φ0E. Let us first examine the case when ∂C is a wedge of opening angle θ. In this case,
γ(w, r) is composed by the two sides of the wedge (see Figure 2.2(b)), the potential is given
by equation (2.8) and we easily end up with:

φr =
∫

γ(w,r)
E · dn =

∫ r

0
(∂βH|β=0 − ∂βH|β=θ)

dr′

r′
=

π

θ
cos

πβ

θ

∣∣∣
β=0

β=θ

r′π/θ

π/θ

∣∣∣
r

0
= 2rπ/θ

(2.11)
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Therefore, in the simple case where a single angle θ is sufficient to characterize the curve,
the flux over the wedge scales exactly as the length where we are computing the flux to the
power π/θ. This is the well known point effect of electrostatics: the electric field generated
by a conductor is much higher in the vicinity of a tip. Indeed, for r 0 1 equation (2.11)
tells us that θ = 2π i.e., in the presence of a tip, the flux attains its maximum value. On
the opposite side, when θ approaches 0, the flux tends to 0 as well.
The flux of the diffusing field (2.6) inside the wedge is therefore:

φr =
∫

γ(w,r)
∇ρ · dn̂ = φ0

(
R

R0

)π/θ

(2.12)

where r of (2.10) is replaced by R/R0. This tells us that the flux of the diffusing field ρ
is weak inside deep fjords corresponding to small values of θ. On the other side the flux is
much more intense over needle-like capes, corresponding to values of α approaching 2π.

R
0R

C

C

Figure 2.3: Visualization of a square cover of the cluster C.

In the general case, the curve ∂C is not a single wedge, but can be thought of as a
superposition of wedges with opening angles θ = π/α. The total length of the portion of
∂C characterized by Hölder exponent α – or opening angle π/α – scales as the size of the
cluster R0 to the power f(α). Now let us cover the entire surface with elements (disks,
squares) of size R 0 R0 (in figure 2.3 a possible square cover of the region C is visualized).
How many of these boxes are characterized by a Hölder exponent α? Since each disk can
contribute to the total length of ∂Cα with a fraction Rf(α), the number of disks where the
Hölder exponent takes this value will be on average (R0/R)f(α). When we cover the surface
with sufficiently small disks, the normalized number of occurrence of this event tends to its
probability. This enables us to generalize equation (2.12) in a probabilistic sense by stating
that the probability of observing a flux φ0(R/R0)α is:

P (α) ∼ (R/R0)−f(α)

f(α) = α + b

(
1− α2

2α− 1

)
(2.13)
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This result with the explicit form of f(α) was rigorously proven in [9] by focusing on the
moments of the potential averaged over all realizations of C. The constant b was originally
expressed as a function of the central charge c in [9] where conformal field theory was used:
b = (25 − c)/12. We can equivalently express it as a function of the diffusion constant k
of SLE by the already mentioned identification: c = (6 − k)(3k − 8)/(2k). Note that the
constant k is related to the dimension of the fractal boundary D = 1 + k/8 so that after
trivial algebra we end up with the expression of b as a function of D:

b =
(2D − 1)2

4(D − 1)
(2.14)

By a simple change of variables one can obtain the PDF of φ = φ0(R/R0)α from equa-
tion (2.13):

α(φ) = log
φ

φ0

(
log

R

R0

)−1

P (φ) = P (α(φ))
dα

dφ
∼ 1

φ

(
R

R0

)−f(α(φ))

Beside the exact form of the PDF, it is interesting to consider its expansion for small values
of the flux. In this case, φ 0 1 → α 1 1 → f(α) ∼ (1− b/2)α, thus:

P (φ) ∼ φ−2+ b
2 (2.15)

Equation (2.15) is an interesting result based on conformal invariance of the fractal boundary
∂C. As I will show in the next chapter, this holds for rocky shorelines and allows to obtain
the strongly intermittent nature of the flux of pollutants toward these real boundaries.



Chapter 3

Diffusion toward rocky coastlines

This chapter is devoted to present the results I have obtained in the framework of diffusion
toward rocky shorelines. The results here presented have been collected in the paper at the
end of the chapter which is now under revision. The work starts with two observations: (i) a
consistent portion of shorelines have been observed to be fractal since Mandelbrot [19] and
(ii) their fractal dimension has been recently explained by means of a simple statistical model,
intimately related to critical percolation [24]. These two observations together suggest that
the fractal nature of these shorelines may be promoted to conformal invariance. This would
allow for substantial advancements in the study of diffusion of a pollutant to these shorelines,
relying on what described in chapter 2.

3.1 Conformal invariance of rocky shorelines

Figure 3.1: Winding angle statistics of real rocky shorelines from the GSHHS database. (a) Portion of
the global shoreline (west coast of Britain). This is an example of the 1146 segments of the world shoreline
that turned out to be conformally invariant. (b) Winding angle statistics probability distribution. The solid
line corresponds to the Gaussian expectation for conformal invariant curves. (c) Mean and variance of the
winding angle as a function of the distance L measured on the curve. The solid lines are the expectations
for conformal invariant curves: 〈θ2〉 = 2(D − 1)/D log R; 〈θ〉 = 0 (no chirality of the coast).

In the following I present the arguments I developed to support the general picture drawn
above. I first analyzed satellite data of real shorelines from a high-resolution database of
the world coastlines and identify the portions that could be good candidates for conformal
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invariance. It turned out that these are the rocky shorelines, whose fractal dimension is
remarkably close to D = 4/3. On these polygonal approximations of the real rocky coasts I
performed the statistics of the winding angle, which turned out to be Gaussian, with variance
in agreement with the SLE expectation for conformal invariant curves (see chapter 1). The
result, shown in figure 3.1, allows to conclude that rocky shorelines are indeed conformally
invariant curves as discussed in detail in the paper presented below.
In order to corroborate the result I performed direct numerical simulations of a model of
rocky coasts erosion adapted from [24]. The model assumes that the erosion mechanism
is substantially uncorrelated on distances larger than few hundred meters. The second
assumption is that rocks more exposed to the action of sea waves are more apt to be
eroded. The intensity of sea erosion can be considered to depend on the length of the coast,
to account for the fact that erosion is more effective on a flat line than on a complex fractal.
This does not change the fractal properties of the rocky coast. The first assumption allows
to divide the domain in discrete squares and to consider each box to evolve independently
from the others. Each box is labeled as “land” or “sea” and a random number is assigned
to each land site representing the local resistance of the rocks to sea erosion, which depends
on the specific lithology. Each land site resistance is compared with the average excitation
power of the waves which represents the intensity of erosion. If a land site is weaker than the
erosive power, then it is eroded and its label changes from land to sea. In turn, the erosion
power can be updated accounting for depletion by the growing length of the coastline. When
the coastline is complex enough, erosion is no more effective. This is the stationary state.
Then one should consider that the slow weathering processes alter and weaken the rock,
so that after a while the dynamics can begin again. Of course, with these two general
assumptions, one can exhibit a number of different set of rules to model the erosion power,
but it turns out that the qualitative behavior is quite robust with respect to this particular
choice. Details on the model adapted from [24] can be found in the paper below. Starting
from a flat interface between land and sea, the described dynamics spontaneously produces
fractal shorelines. From these steady states I collected an ensemble of artificial shorelines
whose winding angle statistics turn out to be consistent with the hypothesis of conformal
invariance. The statistical analysis of both real coastlines and synthetic coastlines obtained
by this simple model of erosion points to conformal invariance.
Note that the algorithm to decide if a certain site is “land” or “sea” strongly reminds of
percolation, where each site is colored dark or bright according to a given constant probability.
This is further sustained by the fact that D = 4/3 is exactly the fractal dimension of the
external boundaries of critical percolation. The only ingredient which marks a difference
between the two is that the erosion process may be influenced by the geometry of the rocky
coast. This simply moves our problem from random percolation to gradient percolation,
where sites are colored with a probability that varies linearly from 0 to 1 along one fixed
direction in space. However, the qualitative mechanism leading to the self-stabilization of the
dynamics does not rely on this further ingredient and the global feedback of rocky shoreline
geometry does not change the fractal dimension of the final steady state (see [24] for a
detailed discussion).



3.2 Diffusion over rocky shorelines

Given the conformal invariant nature of rocky coastlines, how does a pollutant emitted from a
source far away from the coast diffuse toward the coast itself? Conformal invariance allows
to apply the results of potential theory reviewed in chapter 2. I relied on the theoretical
results for the flux of pollutant in the vicinity of the rockycoast. In particular it is interesting
to consider the expansion of the PDF of the flux φ at small values described in section 2.3. I
could compare the expectation (2.15) with the results obtained by the following procedure. I
performed a conformal transformation so to reduce the domain to a simple geometry, where
it is easy to solve the Laplace equation. Then I went back to the original space and displayed
the flux of pollutant near the coast. I finally evaluated the PDF of the flux and compared it
with the theoretical prediction φ−2+b/2, b = (2D− 1)2/[4(D− 1)] and D = 4/2. As shown
in figure 3.2, the comparison confirms consistency with conformal invariance and provides a
spatially intermittent distribution of the flux over the rocky coast. Note that ntermittency
has been already observed for real pollutant dispersion [21].

Figure 3.2: (a) Visualization of the flux of pollutant over the rocky shoreline shown in figure 3.1. (b) PDF of
the flux in the vicinity of the rocky coast. The solid line φ−2+b/2, b = (2D−1)2/[4(D−1)] is the theoretical
expectation for φ $ 1 based on conformal invariance of the coast (see equations (2.14) and (2.15)).

Diffusion is of course only one aspect of the dynamics of the real problem of pollutant
dispersion. However one can expect that in some cases an effective diffusion can dominate
on the transport mechanisms at work on a particular portion of the coast, at least if the focus
is on large enough spatial scales. A further interesting development could be to evaluate
the real situations where this picture can be applied. In particular, I am interested to study
the realistic morphological structure of rocky coasts with a local feedback of the coastline
properties on the erosive process. Note that the results above described are valid for the
case where the geometry of the coastline back reacts on the erosion power at global level.
On the basis of this picture, one is able to perform predictions on the distribution of pollutant
and to ideally devise artificial structures to modify it. Finally, the erosion process is not
an exclusive feature of rocky coasts and there could be other geophysical systems where
advancements could be achieved with the powerful ingredient of conformal invariance.
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How winding is the coast of Britain ? Conformal invariance of
rocky shorelines
G. Boffetta,1,3 A. Celani,2,3 D. Dezzani,1 and A. Seminara2,4

We show that rocky shorelines with fractal dimension 4/3
are conformally invariant curves by measuring the statis-
tics of their winding angles from global high-resolution data.
Such coastlines are thus statistically equivalent to the outer
boundary of the random walk and of percolation clusters.
A simple model of coastal erosion gives an explanation for
these results. Conformal invariance allows also to predict
the highly intermittent spatial distribution of the flux of
pollutant diffusing ashore.

1. Introduction

Forty years after Mandelbrot’s seminal paper [Mandel-
brot, 1967] where the concept of fractional dimension was
introduced, there is a compelling evidence of the fractal na-
ture of many geographical phenomena, including the shap-
ing of shorelines [Goodchild and Mark, 1987]. Statistically
self-similar curves are characterized by their fractal expo-
nent D. If we select two points on the curve and measure
their distance L along the curve (e.g. by walking a divider
of given width) on average this will be proportional to their
Euclidean distance R to the power D, i.e. L ∼ RD, where D
can take values between 1 and 2. Such curves are widespread
in nature, and often enjoy a much richer symmetry than
mere global scale invariance. This is the case of conformally
invariant curves, whose statistics is covariant with respect to
local scale transformations. These are defined as the coor-
dinate changes that preserve the relative angle between two
infinitesimal segments. In spite of their seemingly exotic
character, conformal transformations are known since the
sixteenth century because of their cartographical applica-
tions (e.g. Mercator’s map). Conformal invariance is a per-
vasive feature of two-dimensional physics, from string the-
ory and quantum gravity to the statistical mechanics of con-
densed matter and fluid turbulence [Polyakov, 1970; Belavin
et al., 1984; Schramm, 2006; Bernard et al., 2006, 2007]. A
remarkable consequence of conformal invariance is the high
degree of symmetry that often allows to make substantial
analytical progress. Several statistical indicators can be ex-
actly computed by means of different techniques of theoreti-
cal physics [Cardy, 2005; Bauer and Bernard, 2006]. Among
the many characteristic features that make conformally in-
variant curves peculiar within the class of self-similar ones,
the former are also distinguished by the special statistics of
the winding angle about a point belonging to the curve itself
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(see Fig. 1b). The probability distribution of the winding
angle is Gaussian, and therefore specified only by its mean
(that is zero, i.e. curves do not have a preferred winding
direction, or chirality), and its variance, that increases pro-
portionally to the logarithm of the distance from the refer-
ence point with a proportionality constant which depends
on the fractal dimension. This provides a simple and use-
ful diagnostics for conformal invariance of curves extracted
from experimental or numerical data.

Here we analyze the statistics of rocky shorelines, selected
on the basis of a fractal dimension D " 4/3 from the global,
high-resolution, GSHHS database [Wessel and Smith, 1996].
These shorelines are found to display a Gaussian statistics of
the winding angle with the exact logarithmic dependence of
the variance from the length and the correct numerical pref-
actor 2(D− 1)/D expected for conformally invariant curves
(see Fig. 2). We also illustrate how conformal invariance al-
lows to predict the statistics of the flux of pollutant arising
from, e.g., oil spills or the discharge of toxins and pathogens
with ballast water. A peculiar characteristic of pollutant
diffusion to shorelines is the markedly intermittent spatial
distribution of the flux. This can vary dramatically between
locations just a few hundred meters apart (see for instance
Fig. 1 of Peterson et al. [2003] about the Exxon-Valdez oil
spill). These wild fluctuations are the quite suprising result
of the “marriage” of two tame partners such as diffusion
and self-similarity of shoreline profile. Conformal invariance
allows to solve analytically the problem of computing the
statistics of pollutant flux (see Fig. 4) and to link its local
intensity to the local geographical properties of the shoreline
[Duplantier, 2004].

2. Statistical analysis of rocky shoreline

Since the famous paper of Mandelbrot [1967], the west
coast of Britain has become the paradigmatical example of
fractal shoreline. In Figure 1 we show a satellite image of
a portion of the western coast of Scotland along with its
digitized shoreline, that is a polygonal approximation to the
real coastline. It is also displayed in a double logarithmic
plot the fraction of pairs of vertices of the polygon that lie
within a ball of diameter R: the slope of this curve is the cor-
relation dimension [Grassberger and Procaccia, 1983], that
is very close to 4/3 in this case. (Notice that Mandelbrot
quotes the value 1.25 for the fractal dimension of the west
coast of Britain, an estimate obtained from a fit of Richard-
son [1961] data over the range from 1 to 1000 kilometers.
However, if the same data are fitted over the range from 1 to
300 kilometers one obtains a value for D very close to 4/3.)

1
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Figure 1. The west coast of Scotland: an example of
the 1146 shorelines that have been searched for confor-
mal invariance. Panel (a) shows the satellite image of the
geographical area, centered around the point 58◦05′N,
5◦21′W. In Panel (b) is shown the GSHHS polygonal ap-
proximation of the shoreline with resolution ≈ 200 m to-
gether with an example of winding angle between points
Q and P . Panel (c) shows the fraction of pairs of points
of the curve (b) lying at a distance smaller than R. The
logarithmic slope of the curve is the fractal correlation di-
mension. A least-squares fit for the data over the range
from 300 m to 20 km gives an exponent 1.30± 0.04. Also
shown for comparison a straight line of slope 4/3.

The shoreline shown in Fig. 1 is one example of the curves
extracted from the high-resolution, self-consistent GSHHS
database. The complete database covers the world shoreline
which has been partitioned into 11503 segments of length
≈ 200 km with a resolution of about 200 m. The compu-
tation of fractal dimension (as in Fig. 1) for each segment,
gives different values of D that depend on the geomorpholog-
icae processes at work in that particular geographical area.
We observe a fractal dimension close to 1 for sedimentary
shores while for for rocky coasts it is about 1.3 or larger. The
overall most probable value is found to be D " 1.2. Within
this large sample, we have selected the 1146 shorelines which
present a correlation dimension close to D = 4/3 (with a
tolerance of 5%). The capacity dimension for such curves,
computed by a box-counting algorithm, yields a value consis-
tent with the correlation dimension, pointing to the conclu-
sion that these are truly fractal curves and not multifractals
[Grassberger and Procaccia, 1983].

The statistics of winding angles for rocky coaslines is
shown in Fig. 2. The winding angle θ is defined as the angle
between the line joining two points separated by a lenght L
along the curve (defined by means of its polygonal approxi-
mation) and the local tangent in the reference point (i.e. the
direction of the side of the polygon adjacent to the point),
measured counterclockwise in rad (see Fig. 1b). Because
our curves do not have a preferred direction, the mean wind-
ing angle 〈θ〉 is very close to zero while the variance is found
to grow with L according to the logarithmic law predicted
for conformal invariant curves [Duplantier and Saleur, 1988;
Duplantier and Binder, 2002; Wieland and Wilson, 2003]

〈θ2〉 = a +
2(D − 1)

D
ln L (1)

Here a " 0.98 is an additive constant that depends on the
details of the definitions (including the curve resolution, or
the width of the divider used to compute the length) and
whose actual value is thus irrelevant. The numerical eva-
lutation of the coefficient in (1) gives D " 1.33±???, i.e.
very close to the direct measure of D. Figure 2b shows that
the probability density function (pdf) of θ is very close to a
Gaussian distribution for different separations in the loga-
rithmic range. Winding angle statistics have been computed
using different reference points located along the curve: we
have found no detectable dependence on this choice.

Figure 2. Winding angle statistics. Panel (a) shows the
mean and the variance of the winding angle as a function
of the length of the shoreline between points P and Q.
(see Fig. 1). The line is the law 〈θ2〉 = a + 2(D−1)

D ln L
with D = 4/3 and a = 0.98. In the inset, the variance
in semilogarithmic coordinates. In panel (b) is shown
the probability density function of the winding angle at
lengths L = 5, 10, 20 km rescaled by the respective stan-
dard deviation and compared to the standard Gaussian
density, in semilogarithmic (main frame) and in linear
coordinates (inset).

Values of the fractional dimension other than 4/3 (e.g.
D = 1.2 and D = 1.5) fail to give such an impressive agree-
ment with the prediction for conformally invariant curves,
in the sense that the prefactor differs significantly from the
value predicted by (1). The reason for this special value
of D can be understood by means of a simple model, in-
troduced by Sapoval et al. [2004], of mechanical erosion of
rocky coasts by the action of marine waves. The basic ingre-
dients of this model are two: (i) the mechanical resistance
of rocks to erosive processes, essentially determined by their
structure, composition and by the slow corrosion process
due to chemical agents, is assumed to have a typical scale
of variation of the order of hundreds of meters and to be es-
sentially uncorrelated on larger distances; (ii) rocks that are
more exposed to the action of waves have a larger propen-
sity to be fragmented by mechanical erosion: for instance,
an isthmus will be eroded more rapidly than the shoreline
within a gulf.

This model can be implemented on a two-dimensional
lattice where the sites represent regions of land or sea of
dimensions about a hundred meters. In the initial state,
the land takes the form of a circular island surrounded by
the sea. To every point on the land is assigned a number
that measures the resistance of the rock to erosion. Then,
if the resistance of a land site adjacent to the sea falls be-
low a given threshold, it will be eroded, and thus transform
into a sea site. Subsequently, the resistance values for land
sites along the shoreline are updated depending on the local
conformation of the coast. For example, the value of the
resistance parameter is decreased if a land site is flanked by
two sea sites and falls to zero for sites surrounded by three or
more sites [Sapoval et al., 2004]. Other qualitatively similar
choices give the same final statistics. This procedure is iter-
ated until no further updates are necessary and a stationary
artificial shoreline is obtained (see Fig. 3a). The similarities
of this model with the well-known problem of percolation
[Stauffer and Aharony, 1991] are evident, as already pointed
out in Sapoval et al. [2004]. Indeed, in presence of rule (i)
alone the islands generated by the algorithm would be sta-
tistically equivalent to percolation clusters — except for the
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inner “lakes” present in the latter case — and thus display
a fractal dimension 7/4. However, rule (ii) prevents the
formation of deep gulfs and peninsulae with narrow isthmi,
therefore reducing the shoreline to the outer boundary of
percolation clusters that is known to have fractal dimension
4/3 [Grossman and Aharony, 1986; Saleur and Duplantier,
1987]. Further refinements of the model, including damping
of sea-waves and slow erosive processes do not modify the
main features described above. As a consequence of the sta-
tistical equivalence between the artificial shoreline and the
external frontier of percolation clusters, the former inherits
the known conformal invariance of the latter. In Figure 3
we show the numerical results for the artificial shorelines
generated by the model, which confirm the theoretical ex-
pectations.

Figure 3. Artificial shorelines. In panel (a) one exam-
ple of a coast generated by the model of wave erosion
described in the text. The simulation has been done on
a square grid with 80002 collocation points. The number
of realizations is 800. Panel (b) shows the correlation di-
mension. The unit for R and L is the simulation box size.
A fit in the range of R between 5 · 10−4 and 0.1 yields
D = 1.32 ± 0.02. Panels (c) and (d) show the winding
angle statistics as in Fig. 2 compared to the theoretical
expectations.

3. Intermittency of diffusing pollutants

By virtue of the rich symmetry underlying conformal in-
variance, many interesting results can be obtained analyti-
cally. As a remarkable example we consider here the evalu-
ation of the flux of pollutant diffusing ashore from a source
located in the sea. Transport and mixing of tracers is a
complex issue of paramount importance from microscopic
to planetary scales [Ottino, 1989]. At the simplest level of
description dispersion is modeled as pure diffusion. In the
present case, this may be justified by estimates of the hori-
zontal eddy-diffusivity in the ocean that yield a ratio about
0.1 to 1 between mean currents and velocity fluctuations
over scales of a hundred kilometers [Marshall et al., 2006].

Pollutant concentration c is therefore assumed to be given
by the solution of the Laplace equation ∆c = 0 with ab-
sorbing boundary conditions on the coastline (c = 0) and a
pointwise source in the ocean. This problem can be solved

with the aid of conformal transformations by mapping the
region of interest (i.e. a region of sea bounded by the shore-
line) into an infinite strip, solving the Laplace problem in the
new domain (now a trivial task), and mapping the solution
back to the initial region. The conformal transformation is
done partly numerically, from the given domain to a unit
disk, and partly analytically by mapping the unit disk onto
the infinite strip.

The upshot of the conformally invariant nature of the
shoreline is that techniques borrowed from theoretical
physics enable to compute analytically the pollutant flux
distribution φ = ∂c/∂n at the boundary [Duplantier, 2000;
Duplantier and Binder, 2002; Bettelheim et al., 2005]. The
main result is that the probability of observing a flux φ
of intensity φ0(R/R0)α — where φ0 is the rate of emis-
sion by the source, R the size of the region where the
flux is computed, and R0 the distance of the source from
the coast — is proportional to (R/R0)−f(α) with f(α) =

α+ (2D−1)2

4(D−1)

[
1− α2/(2α− 1)

]
, for R ' R0. Small values of

the flux correspond to large values of α, whereas the largest
ones take place for α ↘ 1/2. This can be understood by
means of the geometrical interpretation of the variable α
[Duplantier, 2000]. Indeed, let us recall that the flux inside
a wedge of opening angle θ scales exactly as Rπ/θ. The result
above can thus be interpreted as if the shoreline was made of
a random collection of wedges or size ∼ R and opening an-
gles θ with probability ∼ R−f(π/θ). Large α and small fluxes
are equivalent to small θ, i.e. deep fjords in the shoreline.
On the opposite, as α reaches the minimum value 1/2, the
flux attains its maximum value ∼ φ0(R/R0)1/2 correspond-
ing to θ = 2π, that is a needle-like cape. The average flux
〈φ〉 is exactly φ0. By means of a variable change from α to φ
it is possible to derive the exact probability density for the
flux. Besides the exact form, it is interesting to notice that
for φ ' φ0 the probability of observing a value φ of the flux
scales as a power law:

p(φ) ∼ φ
−2+

(2D−1)2

8(D−1) (2)

This power-law dependence is a reflection of the strongly
intermittent character of flux fluctuations. In Figure 4 we
show the flux of pollutant emitted for a source located 40 km
offshore the coastline of Fig 1, together with its probability
density. This closely follows the theoretical predictions for
small fluxes over a range of several decades.

Figure 4. Flux of diffusing pollutant. In panel (a) is
shown the contour plot of the pollutant concentration in
the domain bounded by the shoreline of Fig. 1. Panel
(b) shows the probability density of flux computed along
the present shoreline, compared with the theoretical ex-
pectation (2) for the left tail.

In conclusion, we have demonstrated that world coastlines
with dimension D " 4/3 are conformally invariant curves by
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measuring their winding angle statistics. The distinguishing
feature of such random curves is their high degree of symme-
try which enables to compute analytically many statistical
properties. We have focused our attention on the flux of pol-
lutant diffusing toward the shoreline, however many other
interesting results could be relevant to geophysical applica-
tions. For instance, an archipelago of conformally invariant
islands (loops) would display a power law distribution A−1

of the number of islands of area larger than A with a known
prefactor. These would be also characterized by a ratio be-
tween the average area and the average squared radius equal
to πD/(2D− 1). All these properties, and many others, are
also shared by self-avoiding walks (polygons), i.e. closed
random walks that never hit themelves. These have been
conjectured to be conformally invariant curves with dimen-
sion 4/3 via the equivalence with stochastic Loewner evolu-
tion curves SLE8/3 (see Lawler et al. [2004] for a review).
Remarkably enough, self-avoiding walks were introduced by
Mandelbrot as well, when he conjectured the (now proven)
equivalence between them and the external frontier of two-
dimensional Brownian motion. Today, in view of our re-
sults, all these curves reveal their unexpected and intimate
connection with the brilliant intuition by Richardson and
Mandelbrot about the fractal nature of world coastlines.
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Part II

The large-scale statistics of passive
scalar transport





Introduction

The statistical properties of systems in thermal equilibrium are fully characterized by the
knowledge of the integrals of motion. A prominent example is represented by the well-
known Gibbs ensemble, where the partition function determined by the free energy allows to
compute the probability of occurrence of each given state of the system. Turbulence is the
paradigm of systems with many interacting degrees of freedom, strongly out of equilibrium.
Here the integrals of motion are unsufficient to describe the statistics, as they cannot capture
the distinctive features of turbulence: intermittency and anomalous scaling. Instead, these
have been brilliantly traced back to statistical integrals of motion whose nature strongly
differs from the dynamical integrals of motion of equilibrium systems [18]. Anomalous scaling
in turbulence is observed in correspondence of a flux of the conserved quantities through
the whole inertial range of scales showing the non-equilibrium nature of the process. In
most cases, no upscale flux is present and the above picture does not apply to scales larger
than the injection scale. Here, the statistics is expected to recover thermal equilibrium.
Surprisingly enough, this is not true in the general case.
The problem is essentially related to the following question: how does information propagate
toward large scales? Applications of this general question span the most diverse fields of
physics. The large-scale structure of the universe originates from an ancient event that
concerned a tiny volume. The propagation of seismic waves on earth seems to depend on
the microscopic structure of crystals in mantle rocks. Hence the general physical interest to
understand the large-scale statistics of a field which is generated at much smaller scales. In
this part of the thesis I focus on a passive scalar field and demonstrate that the large-scale
structure of passive scalar turbulence definitely deviates from the expected Gibbs equilibrium.
This points to the propagation of small-scales properties toward large-scales.
What is a passive scalar and what are the particular properties that make it interesting?

Figure 3: Instances of real scalar turbulence.

A passive scalar is a quantity that is advected by a flow without back-reacting on it. There is
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a variety of real transport problems (see figure 3 for instance) that can be described through
the passive scalar scheme. This happens every time the reaction of some particular quantity
on the carrying flow can be disregarded, like for dilute dyes, pollutants dispersed in a fluid
or temperature in the case where buoyancy forces are negligible.

(turbulence)

rd η L vL r
flux

convective
viscous

diffusive
viscous thermal

equilibrium
effective
diffusionconvective

inertial

Figure 4: Sketch of the different spatial scales in turbulence. The inertial-convective range, traditionally-
studied in turbulence, is indicated in brown. I focus on large-scales instead, marked in Green with label
“thermal equilibrium”.

Passive scalar transport extends the diffusion problem treated in the first part of the thesis,
as its dynamics includes advection. Mathematically this corresponds to the addition of the
product term v · ∇θ in the evolution equation for the scalar field. This term, in the pres-
ence of an incompressible velocity field, provides a small-scale cascade process that does not
modify the input-output balance between injection and dissipation, but only transfers scalar
fluctuations from large scales to small scales. In order to visualize the turbulent cascade,
one can imagine the scalar organized in eddies of different sizes. The largest eddy in the
problem is determined by the mechanism of scalar injection, whose typical lenght scale is
here indicated with L. Due to advection, the large eddies introduced by the forcing split
into smaller eddies that are further broken and so forth. This cascade process finally ends
up with tiny eddies that are eventually smeared out by diffusion. The interval between the
injection and the diffusive scales (convective range) has been long studied. Together with
the cascade, a peculiar phenomenology appears in the convective range with a breakdown
of scale-invariance [20, 34, 37, 38, 40]. The statistical properties of the scalar at a certain
length scale cannot be obtained by a simple rescaling of the statistics at another scale.
This manifests itself in the presence of a quasi-discontinuous spatial structure for the scalar
field [11, 24, 30]. In other words, the probability of dramatic fluctuations of the scalar be-
tween two points increases as the two points approach with one another.
The Navier-Stokes equations for the velocity field, in the limit of large scale separation
between injection (Lv) and dissipation (η), provide a very similar cascade process. This
observation strongly suggested that research could obtain information on Navier-Stokes tur-
bulence by studying the simpler problem of passive scalar transport. A great advancement
in this sense was achieved with the introduction of the Kraichnan model of passive advec-
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tion [29]. The key point of passive scalar success is the observation that its intermittency
is much more pronounced than the intermittency of the velocity field. This hints to the
possibility that the scalar field could be intermittent in the absence of any intermittency
of the carrier flow. Kraichnan model studies the evolution of a passive scalar advected by
an incompressible, Gaussian, scale-invariant, white-in-time, stochastic flow. This particular
choice allows for a thorough analytical analysis of the model. The result is that despite
the absence of any intermittency of the carrier flow, this problem displays scalar intermit-
tency. Most importantly, it traces intermittency back to the presence of statistical integrals
of motion that can be found as zero modes of partial differential operators [3, 14–16,23].

All these ideas concern the turbulent cascade process developing at scales smaller than
the injection scale. What about the scalar-field structures above the injection scale? Figure 4
shows a sketch of the spatial scales interested by different mechanisms in turbulence. The
inertial-convective scales, traditionally studied, are represented in brown while I focus here
on the “thermal equilibrium” range, colored in green. Note that no upscale flux of scalar
fluctuations is provided by incompressible turbulent transport. Therefore the large-scale
scalar statistics is supposed to display Gibbs equilibrium. However, since we focus on scales
larger than L yet smaller than Lv, the underlying velocity field is turbulent. I investigated
the problem both analytically for the Kraichnan model ensemble and by direct numerical
simulations of realistic flows. The picture that emerges points to the presence of long-
range correlations, due to the existence of large-scale zero modes. This “memory” of the
fine-scale structure in passive scalar transport provides a transfer of information from small
scales toward large scales. In the case of anisotropic scalar injection, this effect is even
more dramatic than in the isotropic case. Under very broad conditions, a small amount of
anisotropy introduced at small scales is propagated toward large scales where it eventually
dominates the structure of the concentration field.

In chapter 1 I review some background concepts related to anomalous scaling and in-
termittency and recall the main results of the Kraichnan model for passive advection in the
inertial-convective range of scales. In chapter 2 I switch to the thermal-equilibrium range
and describe the results I obtained for the large-scale structure of passive scalar turbulence.
These have been collected and published in the papers presented in chapter 2.
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Chapter 1

The Kraichnan model of passive
advection

(a) (b) (c)

Figure 1.1: Instances of scalar snapshots obtained by experiments of a fluorescent dye in a turbulent jet [37]
(a) and by DNS: in figure (b) the scalar is advected by a Kraichnan velocity field [13] and in figure (c) by
two-dimensional Navier-Stokes turbulence in the inverse cascade regime [11]. The spatial structure of scalar
turbulence is intermittent.

A passive scalar field θ is a quantity that is transported by a flow, but does not back-react
on it. There is a variety of real problems where the feedback of a transported quantity is
negligible and the evolution can be thus described by passive advection (e.g. the dispersion
of a pollutant or of a dye dilute in the atmosphere or in the ocean [32]).

1.1 Passive scalar transport

Passive scalar transport by a turbulent incompressible carrier flow v is ruled by the well-known
advection-diffusion equation:

∂tθ + v · ∇θ = κ∆θ + f (1.1)
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(turbulence)
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Figure 1.2: Sketch of the typical spatial scales of different processes in turbulence. Here scalar fluctuations
are injected at a typical scale L similar to the velocity correlation length Lv.

With the additional incompressibility condition ∇ · v = 0. Here κ is the diffusivity constant
and f is the source of scalar fluctuations. Typically, the forcing f injects scalar fluctuations at
a certain spatial scale L, dramatically separated from the scale rd where diffusion processes
are active. In this case a turbulent direct cascade takes place, i.e. a flux of scalar fluctuations
develops from L towards small scales1, down to rd where fluctuations are smeared out by
diffusion (see a sketch of the length scales in figure 1.2). Similarly, Navier-Stokes turbulence:

∂tv + v · ∇v = −∇p

ρ
+ ν∆v + fv (1.2)

provides a cascade process2 of the velocity fluctuations |v|2/2, between a typical integral
scale Lv and the Kolmogorov viscous scale η. The velocity field is therefore characterized
by eddies spanning the whole range of scales from Lv to η. For the moment, and for the
whole chapter, let us suppose that Lv ∼ L, like in figure 1.2. The turbulent cascades of the
conserved quantities |v|2/2 and θ2/2 take place in the so-called inertial-convective range of
scales, where research has focused its main interest. In this range of scales, labeled “tur-
bulence” in figure 1.2, a very peculiar and experimentally well documented phenomenology
appears [37, 38, 40], both for scalar and Navier-Stokes turbulence. The objects one should
observe in order to fully characterize the statistics of the scalar, and enlighten these proper-
ties, correspond to the differences δrθ of the field θ calculated in two points separated by a
distance r. In the case of isotropy of the underlying velocity field and of the pumping process
f (see e.g. [25, 31] for an experimental realization), the statistics of the scalar differences
depend only on r = |r|. One can perform these statistics at various scales r and verify that
the PDFs thereby obtained have different shapes. In other words the PDF of the scalar
differences at various separations cannot be collapsed one onto another by simple rescaling.
In particular, as the separation r decreases in the inertial range, the statistics becomes more
and more non-Gaussian, with higher and higher PDF tails. This amounts to state that the

1Note that, for incompressible flows v, no upscale flux is present for the passive scalar at scales larger
than L, as will be discussed in chapter 2.

2The direction of the flux depends on the dimension of the space. Direct cascade develops in three
dimensions and inverse cascade in two dimensions.
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fine structure of the scalar field tends to be almost-discontinuous, with strong variations
across tiny regions known as “fronts”, separated by large regions where scalar fluctuations
are weak. The presence of this intermittent structure of the scalar field is confirmed by both
experimental results [37, 38, 40] and direct numerical simulations [11] - see figure 1.1 for
example. More precisely, the tails of the PDF of δrθ can be characterized by considering its
moments, the structure functions:

SN (r, t) = 〈[θ(x + r, t)− θ(x, t)]N 〉

which can be obtained as appropriate combinations of the scalar correlation functions:

CN (x1, ...,xN , t) = 〈θ(x1, t)θ(x2, t) · · · θ(xN , t)〉. (1.3)

Experiments and numerics have shown that the structure functions at a fixed order N behave
as power laws in r. The exponents of these power laws change with N in a non-linear way,
as schematically represented in figure 1.3:

SN (r) ∼ rζN ζN &=
N

2
· ζ2

This is the so called anomalous scaling of the structure functions and implies the lack of
scale invariance for the scalar statistics. Indeed scale invariance would correspond to a linear
behavior of the scaling exponents.

The same qualitative behavior is observed in many other problems and in particular in

ζ
θ ,v

N

N
2

N

ζN
v

ζ 2

ζN

Figure 1.3: Sketch of the normal and anomalous scaling exponents ζθ
N for the scalar structure functions

and ζv
N for Navier-Stokes velocity structure functions. Scalar intermittency is stronger than hydrodynamic

intermittency.

hydrodynamic turbulence, i.e. for a velocity field solution of the Navier-Stokes equations
(1.2) in the limit for large separation between the integral scale and the viscous scale.
However, the anomaly of scalar exponents is much more pronounced than the anomaly
for the velocity field (see figure 1.3). As Robert H. Kraichnan importantly realized, the
intermittency of the scalar field is not slaved to the presence of an intermittent carrier flow.
Following this idea, Kraichnan proposed a model of passive advection by a scale-invariant
velocity field whose crucial results are the focus of next section.
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1.2 Kraichnan model

Let us consider equation (1.1) with a Gaussian stochastic homogeneous isotropic carrier flow
v [27–29] such that:

〈vα(x + r, t)vβ(x, s)〉 = Dαβ(r)δ(t− s)

where the spatial component of the correlation function is scale-invariant in the convective
range (i.e. at small scales, up to Lv):

Dαβ = D0δ
αβ − 1

2
D1r

ξ

(
(d− 1 + ξ)δαβ − ξ

rαrβ

r2

)

Let us take a white in time Gaussian stochastic process for the forcing as well, so that:

〈f(x + r, t)f(x, s)〉 = F (r)δ(t− s)

where the spatial component of the forcing correlation is defined as F (r) = 〈f(x+r, t)f(x, t)〉
and is fast decaying beyond the typical length scale L. The delta-correlation in time allows
to write a closed equation for the N-point equal-time correlation functions (1.3):

∂tCN + MNCN = F ⊗ CN−2 (1.4)

where

MN =
N∑

i,j=1

Dαβ(rij)∂rα
i
∂

rβ
j

+ κ
N∑

i=1

∇2
ri

(1.5)

and the meaning of the symbol ⊗ in the right hand side is the following: F ⊗ CN−2 =∑N
i#=j=1〈θ(x1, t) · · · ı̂ · · · ĵ

· · · θ(xN , t)〉〈f(xi, t)f(xj , t)〉 where the symbols ı̂ and ĵ indicate

that the values of the field θ in points xi and xj are omitted. Note that equations (1.4) with
the expression (1.5) for the operators MN are valid in the range of scale invariance of the
velocity field, i.e. for small scales, up to Lv that is here considered similar to L. This result
can be obtained by direct calculations [27]. The great novelty of Kraichnan model comes
from the fact that it can be handled analytically. The result is that equations (1.4), in the
absence of any intermittency of the velocity field, allow for anomalous scaling of the scalar
correlation functions. The origin for that is traced back to statistical integrals of motion,
linked to the zero modes of the operators MN , as described in the next section.

1.2.1 Zero modes and anomalous scaling

The solutions of equations (1.4) can be written recursively as:

CN (r) =
∫

GN (r;R) CN−2 ⊗ F dR (1.6)

where GN denotes the kernel of the inverse of −MN and we use the short-hand notation
r = (r1, ..., rN ) and R = (R1, ...,RN ). The scaling properties of solutions (1.6) are
dimensionally expected to be:

CN (λr1, ...,λrN ) = λ(2−ξ)N/2CN (r1, ..., rN ). (1.7)



1.2 Kraichnan model 49

However, the general solution of equations (1.4) is determined up to homogeneous solutions
(or zero modes) of the operator MN . In other words, the complete solution is the superposi-
tion of the normal scaling component (1.7) and the zero modes. Dimensional arguments do
not apply to the latter, whose scaling properties are therefore called anomalous and might
dominate the behavior of the solution, thus clarifying the origin of intermittency. The scal-
ing behavior of the zero modes have been obtained exactly for the two-point correlation
functions, and perturbatively around ξ = 0 or d →∞ for higher orders. These perturbative
schemes allow to conclude that the anomalous scaling is indeed dominant in the convective
interval. More precisely, the irreducible3 zero-mode scaling exponents, in the limit for small
ξ, are ζN = (N/2)(2−ξ)−N(N−2)/[2(d+2)]+O(ξ2) (see [3,23]). Similarly, for large space
dimensionalities, the zero-mode exponents are ζN = (N/2)(2−ξ)−N(N−2)/(2d)+O(1/d2)
as proved in [14]. In both cases they dominate the small scale behavior of the correlation
functions, since they are smaller than the normal scaling exponent (N/2)(2− ξ).

The zero modes of operators MN show up in the study of the asymptotic expansion of
GN . Let us denote by Za the zero modes satisfying:

MNZa(r) = 0. (1.8)

The zero modes come in pairs (Z+
a (r) and Z−

a (r)), with scaling exponents of opposite signs
ζ+
a and ζ−a = −(n−1)d+(2−ξ)−ζ+

a . It turns out that the kernel GN (r,R) has asymptotic
expansions:

GN (r;R) =
∑

a

Z+
a (r)Z−

a (R) for |r|0 |R| (1.9)

1.2.2 Small scale anisotropy

In general, the injection mechanism is not isotropic, as experimentally studied in [37]. In
this case, CN and F may be conveniently projected on the basis of eigenfunctions of the
squared angular momentum, labeled by their eigenvalues −j(j +d−2). Equations (1.4) can
be projected in each j-sector, and because of the symmetry of operators MN for rotations,
the problem decouples in a system of m independent partial differential equations, where
m is the number of sectors excited by the forcing f . In each excited sector, all the above
arguments apply and we finally obtain a global solution CN which is a sum of m contributions
coming from each excited sector. At fixed order N , the zero-mode exponents are ordered so
that the zero mode of the lower excited sector is leading over the other zero modes. In this
sense, isotropy is recovered at small scales if the lower excited zero mode is the isotropic
one (see [5]). Note that the lowest excited zero mode might be turned off in the case where
it appears in the linear combination multiplied by a vanishing coefficient. Hence the crucial
importance of the coefficients that might switch off some of the terms contributing to CN ,
thus changing the global behavior of the solution. This will be crucial for the propagation
of small-scale anisotropy toward large scales (see section 2.2).

3The irreducible zero modes are functions that depend non-trivially on all the positions of the N points
and turn out to be dominant on the reducible ones.
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1.3 Real flows and Lagrangian viewpoint

The most suitable language for the study of the passive scalar turns out to be the Lagrangian
statistical formalism, thoroughly reviewed in [18]. The latter focuses on the trajectories of
fluid particles R(t) such that:

Ṙ(t) = v(R(t), t) +
√

2κ ς(t) (1.10)

where ς(t) is a white noise with zero mean and covariance 〈ςi(t)ςj(t′)〉 = δijδ(t− t′). The
Lagrangian trajectories are connected with the statistics of the advected fields. Given the
multi particle statistics, one can build the correlation functions of the latter and this allows
to recognize the zero modes above introduced and give them an interpretation. Zero modes
turn out to be Lagrangian integrals of motion, i.e. functions of the inter particle separations
that are statistically preserved as the particles are transported by the flow (see [15,23,33]).
Clearly the nature of these integrals of motion strongly differs from that of the dynamical
integrals of motion in equilibrium systems.
The solution of equation (1.10) is determined for a given initial condition R(0). The scalar
field evolves along the Lagrangian trajectories following:

d

dt
θ(R(t), t) = f(R(t), t)

Thus:

C2N (r, t) =
〈 ∫ t f(R1(s1), s1) ds1 · · ·

∫ t f(R2N (s2N ), s2N ) ds2N

〉
=

=
〈 ∫ t F (R12(s1)) ds1 · · ·

∫ t F (R(2N−1)(2N)(sN ) dsN

〉
+ · · ·

(1.11)

where the average 〈·〉 is meant over the ensemble of the velocity, noise and forcing realiza-
tions. In the second line the average over the forcing realizations has been computed and
the dots stand for the permutations of the pairings between the 2N particles. The functions
F essentially restrict the integration to the time interval where the inter particle separations
Rij were smaller than the injection scale L. The kernel GN (r,R) has exactly the meaning
of the time that particles spend at given positions r given their final distance R.
More precisely, the Lagrangian evolution is described by the multi particle Green functions
PN (r;R; t) = 〈

∏N
i=1 p(ri, s;Ri, t|v)〉. The latter denote the transition probability that

N particles starting at positions R1, ...,RN arrive at positions r1, ..., rN at time t. The
PN (r;R; t) satisfy equations:

∂tPN (r;R; t) = MNPN (r;R; t) (1.12)

The kernel GN of the inverse of −MN is the time integral of the Green function

GN (r;R) =
∫ ∞

0
P (r;R; t)dt

Therefore, given the Green functions, one is able to compute the scalar multi-point correla-
tions through relation (1.6). The asymptotic expansion of PN for initially close particles is
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a combination of zero modes and slow modes, which are essentially zero modes of powers
of the operators MN (see [4]). The asymptotic expansion of GN is consistent with (1.9):

GN (r;R) =
∫ ∞

0
P (r;R; t)dt =

∑

a

Z+
a (r)Z−

a (R) for |r|0 |R|. (1.13)

Given the equation of evolution (1.12) for the Green functions, one can show that the zero
modes are scaling structures preserved in mean by the flow. This fact is simply proved by
writing the Lagrangian average through an integral of the zero mode multiplied by the Green
functions PN : 〈Za(R(t))〉 =

∫
P (r;R; t)Za(R)dr. The time derivative of 〈Za(R(t))〉

vanishes simply because of equations (1.12), (1.8) and the fact that MN is Hermitian:
d
dt〈Za(R(t))〉 =

∫
∂tP (r;R; t)Za(R; 0)dr =

∫
P (r;R; t)MNZa(R; 0)dr = 0. We have

already seen that the anomalous scaling of the scalar correlation functions origins from the
zero modes that we can now interpret as statistical integrals of motion. This picture is quite
robust and relevant for transport by generic turbulent flows.
The physical mechanism that allows for the Lagrangian-average preservation of the zero
modes is a compensation between two opposite trends. When N initially close particles
evolve in the flow, the size of the cloud of particles - defined as R =

∑
n<m R2

nm/N -
grows, while the shape is deformed by the local structure of the flow. The Lagrangian
average 〈Za(R(t))〉 grows with the size R and is depleted by the shape evolution. The two
behaviors cancel out and the zero mode is preserved toward the Lagrangian evolution.
Note that the specific assumptions of the Kraichnan model are directly needed only in deriving
closed evolution equations for the Green functions. However, the picture drawn within the
Lagrangian framework allows to learn qualitative lessons for general scalar turbulence. In
particular the asymptotic expansion (1.13) holds for real flows as well (see [4]). The numerical
values of the real anomalous exponents are not expected to match their Kraichnan-model
predictions, as well as the numerical coefficients of the solutions for CN . Nevertheless, the
presence of statistical integrals of motion, preserved by the Lagrangian evolution remains a
fundamental idea. Indeed, the Lagrangian viewpoint has suggested an effective numerical
strategy that has confirmed the general picture drawn from the Kraichnan model for real
flows as well (see [10,12,21,22]). Hence the great importance of the Kraichnan model and
of the Lagrangian picture, highlighting the crucial role of the zero modes.
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Chapter 2

The large-scale breakdown of Gibbs
equilibrium

In November 2004, a workshop was organized in Eilat, a small town on the Red Sea. There,
Alexander Fouxon presented for the first time his work in collaboration with Gregory Falkovich
on the anomalous scaling of the passive scalar at large scales [17]. They essentially modified
the order of spatial length scales presented in figure 1.2, and considered the range of scales
delimited below by the scalar injection scale L and above by the flow correlation length Lv

(already studied in refs [1, 2, 19]). This range of scales is shown in green in figure 4. By
analytical calculations in the Kraichnan model framework, they obtained zero modes for the
fourth and sixth order correlation functions of the scalar field. I participated in the con-
ference together with Antonio Celani and got interested in the problem. Since no upscale
flux of scalar fluctuations develops, this range of scales is expected to display equilibrium
statistics, although the presence of an underlying turbulent velocity field provides mixing.
What is the Lagrangian origin of the arising large-scale anomaly? I traced back the presence
of large-scale zero modes to correlations between two evolving scalar blobs. In this sense,
the emerging anomalous scaling is related to a breakdown of Gibbs equilibrium, whose fun-
damental assumption of independence of the dynamics at different points in space is clearly
violated in the presence of long-range correlations. This is the essence of the work I per-
formed in this framework, that finally allowed to extend the results of Falkovich and Fouxon
to realistic flows.
Later on, I got interested in the large-scale anisotropy of passive scalar turbulence. First, I
performed a rigorous analysis in the Kraichnan model framework that highlighted the pres-
ence of anisotropic zero modes dominating, in broad conditions, the large-scale correlations.
Then, I extended the result to realistic flows by direct numerical simulations. In this case,
the breakdown of Gibbs equilibrium is even more dramatic than in the isotropic one, since
it occurs already at the level of the two-point statistics. In other words, the large-scale
dominance of anisotropy is noticeable from a single scalar snapshot, which is organized in
large-scale elongated structures.
In the following I present the two sets of results I obtained for the large-scale structure of
passive scalar turbulence, that have been published in the papers shown below.
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2.1 Equilibrium violation in large-scale isotropic scalar turbu-
lence

Let us consider the passive scalar problem (1.1) in the above-mentioned range of scales
larger than L and smaller than Lv, like in the green region of figure 4. Here no scalar flux
emerges, so that we might expect the scalar to be well-described by Gibbs equilibrium. The
basic assumption of equilibrium statistics is that particles evolve independently one from the
other. The Gibbs functional, under this assumption, allows to obtain the statistics of each
Fourier mode, that turns out to be Gaussian with variance determined by the small scales
pumping mechanism. In analogy with statistical mechanics, this range is labeled “thermal
equilibrium”, with an effective temperature determined by the small-scale turbulence. The
scalar fluctuations are then expected to be distributed among all the different Fourier modes
according to equipartition.
I performed a numerical analysis of the problem, choosing a two-dimensional velocity field in
the inverse cascade of Navier-Stokes turbulence (see equation (1.2)), forced at small scales
by a white in time forcing and dissipated by viscosity at small scales and by a drag-term
proportional to v itself at large scales. This flow has been studied both experimentally
[26, 39] and numerically [6, 7, 9, 11, 12, 36]. The velocity field is statistically homogeneous
and isotropic, scale-invariant with exponent 1/3 with no intermittency corrections.
Then I integrated the passive scalar evolution (equation (1.1)), isotropically forced at a scale
L slightly larger than the dissipation scale. A small convective range established under L
and the direct cascade process could develop (see figure 4 for a schematic view of the spatial
scales order). Once the stationary state was reached, I measured the two-point correlation
at scales larger than L and - not surprisingly - it satisfied equipartition at a very good level
of precision (see figure 2.1). Details on the simulations can be found in the article presented
below.
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Figure 2.1: Marginal probability density function for three modes of the Fourier transformed scalar, in the
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v . The dotted line corresponds to the equilibrium (Gaussian) expectation, shown for
comparison. Inset: spectral density. Notice the neat plateau according to equipartition.
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v
r

L

L

Figure 2.2: Scheme of the coarse-graining of the passive scalar field. Here a portion of a typical scalar
snapshot obtained by 2D 1024X1024 direct numerical simulations is shown (see the paper presented at
page 63 for the details). θ is injected at the scale L, the turbulent range develops at smaller scales. Thus,
the typical intermittent structure of turbulence is not visible from the figure. The coarse-grained field θr is
essentially an average of the field on domains of size r such that L $ r $ Lv, like the white circle in the
figure. Each blob of size r contains (r/L)d scalar-correlation-length blobs and the variable θr - in the case
of true Gibbs equilibrium - can be considered as a sum of (r/L)d independent variables.

2.1.1 Coarse-graining

However, the equilibrium two-point statistics is not enough to assure thermal equilibrium
of the scalar. The presence of the fourth and sixth orders anomalies suggests that the
breakdown of equilibrium would become apparent only after a finer analysis of the system.
The higher-order correlation functions will turn out to be definitely non-trivial.
In order to get information on the multi-point statistics, I focused on the coarse-grained
scalar field. This object is obtained by the original scalar field θ after a filtering procedure
that basically averages the scalar over volumes of size r:

θr(x, t) =
∫

Gr(x− y)θ(y, t) dy (2.1)

The actual form of the filter Gr is not very relevant, a generic filter which is almost constant
under the scale r and rapidly vanishes at scales larger than r serves the purpose (see figure 2.2
for a scheme of the coarse-graining procedure).
What is the Gibbs-equilibrium expectation for the statistics of the coarse-grained field?

2.1.2 Central-limit-theorem violation

The hypothesis of independence, which is implicitly assumed when speaking of Gibbs equi-
librium, provides a powerful tool for making predictions: the central limit theorem. If r > L,
the support of the filter Gr can be imagined as composed of (r/L)d blobs of size L. On the
basis of a Gibbs-equilibrium picture, one expects each blob to be independent from the oth-
ers, since no large-scale correlations are expected. Therefore the variable θr can be thought
of as a sum of (r/L)d independent variables identically distributed:

θr =
1
N

N∑

i=1

θL(i) N ∝ (r/L)d (2.2)
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By central-limit theorem the random variable θr should converge to a Gaussian with zero
mean and moments 〈θ2n

r 〉 = 〈θ2〉n/N ∝ 〈θ2〉n/(r/L)d in the limit of large number N of
independent terms in the sum (2.2), i.e. of large r. The central-limit theorem provides
a further and finer information than the limit of the series: it tells us how “fast” the
Gaussian limit is approached. The cumulants are the relevant observables to determine this
rate of convergence and compare it with the equilibrium expectation. The cumulants of a
random variable are the differences between the n-moments of the variable and the Gaussian
expectation for the n-moments. Cumulants and moments of the random variable θr are thus
linked by a relation, that for orders 4 and 6 reads:

〈〈θ4
r〉〉 = 〈θ4

r〉 − 3〈θ2
r〉2 ∼ (r/L)−16/3 (2.3)

〈〈θ6
r〉〉 = 〈θ6

r〉 − 15〈θ2
r〉2〈θ4

r〉+ 30〈θ2
r〉3 ∼ (r/L)−22/3 (2.4)

where the scaling exponents are the theoretical anomalous exponents computed in [17] to
be compared with the central-limit theorem expectations 〈〈θ4

r〉〉 ∼ (r/L)−6 and 〈〈θ6
r〉〉 ∼

(r/L)−10. Note that both cumulants decrease with r, so that it becomes extremely difficult
to measure the signal against the noise at large r. Moreover strong cancellations make the
convergence of the statistics extremely slow. The numerical analysis of the coarse-grained-
scalar cumulants shows a neat violation of the equilibrium expectation, thus hinting to long-
range correlations. As shown in figure 2.3, the anomalous exponents of the slow approach of
the coarse-grained field to Gaussianity are in good agreement with the anomalous exponents
computed in [17] in the Kraichnan model framework.
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Figure 2.3: Cumulants of the coarse grained scalar field obtained by DNS of passive scalar transport by a
two-dimensional velocity field (see caption of figure 2.2). The decay of the fourth and sixth order cumulants
are slower than expected on the basis of equilibrium. The anomalous exponents are close to the theoretical
predictions. The best fits give −5.32±0.05 and −7.5±0.5 for the fourth and sixth order cumulant exponent
respectively, compared to the theoretical values −16/3 and −22/3 shown for comparison.

2.1.3 Long-range correlations

When computing the fourth-order cumulant, the leading contributions are given by sets
of points arranged in two pairs of close particles, separated by a large distance r. This
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amounts to state that the squared-scalar field correlations 〈θ2(x+r, t)θ2(x, t)〉 must display
a non-trivial power-law behavior with the correct exponent that gives rise to the anomalous
exponent of 〈〈θ4

r〉〉. I verified this expectation by analyzing the coarse-grained squared scalar
statistics. The results, shown in figure 2.4 point to a good agreement with the theoretical
expectation 〈〈θ4

r〉〉 ∼ (r/L)−4/3.
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Figure 2.4: Cumulants of the coarse-grained square scalar field. The decay of the second order cumulant
display a power law decay with exponent very close to the theoretical expectation−4/3, shown for comparison.

The physical mechanism at the basis of these correlations is given by the underlying
turbulent velocity field. Indeed, it turns out that the squared-scalar field computed in two
different points θ2(x1, t)θ2(x2, t) is equivalent to a product of random variables. Physically
the meaning of these random variables is the time taken by two small scalar blobs to disperse
across the length scale L. Were the two scalar blobs independent, the squared scalar would
display no anomaly. But in the presence of an underlying flow, the two scalar blobs are not
uncorrelated. The observed anomaly is the effect of events where the two scalar blobs evolve
both coherently and their size remains for a long time smaller than L. The results described
in this section have been published in the paper presented at page 63.

2.2 Equilibrium violation and large-scale anisotropy

Figure 2.5: Instance of large-scale anisotropy in physics. Anisotropic structure of the cosmic microwave
background radiation
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Let us now remove the assumption of isotropy and consider a scalar forcing f that excites
both isotropic and anisotropic sectors. We have already pointed out that the large-scale
statistics of the passive scalar is markedly non-trivial already for the isotropic case. In the
case of anisotropy an even more dramatic anomaly takes place already at the level of the two-
point statistics. This provides, in very broad conditions, a predominance of the anisotropic
component in the large-scale structure of the passive scalar.
Note that the propagation of anisotropy toward large scales is a question related to the most
diverse fields of physics. The large-scale anisotropy of the cosmic-microwave-background-
radiation has been supposed to originate from the big bang and to have then propagated
in space and time [8] (see figure 2.5). Additionally the anisotropic propagation of seismic
signals has been traced back to the anisotropic structure of the crystals in mantle rocks [35].

2.2.1 Kraichnan model analysis

Figure 2.6: Snapshot of a scalar field advected by a Kraichnan velocity field with ξ = 0 in two dimensions.
The scalar is injected at small scales (L) with a pumping preferentially acting on the vertical direction. The
propagation of anisotropy toward large scales manifests itself in the presence of elongated structures much
larger than the injection scale.

As a first step I treated the problem analytically in the Kraichnan model framework.
The same arguments given in chapter 1 for the convective-inertial range of scales can be
repeated and applied to the thermal-equilibrium scales. As already mentioned, the large-scale
anisotropy of the passive scalar is already clear at the level of the two-point function. In order
to prove that, I first wrote the two point function and the forcing correlation function on
the basis of the eigenfunctions Yj(r̂) of the angular momentum: C(r) =

∑m
j=1 Cj(r)Yj(r̂),

F (r) =
∑m

j=1 Fj(r)Yj(r̂). By virtue of the symmetry of operators MN (1.5) under rotations,
the problem (1.4) decouples in m independent partial differential equations, one for each
excited sector:

MjCj = Fj Mj = D[(d− 1)r1−d d

dr
rd−1+ξ d

dr
− j(j + d− 2)(d + ξ − 1)rξ−2]

The solutions can be written by means of the kernel Gj(r,R) as in (1.6). Considering the
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large-scale expansion (1.9), in each j-sector, one ends up with the behavior:

Cj(r) ≈ Z−
j (r)

∫ ∞

0
dR

Rd−1

D(ζ−j − ζ+
j )

Z+
j (R)Fj(R) for

r

L
1 1 (2.5)

where Z±
j = rζ±j are the two-point zero modes of the operators Mj :

MjZj = 0.

The exponents ζ±j are easily obtained by the characteristic second-order equation:

ζ2
j + ξζj − (1 + ξ)j2 = 0

There are two solutions of opposite signs ζ+
j > ζ−j : only rζ−j is regular at large-scales.

Now, since the zero-mode exponent ζ−j is maximum for the minimum excited sector, in the
case where all the zero-modes are contributing to the behavior of the solution, the latter
will surely have an isotropic dominance, since the isotropic zero mode will be the slowest
decaying.
Note that, however, the integral in equation (2.5) gives a constant prefactor multiply-
ing the large-scale zero mode in each excited sector. Some of these constants qj =∫∞
0 dR Rd−1Z+

j (R)Fj(R)/[D(ζ−j − ζ+
j )] might vanish, thus “switching off” the j-th zero-

mode contribution. Let us consider the special case for the j = 0 sector. Since the positive
isotropic exponent ζ+

0 vanishes, the constant q0 reduces to:

q0 =
∫ ∞

0
dR

Rd−1

D(−d + 2− ξ)
F0(R) =

∫ ∞

0
dR

Rd−1

D(−d + 2− ξ)

∫

Ω
F (R)dΩ ∝

∫
F (R)dR

(2.6)
In other words, q0 is the mean forcing correlation function or the value of its Fourier transform
at wavenumber zero. This quantity does vanish for the very common choice of forcings
localized in the wave-number space.
Under these very broad conditions, the isotropic zero mode does not contribute to the scalar
correlation function due to the condition q0 = 0. Other qj are not forced to vanish, because
no special relation like (2.6) holds for generic j. Therefore the slow power law behavior
of the lowest anisotropic sector should in general dominate the large-scale structure of the
passive scalar field. I verified this general expectation with a particular choice of the forcing
correlation function and d = 2.

2.2.2 Lagrangian interpretation

Let us suppose to simply deal with a forcing that excites the isotropic sector and the j = 2
sector, with a fast-decaying correlation function for scales larger than L. A picture of a
similar forcing correlation function is given in figure 2.7(a). One can build the large-scale
behavior of the two-point correlation function by following the Lagrangian trajectories of two
generic particles (see 2.7(b)), starting at a very large distance r one from the other. The
scalar correlation function is obtained by the following integral:

C(r, t) = 〈
∫ t

0
F (R(s), s)ds〉 R(t) = r (2.7)
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(a) (b)

Figure 2.7: Example of forcing correlation function exciting 2 sectors. The forcing is positively correlated
on the horizontal direction and negatively on the vertical one.

where the Lagrangian average is made on particles separated at time t by a distance r. The
integral is essentially zero until the particles come to a distance smaller than L. In order
to extract the isotropic component one should average C(r, t) on all randomly distributed
initial directions r̂. The positive and negative contributions coming from vertically and hor-
izontally aligned particles, cancel during the average: the isotropic component of C collects
only exponentially small contributions. On the contrary, in order to extract the anisotropic
component, one should perform the average by giving different weights to the different di-
rections in space. Since particles trajectories keep a memory of their initial conditions due to
the underlying turbulent advection, the different weights are not completely random when
particles get closer than L. Therefore, positive and negative contributions do not cancel
and give a slow power-law decay of the anisotropic scalar correlation. Hence the anisotropic
nature of large-scale scalar turbulence.

2.2.3 Realistic flows

This Lagrangian interpretation suggests that the same results should hold for realistic flows.
I thus performed direct numerical simulations of a two-dimensional Navier-Stokes velocity
field (see section 2.1), advecting a passive scalar θ, forced at scale L anisotropically. The
order of the length scales is like in figure 4, and the details of the simulations are given in
the papers below. I could prove that the whole picture built first with the Kraichnan model
analysis and then by the Lagrangian interpretation holds for realistic flows as well. The scalar
two-point correlation, obtained by Fourier transforming the scalar spectra (see figure 2.8),
shows a slow power-law decay of the anisotropic component, dominating the fast-decay of
the isotropic one. As shown in figure 2.6, the large-scale anisotropy is visible from a single
snapshot of the scalar that reveals the presence of elongated structures, much larger than
the scalar correlation length L.

It would be interesting to check whether the traditional equilibrium expectation is violated
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also in other systems, like three-dimensional hydrodynamic turbulence. The general idea is
that an alternative equilibrium picture might arise in this context. The probability distribution
of different states of the system might be deduced from a modified version of the Gibbs
functional. Theoretical, numerical and experimental further insights would be extremely
interesting to clarify this point. The results descibed in this section have been published in
the paper presented at page 67.
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We investigate the large-scale statistics of a passive scalar transported by a turbulent velocity field by
means of direct numerical simulations. We focus on scales larger than the characteristic length scale of
scalar injection, yet smaller than the correlation length of the velocity. We show the existence of nontrivial
long-range correlations in the form of new power laws for the decay of high-order coarse-grained scalar
cumulants. This result contradicts the classical scenario of Gibbs equilibrium statistics that should hold in
the absence of scalar flux. The breakdown of ‘‘thermal equilibrium’’ at large scales is traced back to the
statistical geometry of turbulent dispersion of two scalar blobs. The numerical values obtained for the
scaling exponents of the coarse-grained scalar cumulants are in agreement with recent theoretical results.
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The evolution of a passive scalar field !!x; t", like dilute
dye concentration or temperature in appropriate condi-
tions, transported by an incompressible velocity field
v!x; t", is governed by the advection-diffusion equation

@t!# v $r! % "!!# f; (1)

where f is a source of scalar fluctuations that acts at a
length scale L. We are interested in the typical situation
where the velocity field is turbulent and characterized by a
self-similar statistic &v!x# r" ' v!x"( ) r1=3 in the range
of scales delimited above by the velocity correlation length
Lv and below by the viscous scale #. Passive scalar fluc-
tuations are generated at the scale L, form increasingly
finer structures due to velocity advection, and originate a
net flux of scalar variance to small scales, where it is
eventually smeared out by molecular diffusivity at a scale
rd. Here we will consider the case where these scales are
ordered as follows: Lv * L * #, rd. In the range L *
r * rd the average scalar flux is constant and equals the
average input rate: this is the well studied inertial-
convective range where ! displays non-Gaussian statistics
and anomalous scaling [1,2].

In this Letter we focus our attention on the range of
scales larger than L. There, no scalar flux is present.
Accordingly, one would expect Gaussian statistics and
equipartition of scalar variance, i.e., the hallmarks of sta-
tistical equilibrium. Contrary to this expectation, we show
that, in the intermediate range Lv * r * L, the ‘‘thermal
equilibrium’’ scenario breaks down due to the appearance
of new nontrivial power laws for the decay of high-order
scalar correlations. These are traced back to the presence of
long-range correlations in the dynamics of two scalar blobs
advected by the turbulent velocity field. Our results extend
the recent findings by Falkovich and Fouxon [3]—ob-
tained in the context of the Kraichnan model of passive
scalar advection where the velocity field is Gaussian, self-
similar and short-correlated in time—to passive scalar
advection by a realistic turbulent flows.

As an instance of a dynamical turbulent flow we con-
sider two-dimensional Navier-Stokes turbulence in the
inverse cascade range. This flow has been studied in great
detail both experimentally (in fast flowing soap films [4]
and in shallow layers of electromagnetically driven elec-
trolyte solutions [5]) and numerically [6,7]. The velocity is
statistically homogeneous and isotropic, scale-invariant
with exponent 1=3 (no intermittency corrections to
Kolmogorov scaling) and with dynamical correlation times
scaling as r2=3 as expected on dimensional grounds. This
flow has also been utilized to investigate passive scalar
transport in the range L * r * rd [8] and multiparticle
dispersion, an intimately related subject [9].

Let us start the description of our results by recalling that
the equilibrium statistics for the scalar field is described by
the Gibbs functional P &!̂( % Z'1 exp&'$

R j!̂!k"j2dk(.
Accordingly, in the range kL & 1, where no scalar flux is
present, the Fourier modes should behave as independent
Gaussian variables with equal variance 1=!2$" (equipar-
tition), and the isotropic spectrum E!k" % 2%khj!̂!k"j2i
should be proportional to k. As shown in Fig. 1, we indeed
observe E!k" ) k and a statistics of single Fourier modes
indistinguishable from Gaussian. However, from those
findings alone one cannot state conclusively that large-
scale passive scalar is in a thermal equilibrium state, given
that they do not allow to rule out the possibility of long-
range correlations for higher-order observables (e.g., four-
point scalar correlations). A more refined description of the
large-scale properties of the passive scalar is thus required.
It can be obtained in terms of the coarse-grained field

!r!x; t" %
Z

Gr!x' y"!!y; t"dy (2)

where Gr acts as a low-pass filter in Fourier space (for in-
stance, the top-hat filter Gr!x' y" % 1=!%r2" if jx' yj<
r and zero otherwise; or the Gaussian filter Gr!x' y" %
!2%r2" exp&'jx' yj2=!2r2"(). For r ! 0 the filter reduces
to a two-dimensional & function and therefore !r ! !.
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The statistics of ! is typically super-Gaussian [2]: its
probability density function has exponential-like tails even
for a Gaussian, & correlated in time driving force f. Indeed,
in the latter case it can be shown exactly, by a minor
modification of the arguments given in Ref. [10], that !
is the product of two independent random variables

!%! '
!!!!!!!!!

F0T
p

where ' is a Gaussian variable of zero mean
and unit variance, F0 is the average injection rate of scalar
fluctuations, and T is a positive-defined random variable,
independent from '. The variable T is essentially the time
taken by a spherical blob of minute initial size to disperse
across a length L for a given flow configuration [11].
Therefore h!2ni=h!2in%!2n'1"!!hTni=hTin+!2n'1"!!;
i.e., ! is super-Gaussian unless T is nonrandom. The
distribution of !r is super-Gaussian as well; however, as
r increases above the forcing correlation length, the proba-
bility density of !r tends to a Gaussian distribution, as it is
clearly seen by the scale dependence of the distribution
flatness and hyperflatness (see Fig. 2).

Within the framework of Gibbs statistical equilibrium,
the scalar field has vanishingly small correlations above the
scale L: therefore one could view !r as the sum of N ,
!r=L"2 independent random variables (identically distrib-
uted as !) divided by N. By central-limit-theorem argu-
ments [12], the moments of order 2n of the coarse-grained
scalar field (odd-order moments vanish by symmetry)
should then scale as N'n, giving h!!r"2ni) h!2in -
!r=L"'2n. This is a very good estimate for n % 1: indeed,
as shown in Fig. 3, the product !r=L"2h!2ri has a very neat
plateau. This is consistent with the fast decay of the two-
point scalar correlation h!!x; t"!!x# r; t"i at r * L.
Indeed, in this case the second-order moment h!2ri %R

dy1dy2Gr!y1 ' x"Gr!y2 ' x"h!!y1; t"!!y2; t"i is domi-
nated by contributions with jy1 ' y2j & L yielding h!2ri)
h!2i!r=L"'2. Alternatively, by Fourier transforming the
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FIG. 2 (color online). The flatness and hyperflatness of the
coarse-grained scalar field as a function of r=L, normalized by
their Gaussian values !2n'1"!!. For r ! 0 the curves tend to the
flatness factors of the field !: the numerical values correspond to
a super-Gaussian probability density function lnp!!" ) '!1:6.
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FIG. 1 (color online). (a) Passive scalar (red, upper trace) and
velocity (blue, lower trace) spectra. The data result from the time
integration of the two-dimensional Navier-Stokes equations
@tv# v $rv % 'rp# (!v# F' )v and Eq. (1) by a pseu-
dospectral method on a 10242 grid. The term ')v is a kinetic
energy sink used to model the effect of air friction on thin soap
films. The passive scalar is injected by a Gaussian, & correlated
in time, statistically homogeneous, and isotropic forcing re-
stricted to a narrow band of wave numbers. The initial condition
for the velocity field is a configuration taken from a previous
long-time integration and thus already at the statistically sta-
tionary state. The passive scalar starts from a zero field configu-
ration, and after a transient of a few large-eddy turnover times
*v % Lv=vrms where Lv is the integral scale of the velocity field,
it reaches its own statistically steady state as well. Time averages
are taken after this relaxation time has elapsed, for a total
duration of more than 104 scalar correlation times *L ,
*v!L=Lv"2=3. Here L=Lv , 0:02. The velocity spectrum agrees
with the Kolmogorov prediction k'5=3 and the passive scalar one
follows very closely the equipartition spectrum in two-
dimensions E!k" ) k [see also the inset of panel (b)]. (b) The
marginal probability density function of a single Fourier ampli-
tude !̂!k" is indistinguishable from a Gaussian (dotted curve) for
all wave numbers in the range L'1 * k * L'1

v . Here are shown
three wave numbers with kL % 0:5, 0.25, 0.12. In the inset is
shown the spectral density hj!̂!k"j2i that shows a neat plateau at
kL . 1 (notice the linear scale on the vertical axis).
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coarse-grained field one obtains h!2ri %
R jĜr!k"j2 -

hj!̂!k; t"j2idk ’ h!2i!r=L"'2, since the transformed filter
Ĝr!k" is close to unity for kr . 1 and falls off very rapidly
for kr * 1, and j!̂!k; t"j2 ’ h!2i=!%L2". In summary, two-
point statistics appears to be consistent with Gibbs equi-
librium ensemble. The situation for multipoint correlations
will turn out to be different.

A careful inspection of higher-order moments shows a
less good agreement with central-limit-theorem estimates
(see Fig. 3): this points to the existence of subleading
contributions to the moments h!2nr i for n>1 arising from
long-range correlations of multiple scalar products. In or-
der to quantify more precisely the rate of convergence to
Gaussianity and its relationship to long-range correlations,
it is useful to consider the cumulants of the random vari-
able !r. According to the central-limit theorem [12], the
cumulant of order 2n should vanish with N'2n#1 leading to
an expected scaling hh!2nr ii) hh!2nii!r=L"'4n#2. Let us re-
iterate that the former expression is expected to be valid in
absence of scalar correlations across length scales r * L.

For n % 1 we have hh!2rii % h!2ri whose behavior has
been already detailed above. In Fig. 4 we show the behav-
ior of hh!4rii % h!4ri' 3h!2ri2 and hh!6rii % h!6ri' 15h!2ri-
h!4ri# 30h!2ri3. For the fourth-order cumulant, we observe
a scaling law very close to the theoretical expectation
hh!4rii ’ hh!4ii!r=L"'16=3 obtained in Ref. [3] for + %
2=3, which corresponds to Kolmogorov-Richardson scal-
ing for the velocity dynamics. This has to be contrasted
with the scaling law !r=L"'6 given by central-limit argu-
ments. The breakdown of the central-limit theorem is due
to the existence of long-range dynamical correlations in the
range r * L. These exclude the possibility of a true Gibbs
statistical equilibrium at large scales. The leading contri-
bution to the fourth-order cumulant hh!4rii %

R

dy1 -
dy2dy3dy4Gr!y1 ' x"Gr!y2 ' x"Gr!y3 ' x"Gr!y4 ' x" -
hh!!y1; t"!!y2; t"!!y3; t"!!y4; t"ii comes from configura-
tions with the four points arranged in two pairs of close

particles (e.g., jy1 ' y2j & L and jy3 ' y4j & L) sepa-
rated by a distance r (e.g., jy1 ' y3j ’ r). Otherwise stated,
two-point correlators of the squared scalar field
hh!2!x; t"!2!x# r; t"ii must display a nontrivial scaling
!r=L"'4=3. We will get back to the issue of the statistics
of !2 momentarily. The sixth-order cumulant hh!6rii is ex-
tremely difficult to measure because of the strong cancel-
lations between various terms. Upon collecting the statis-
tics over about ten thousand scalar correlation times, we
can conclude that the results are consistent with the power-
law decay hh!6rii ’ hh!6ii!r=L"'22=3 suggested by the
theory for + % 2=3, and arising from terms like hh!4rii-
hh!2rii that appear in the expansion of the sixth-order cu-
mulant [3]. The actual exponent for hh!6rii cannot be de-
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FIG. 4 (color online). Cumulants of order 4 and 6 for the
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FIG. 3 (color online). Moments of the coarse-grained scalar
field h!2nr i compensated by the thermal equilibrium expectation
!r=L"2n. The error bars are determined by dividing the sample in
ten subsamples and computing the dispersion around the mean.
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termined with great precision, yet it lies within the range
between '7 and '8, thus definitely different from the
central-limit-theorem expectation, '10.

Further insight on the deviations from statistical equi-
librium at large scales can be gained by studying the
statistics of the coarse-grained squared scalar field

!!2"r !x; t" %
Z

Gr!x' y"!2!y; t"dy: (3)

The cumulants of !!2"r give useful information about the
presence of long-range correlations of the field !2. The
first-order cumulant hh!!2"r ii 0 h!!2"r i is trivially equal to
h!2i. The second-order cumulant hh!!2"2r ii % h!!2"2r i'
h!!2"r i2 for a scalar field in thermal equilibrium should
decay rapidly to zero at large scales r * L. On the con-
trary, as shown in Fig. 5, we observe a slow power-law
decay with an exponent close to the theoretical expectation
(for + % 2=3) hh!!2"2r ii ’ hh!4ii!r=L"'4=3 [3].

Higher-order cumulants behave self-similarly as
hh!!2"nr ii) hh!!2"2r iin'1. This result can be interpreted in
terms of the geometrical properties of the positive measure
defined by the squared scalar field: at scales r * L the field
!2 appears as a purely fractal object with dimension DF ,
2=3 (see Fig. 6) onto a space-filling background.

We end up by discussing the physical origin of long-
range scalar correlations. For a Gaussian forcing we have

!2!x1; t"!2!x2; t"%
!
F2
0'

2
1'

2
2T1T2. At distances jx1 ' x2j %

r * L the two Gaussian variables '1 and '2 are indepen-
dent. However, this is not the case for T1 and T2 because of
the underlying velocity field. Therefore, the long power-
law tail for hh!!2"2r ii arises from events where hT1T2i *
hTi2. This amounts to say that two blobs of initial size

smaller than L, released at a distance r * L in the same
flow, do not spread considerably by turbulent diffusion
(i.e., T1;2 * hTi) with a probability )!r=L"'4=3.

In summary, we have shown that the scenario of Gibbs
statistical equilibrium is not valid for large-scale passive
scalar turbulence in spite of the absence of scalar flux.
Long-range correlations appear at the level of high-order
cumulants of the coarse-grained scalar field. It would be
extremely interesting to understand whether the break-
down of ‘‘thermal equilibrium’’ holds for other turbulent
systems as well, in particular, for two and three-
dimensional hydrodynamic turbulence at very large scales.
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Falkovich and A. Fouxon. This work has been supported
by the EU under the contract HPRN-CT-2002-00300.
Numerical simulations have been performed at CINECA
(INFM parallel computing initiative).
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Large-Scale Anisotropy in Scalar Turbulence

Antonio Celani1 and Agnese Seminara1,2

1INLN, CNRS, 1361 Route des Lucioles, 06560 Valbonne, France
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The effect of anisotropy on the statistics of a passive tracer transported by a turbulent flow is
investigated. We show that under broad conditions an arbitrarily small amount of anisotropy propagates
to the large scales where it eventually dominates the structure of the concentration field. This result is
obtained analytically in the framework of an exactly solvable model and confirmed by numerical
simulations of scalar transport in two-dimensional turbulence.
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The emergence of large-scale anisotropy arising from
small-scale sources is a phenomenon that spans the most
diverse fields of physics. For instance, the microscopic
anisotropy of crystals in mantle rocks in the Earth’s in-
terior is believed to induce large-scale seismic anisotropy
[1], and some small anisotropic perturbation in an early
cosmological era, evolving through gravitational collapse,
is thought to be responsible for the large-scale anisot-
ropy of the cosmic microwave background radiation [2].
Conversely, in statistical physics, microscopic details such
as lattice anisotropies may be wiped out by the dynamics
allowing a recovery of symmetry and universality at large
scales [3]. In the theoretical and experimental analysis of
turbulence much attention has been devoted to the anisot-
ropy of the fine scales of fluid motion (see, e.g., Ref. [4]
and references therein). Here, we take a different viewpoint
and investigate the effect of anisotropy on the large-scale
statistics of turbulence. In this Letter we show how, un-
expectedly, breaking rotational invariance by an arbitrarily
small amount at a given scale induces a strong anisotropy
on the large scales, and symmetry is never restored.

We consider the evolution of a passive tracer described
by a concentration field !"x; t# and transported by a turbu-
lent flow v"x; t#

@t!$ v % r! & "!!$ f; (1)

where v is an incompressible, statistically homogeneous,
and isotropic velocity field. The external driving f is the
source of scalar field fluctuations acting at a characteristic
scale lf. The turbulent cascade toward small scales pro-
duces fine-scale structures of concentration that are even-
tually smeared out by diffusion at scales rd ' lf, resulting
in a statistically stationary state where input and dissipa-
tion are in balance on average. The pumping mechanism
can be chosen so as to introduce a certain degree of
anisotropy, that propagates across scales and may, in prin-
ciple, pervade the system. However, the disordered motion
of fluid particles induced by the underlying turbulent,
isotropic medium, might be sufficient to restore rotational
invariance at scales far below or above lf. Indeed, this is

the case at small scales r ' lf, where it can be shown that
the dominant contribution to the statistics of the scalar field
! is isotropic [4]. At large scales r ( lf, since no upscale
cascade of scalar fluctuations occurs, a fortiori one would
expect an essentially isotropic concentration field. On the
contrary, here we give theoretical and numerical evidence
that large-scale statistics is dominated by the anisotropic
contribution under very broad conditions. We show the
following. (i) The correlation function h!"r; t#!"0; t#i at
scales r ( lf is dominated by its anisotropic component
decaying as a power law with an anomalous scaling ex-
ponent, as opposed to the exponential fall-off of the iso-
tropic part. This result is obtained analytically in the
framework of the exactly solvable Kraichnan model and
its validity for realistic flows is demonstrated by numerical
simulations of passive scalar advection in the inverse cas-
cade of two-dimensional turbulence. (ii) Large-scale an-
isotropy manifests itself in the concentration field with the
appearance of ‘‘pearl necklace’’ structures aligned with the
preferential direction imposed by the microscopic anisot-
ropy. (iii) The loss of isotropy at large scales can be
interpreted as a breakdown of equilibrium Gibbs statistics
for the anisotropic degrees of freedom. (iv) In the
Lagrangian interpretation of passive scalar transport the
emergence of anisotropic power-law decay of correlation is
associated to a long-lasting memory of the initial orienta-
tion of particle pairs advected by the flow.

Let us first consider the Kraichnan model of passive
scalar advection (see, e.g., Ref. [5] for a thorough re-
view), where v is a Gaussian, self-similar, incompres-
sible, statistically homogeneous and isotropic, white-in-
time, d-dimensional velocity field. Its statistics are char-
acterized by the correlation S#$"r#%"t# & h)v#"r; t# !
v#"0; t#*)v$"r; 0# ! v$"0; 0#*i & 2Dr&)"d$ &! 1#%#$ !
&r#r$=r2*%"t#. The exponent & measures the degree of
roughness of the velocity field and lies in the range 0<
&< 2, the two extremes corresponding to Brownian diffu-
sion and smooth velocity, respectively. The assumption of
% correlation is of course far from being realistic, yet it has
the remarkable advantage of leading to closed equations

PRL 96, 184501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
12 MAY 2006

0031-9007=06=96(18)=184501(4) 184501-1  2006 The American Physical Society

67



for equal-time correlation functions. In the following it will
be sufficient to focus on the two-point correlation function
C"r# & h!"r; t#!"0; t#i. In the limit of vanishing diffusivity
" ! 0 and in the statistically stationary state, C obeys the
partial differential equation MC"r# & !F"r# where M &
1
2 S#$"r# @

@r#
@

@r$
. Here F is the correlation function of the

Gaussian, white-in-time, statistically stationary, homoge-
neous, anisotropic forcing hf"r; t#f"0; 0#i & F"r#%"t#. At
scales r & lf it equals the average input rate of scalar
and then decays rapidly to zero, e.g., exponentially, as r (
lf. By virtue of the statistical isotropy of the velocity field,
the operator M assumes a particularly simple form in
radial coordinates: M & D)"d! 1#r1!d@rrd!1$&@r $
"d$ &! 1#r&!2L2* where L2 is the d-dimensional
squared angular momentum operator. It is then convenient
to decompose the correlation functions on a basis of ei-
genfunctions of angular momentum L2Yj & !j"j$ d!
2#Yj with positive integer j. The shorthand notation Yj"r̂#,
where r̂ & r=r, does not account for degeneracies and
stands for the trigonometric functions in d & 2 and the
spherical harmonics in d & 3. Accordingly, we define the
components of the correlation functions in the jth aniso-
tropic sector as C"r# & P

jCj"r#Yj"r̂# and similarly for
F"r#, where Cj and Fj depend on r & jrj only. This yields
a system of uncoupled differential equations in the radial
variable for each anisotropic component MjCj"r# &
!Fj"r#, where Mj & D)"d! 1#r1!d d

dr r
d!1$& d

dr ! j"j$
d! 2#"d$ &! 1#r&!2*, that can be solved in each sec-
tor j. The resulting Cj"r# is a linear combination of a
particular solution determined by Fj"r#, and a homogene-
ous one Zj"r#, a ‘‘zero mode.’’ It is easy to see that the
former behaves as r2!&$j for r ' lf (recall that Fj + rj at
small r if F is analytic in the neighborhood of r & 0) and
that it must fall off exponentially fast for r ( lf, as dic-
tated by the decay of Fj. The homogeneous solutions

are Z,
j "r# & r'

,
j with scaling exponents ',j & 1

2 -
)!d$ 2! &,

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"d! 2$ &#2 $ 4 j"j$d!2#"d$&!1#

d!1

q
*. The

zero mode with positive scaling exponent '$j appears at
small scales whereas the zero mode with negative scal-
ing exponent '!j is relevant in the range r ( lf. In or-
der to fully characterize the large-scale behavior of the
correlation function, it is necessary to identify the pre-
factor appearing in front of the homogeneous solu-
tion. This can be accomplished by writing the equation
for Cj in integral form: Cj"r# &

R1
0 Gj"r;(#Fj"(#d(,

where Gj"r;(# is the kernel of !M!1
j , i.e., the solution

of MjGj"r;(# & !%"r! (#. The explicit form is
Gj"r;(# & A"(#Zj

$"r#Zj
!"(# for r < ( and Gj"r;(# &

A"(#Zj
!"r#Zj

$"(# for r > (, with A"(# & (d!1=)D"'$j !
'!j #*. Plugging this expression in the integral form for the
correlation function yields a large-scale behavior Cj"r# .
QjZ!

j "r# $ exponentially decaying terms. The quantity

Qj &
R1
0 A"(#Zj

$"(#Fj"(#d( is of crucial importance
and plays the role of a ‘‘charge’’ in analogy with electro-
statics [6]. In the isotropic sector j & 0, it reduces to Q0 &

""d=2#
2)d=2D"d!2$&#

R
F"r#dr. When the isotropic charge Q0 ! 0,

the leading behavior at large scales is isotropic, C"r# +
C0"r# +Q0r!d$2!&. The most interesting situation is
when Q0 & 0, corresponding to the broad class of forcings
localized in wave number space (Q0 / F̂"k & 0#). In this
event, there is no power-law contribution from the iso-
tropic zero mode and therefore the isotropic part of the
correlation function is characterized by an exponential
decay at large r [6,7]. In the anisotropic sectors, it appears
immediately that there is no reason to expect a null charge
and the generic situation is Qj ! 0 for j > 0 (see Ref. [8]).
As a result, the large-scale correlation is dominated by the
anisotropic contribution arising from the zero mode,
C"r# + r'

!
j Yj"r̂#, that largely outweighs the exponentially

small isotropic part. Among the various contributions aris-
ing from different sectors, the leading one corresponds to
the lowest nonzero j excited by the forcing, typically j & 2
(odd j’s are switched on only by breaking reflection
invariance).

For the sake of illustration, we show in Fig. 1 an instance
of a scalar field corresponding to the simple case of
Kraichnan advection by a very rough velocity (& & 0), in
d & 2 and with Q0 & 0. Large-scale anisotropy manifests
itself in the appearance of ‘‘pearl necklaces’’ made of like-
sign scalar patches of size +lf. These are aligned along the
preferred direction of the forcing and extend for a length
( lf.

It is worth pointing out the relationship between the
appearance of anisotropic, anomalous scaling in the
large-scale behavior of the scalar correlation function and

FIG. 1 (color online). Image of a scalar field for the Kraichnan
model at & & 0, d & 2, Q0 & 0, Q2 ! 0. The width of a single
scalar patch is +lf. Forcing is preferentially acting in the vertical
direction. Here C0"r# + e!r2=l2f and C2"r# + r!2 at r ( lf.
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equilibrium statistics. At large scales, because of the ab-
sence of scalar flux, the system could be expected to be in
equilibrium and obey Gibbs statistics. In physical space
this corresponds to a concentration field organized in in-
dependently distributed scalar patches of size lf. As re-
cently shown in Refs. [6,7], this is not true and substantial
deviations are observed at the level of multipoint correla-
tion functions already in the isotropic case. This departure
has been traced back to the existence of nontrivial zero
modes in that case as well. In the present case the break-
down of Gibbs statistics has an even more dramatic mani-
festation since it occurs already for two-point correlation
functions, i.e., at the level of the spectral distribution of
concentration. We now rephrase the previous findings in
terms of the averaged scalar spectral density, i.e., the
Fourier transform of the correlation function, Ĉ"k# &
hj!̂"k; t#j2i, and its decomposition in angular sectors in
wave number space

P
jĈj"k#Yj"k̂#, where k̂ & k=k. For a

correlation function decaying exponentially to zero at large
r, representative of large-scale equipartition in physical
space, the spectral density is analytic in a neighborhood
of k & 0. In the series for Ĉ"k# the harmonic Yj"k̂# appears
only in the powers of k of order / j, yielding the long
wavelength behavior Ĉ"eq#

j "k# + kj. This defines the equi-
partition spectrum for generic anisotropic fluctuations.
However, because of the appearance of nontrivial zero
modes in the anisotropic sectors the actual spectral density
contains also a contribution Ĉ"zero#

j "k# + k!d!'!j that is
responsible for the power-law decay of correlations in
physical space with j > 0. For the Kolmogorov-
Richardson value & & 4=3 and the sector j & 2 the anoma-
lous spectrum always dominates the equipartition contri-
bution in spectral space as well (!d! '!j&2 < 2 for all
&< 3=2).

It is useful to reinterpret the results obtained so far
within the framework of the Lagrangian interpretation of
passive scalar transport. The correlation function can be
generically written as C"r# & R

T"!jr#F"!#d! where
T"!jr#d! is the average time spent at a separation !$ d!
by a pair of particles that end their trajectories at a sepa-
ration r. In the Kraichnan model T is the kernel of the
operator !M!1. Since the action of the forcing is re-
stricted to scales +lf, the large-scale behavior of the
correlation function is essentially dominated by the en-
semble of trajectories that have spent in the past a suffi-
ciently long time at a short distance ( & lf ' r. When
r=( tends to infinity T becomes independent of ( and we
obtain T + r!d$2!& [9]. The dependency on the final
orientation r̂ is also lost. This leads to the estimate C"r# +
Q0r!d$2!&. However, as noticed previously, when Q0 & 0
the isotropic part of the correlation function receives only
exponentially small contributions from the forcing in the
range (+ r ( lf. Let us now turn our attention to the
anisotropic part of the correlation function. Projecting C"r#
over Yj"r̂# for j > 0 amounts to giving different weights,

positive and negative, to particle pairs oriented in different
directions r̂. Therefore Cj can be interpreted as a difference
of times spent at ( & lf by differently oriented pairs. The
first key point is that the trajectories preserve a long-lasting
memory of their initial orientation, with a slow power-law
decay in r that reflects in the behavior of the correlation
function. Indeed, it can be shown that in the Kraichnan
model T"!jr# & P

jbjr
'!j ('$j Yj"r̂#Yj"!̂# for r > (. Plug-

ging this expression in the integral form of the correlation
function gives the result Cj"r# +Qjr

'!j as above. Here
emerges the second important point, i.e., the dependence
of T on (: differently oriented trajectories sample the
forcing unevenly in scales as (+ lf and this results in a
nonvanishing charge Qj for j > 0.

A remarkable advantage of the Lagrangian interpreta-
tion is that it does not make appeal to the special features of
the Kraichnan model. This suggests that the same mecha-
nisms are at work for realistic turbulent flows as well, and
this expectation has been repeatedly confirmed for differ-
ent aspects of passive scalar transport [7,10,11]. Here we
show that anisotropy dominates the large-scale statistics
for real flows by showing the results of a numerical inves-
tigation of passive scalar transport in the inverse cascade of
two-dimensional Navier-Stokes turbulence. This flow has
been studied in great detail, both experimentally in fast
flowing soap films [12] and in shallow layers of electro-
magnetically driven electrolyte solutions [13,14], and nu-
merically [15–17]. The velocity field v is statistically
homogeneous, isotropic, and scale-invariant with exponent
h & 1=3 (%rv+ rh) in the range lvf & r & Lv, where lvf
denotes the kinetic energy injection length and Lv the
velocity integral scale. The scalar field is governed by
Eq. (1) driven by a homogeneous, anisotropic, Gaussian,
%-correlated driving f that excites the sectors j & 0
and j & 2 and satisfies the condition of null isotropic
charge (see Ref. [8]). The various length scales are or-
dered as follows: lvf ' rd ' lf ' Lv. In Fig. 2 we
show the spectral content of scalar fluctuations Ej"k# &
)!1k

R
2)
0 cos"j*k#Ĉ"k#d*k & kĈj"k# at klf < 1, i.e., at

large scales. The isotropic spectrum (j & 0) agrees very
well with the Gibbs equilibrium distribution, Ej&0"k# / k,
and corresponds to exponentially decreasing isotropic cor-
relation at large scales (see the main frame of Fig. 3) in
agreement with the theoretical arguments presented above.
The anisotropic spectrum shows a power-law behavior
Ej&2"k# + k2:2,0:1 definitely dominating over the equilib-
rium spectrum Eeq

j&2"k# + k3. In physical space, this trans-
lates into a power-law decay of the anisotropic correlation
function Cj&2"r#, as shown in the main frame of Fig. 3, and
leads to the estimate '!j&2 ’ !3:2, 0:1. Therefore, the
correlation function at large scales is dominated by the
anisotropic power-law decay for 2D Navier-Stokes ad-
vection as well. Finally, we notice that for incompres-
sible, time-reversible, self-similar flows the two zero-
mode exponents are conjugated by the dimensional rela-
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tion '$j $ '!j & !d$ 1! h (within the Kraichnan model
1! h & 2! &, due to the % correlation in time). In the
inset of Fig. 3 we show the behavior of the correlation
function Cj&2"r# + r'

$
j at small scales r ' lf that indeed

displays an exponent '$j & 1:8, 0:1 compatible with the
previous relation [18].

In summary, we have shown that microscopic anisotro-
pies introduced by the forcing have a dramatic imprint on
the large-scale statistics of passive scalar turbulence. From
this result new questions arise naturally, the most intrigu-
ing one being whether the large scales of hydrodynamic
turbulence show such striking properties as well. Further
theoretical, experimental, and numerical effort in this di-
rection is needed to elucidate this point.
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Part III

Turbulent transport of condensing
droplets





Introduction

This part of the thesis is devoted to the problem of condensation/evaporation in turbulent
flows, that I treated theoretically and numerically. The growth or decrease of droplet size
by condensation/evaporation of surrounding vapor molecules is relevant for the most diverse
fields, spanning from physics [18] to engineering [30] and medicine [17]. When being inhaled
through the respiratory tract, many types of droplets undergo size changes due to evapora-
tion or condensation [28]. This is the case for certain types of medicinal drug nanocrystals
assumed by inhalation. Hygroscopicity can substantially increase their size and this strongly
affects their deposition along the highly complicated structures of human respiratory sys-
tem [4]. Therefore, a correct dose assessment of such size-changing particles requires a
detailed analysis of transport and size-dependent deposition in human airways.
The investigation of this effect is also very important in clinical studies for treating pul-
monary disorders. Exposure to atmospheric particulate or pollutant are the possible cause
for inhalation of toxic particles. Some of them are highly volatile and are subjected to a dra-
matic size decrease for evaporation [29]. The local particle deposition patterns, depending
on particle size, seem to play a crucial role in the development of lung cancer [3]. Note that
in conditions of light activity breathing, the inspiratory flow undergoes local transitions to
turbulence and this may play a role in the process.
As another instance, this general problem is relevant for an important technological issue
such as the development of spark-ignition engines. These are designed to inject gasoline
droplets directly into the combustion chamber and can substantially improve fuel economy
and reduce hydrocarbon emissions. A high level of turbulence is essential for enhancing the
fuel-air mixing and the rate of fuel vaporization [30].

Though applied in a completely different framework, the same idea has a long history in
cloud physics as well. Turbulence in clouds is a spectacular phenomenon which cannot be
disregarded when approaching the problem of rain formation. The non-linear coupling of the
dynamics at different scales coincides with a strongly out of equilibrium transport mechanism
providing a local structure of the fields definitely non-trivial. I explored the problem by means
of direct numerical simulations of turbulent transport of micro droplets and a vapor field.
A correlation mechanism between droplets and vapor emerged, showing that a mean-field-
type theory would not capture essential features of the dynamics. Namely, a mean droplet
growth can establish also in the presence of a vapor field with zero average. A spreading of
droplet-size distribution is observed, although a first look at the evolution equation of droplet
radius would promise narrowing. The basic mechanisms emerged are direct consequences of
turbulent transport and can be relevant for the long-standing problem of the bottleneck of
condensation in warm clouds.
Warm clouds are huge natural laboratories where interactions of the most diverse nature
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Figure 9: Turbulent condensation/evaporation in different physical systems. From left to right: typical
exhaust plume from an engine run-up procedure, releasing unburnt and partially burnt toxic particulate
dangerous for the ground personnel; engine injector of fuel droplets; water droplets in warm clouds.

occur: chemistry, microphysics, thermodynamics and electrostatics, all play important roles
in the development of clouds and precipitation. The approach I adopt here does not aim to
reproduce exactly the conditions of a real cloud. Rather, I strip bare the system to some
basic ingredients: small droplets and condensing water vapor advected by a turbulent flow.
From their formation onto tiny solid particles (cloud condensation nuclei) droplets must
grow of more than three orders of magnitude in size, from ≈ 1µm to a few mm, in order to
become raindrops. To bridge this gap, two main physical mechanisms are available in warm
clouds. The first one is condensation, dominant immediately after droplet formation. Later,
when droplets become sufficiently large, collisions become relevant and droplets undergo a
much faster growth. Although collisions are much more efficient than condensation, this
efficiency depends on the preceding stage. Hence the crucial importance of condensation for
rain formation. In particular, since the probability of collisions due to gravity is proportional
to the velocity difference between the two colliding droplets, it turns out that a population of
identical droplets would collide seldom and would be eventually unable to produce rain. This
wrong expectation is exactly what one obtains on the basis of a mean-field type analysis
of the condensation equation. The narrowing of droplet size spectrum (the bottleneck
of condensation) is a theoretical problem that must be solved in order to understand the
efficiency of rain formation. Moreover, broad droplet size distributions have been detected
in very broad conditions by in situ measurements in warm clouds. My suggestion is that
such broadening can be ascribed to turbulence.

In this part of the thesis I focus on the role of turbulent transport for the problem of
droplet condensation/evaporation in moist environment. I was mainly concerned with the
application of this general issue to cloud physics that will be discussed in detail. In chap-
ter 1 I will describe the formation and evolution of warm clouds, so to provide background
information useful to put the problem in the context. In chapter 2 I present the results I
obtained in the framework of condensation in turbulent environment with particular atten-
tion for cloud physics. I will dedicate a final paragraph to describe my recent interest in the
problem of fuel droplet evaporation, now in progress.



Chapter 1

Cloud physics

The first attempts to cloud classification and rudimentary measurements date back to the
19th century. The first complete cloud-atlas was published in 1896 after 20 years of joint
work [19]. This early attention to the variety of clouds gives an idea of how complex and
rich this natural phenomenon is. Although they have been object of a long attention, clouds
present a few long-standing problems which are still poorly understood at now. Of course,
the progress in the experimental techniques has been huge, allowing for a much more detailed
description of the conditions in clouds. The dramatic advances in aviation and the increased
use of aircraft during the second world war were major improvements with respect to the
early 19th century balloon flights toward the atmosphere1. However, small-scales measure-
ments in clouds still remain a challenging task for experimental physics. On the other hand,
the recent fast progress in computer resources allows to handle demanding simulations and
provide an alternative tool to investigate cloud physics.
Cloud physics poses a number of unanswered questions whose relevance cannot be under-
estimated due to its paramount importance for climate changes, as assessed by the recent
reports of the Intergovernmental Panel on Climate Change (IPCC).

What are the huge systems we are used to see just looking up to the sky? Warm
clouds (where temperature is around 20 ◦C and no ice is present) are basically composed by

1It is commonly accepted that the earliest balloon flight to explore the atmosphere was made from London
to Kent, the 30th November 1784 by Dr. John Jeffries [5]
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Figure 1.1: A schematic picture of a cloud condensation nucleus, two cloud droplets at different stages of
their evolution and a raindrop.

droplets of different sizes and tiny solid particles suspended in a moist air (see figure 1.1).
A strong turbulent flow transports these basic elements and builds the huge natural systems
where precipitations originate. In the sequel I describe the evolution of a rain droplet from
formation until precipitation.

1.1 Nucleation

The most näıve way to imagine droplet formation, is what is called homogeneous nucleation:
water vapor molecules, coming together at random, spontaneously condense in a micro-
droplet. This is a transition from a disordered state of vapor molecules to a more ordered
state of liquid water organized in a droplet. The system undergoes this transition only if the
final state is energetically favored with respect to the initial one. In other words, in order
for the droplet to be stable the volume energy coming from the phase change of vapor into
water, must fulfill the surface energy required to build the droplet. To meet this requirement
droplets must exceed a critical size. In the same random way as they form, homogeneous
droplets generally evaporate and disappear, in typical cloud conditions. Note that the value
of the critical radius is finite only when there is vapor available for condensation, i.e. in a
supersaturated environment (see equation (2.2) and successive discussion). This means that
if the environment is poor of vapor, the formation of a droplet is never energetically favored.

Rc
2

CCN surface

H  O

Figure 1.2: Sketch of the geometrical advantage of heterogeneous nucleation. The curvature radius
achieved by a certain amount of vapor molecules condensing onto the CCN surface is larger than the radius
of the sphere composed by the same amount of vapor molecules.

In order for homogeneous nucleation to justify the density of droplets in a warm cloud,
supersaturation should be of the order of 400% whereas it is around 1% in typical cloud
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conditions. Droplets form, instead, by heterogeneous nucleation, onto the surface of solid
particles called cloud condensation nuclei (CCN). Due to their chemical composition these
solid particles catalyze the random condensation of vapor molecules and modify the geometry
of the process allowing for a more effective aggregation (see Figure 1.1). Once the spherical
water layer completes the CCN is activated and the droplet is formed. Large, soluble CCN
are the most likely to be activated. The electro-chemical properties and size distributions of
CCN have been long studied and well described for different clouds so that this first stage
of droplet life is very-well understood [18].
Recently, much attention has been devoted to CCN. Indeed, their density is enhanced by
anthropogenic emissions, whose effects are of crucial importance for global warming and
climate changes. The problem is fairly complex, since an enhanced concentration of CCN
in the atmosphere has two opposite effects on the global temperature. From one side
they extend the cloud cover, that screens Earth from solar radiation thus decreasing its
temperature. On the other hand, the direct interaction of CCN with solar radiation seems to
result in an overall warming, thus making the net effect uncertain [11, 14]. However, the a
posteriori observations after volcanic eruptions indicate an immediate cooling, thus hinting
to the possibility that, at least for certain chemical compositions of the CCN, the screening
effect would prevail on the warming one. When Mount Pinatubo in the Philippines erupted
in 1991 the huge plume of sulfur cooled the Earth by 0.5 degree Celsius the following year
(see figure 1.3). Recently, the Nobel prize Paul Crutzen [6] has opened the debate on the
possibility to artificially enhance earth’s albedo and thereby cooling the planet by injecting
particles of sulfur into the stratosphere. Another reason of interest in CCN is in that their
concentration can influence the initiation time of precipitation. Therefore an artificial control
of CCN concentration could in principle modify the rain-initiation time [8].

Figure 1.3: Image of the second largest volcanic eruption of the twentieth century. Mount Pinatubo, June
1991, Philippines.

1.2 Condensation

Once formed, droplets begin their path to become raindrops. This typically takes less than
half an hour in real clouds. The remarkable efficiency of precipitation formation is poorly
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Figure 1.4: Schematic representation of condensation/evaporation in the presence of a vapor field. In the
first figure on the left there is less vapor than at the saturation point (s < 0). Evaporation of water molecules
from the droplet is favored with respect to vapor condensation. Adding some vapor molecules (or cooling
them), equilibrium is reached (s = 0). A further addition of vapor moves the dynamical equilibrium toward
condensation (s > 0).

understood at now. Indeed, since the typical size of a CCN is less than 1 µm, droplet radius
evolution must cover more than 3 orders of magnitude in order to produce 2 mm-sized
raindrops. To tackle this problem, let us begin by following the single-droplet evolution.
After the CCN has been completely covered by water, the vapor molecules keep diffusing
on droplet surface and grow the droplet by condensation. The typical time of diffusion
over droplet surface is much less than the typical time of condensation and of the smallest
turbulent scale in the atmosphere (see [25]). Hence the detailed characterization of the
vapor-field variation over droplet surface is generally avoided, in favor of a mean-field type
description. A detailed comparison of the temporal scales (associated with the diffusion of
water vapor molecules on droplet surface and with the changes in the ambient conditions
related to turbulence) reveals that this approximation is valid for droplets smaller than 20 µm
in radius for typical cloud conditions (see [25]). Mass and energy conservations coupled with
the steady diffusion equation over a spherical droplet with radius R give the well-known
equation of radius evolution:

dR

dt
= A3

s

R
(1.1)

where A3 is a function of thermodynamic variables and parameters (see e.g. [18]) and s is
the supersaturation. The latter quantifies the amount of vapor available for condensation,
i.e. the fraction of vapor that exceeds the saturation point (see figure 1.4). It is defined by:

s =
e

es
− 1 (1.2)

where e and es are the vapor pressure and the saturation vapor pressure respectively. Where
s is negative the quantity of vapor randomly condensing is not sufficient to compensate the
quantity of liquid water randomly evaporating. The net effect is that the droplet evaporates.
In the opposite case, where s is positive, there are more vapor molecules than at the equi-
librium, and the net effect is their condensation onto droplet surface, hence droplet growth.
Supersaturation computation requires the knowledge of the thermodynamic environment
surrounding the droplet. This is a very hard information to obtain by in situ measurements.
On the other hand, a model for the supersaturation evolution requires a characterization of
transport and thermodynamics in the atmosphere.
The most simple model for supersaturation evolution in a fluid parcel rising with velocity w
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is the well-known Twomey’s model [23]. By differentiating equation (1.2) with respect to
time one obtains the rate of change of the supersaturation as a function of the derivative
of the vapor tension and of the saturation vapor tension. By Clausius-Clapeyron equation,
energy conservation and the perfect-gas state equation one can reduce ė and ės to functions
of the time derivatives of the pressure p the absolute temperature T and of the water-vapor
mixing ratio qv = mv/ma (mv and ma being respectively the mass of water vapor and liquid
water in the volume). By assuming a quasi-hydrostatic scheme for the vertical structure of
temperature and pressure, one finally obtains:

ds

dt
= A1w −A2

dqv

dt
(1.3)

The term of adiabatic cooling, A1w, describes the decrease in temperature and pressure
due to vertical ascent. The combination of these two effects results in a net increase of
s with the height. The term −A2dqv/dt is due to the phase change of water and vapor
onto droplet surface. This directly modifies the vapor content inside the volume and also
exchange latent heat thus modifying the temperature. The constant A2 accounts for the sum
of these two contributions. Note that, in the absence of entrainment (which is the situation
I am interested into), the variation of the vapor content that appears in the second term
only comes from condensation/evaporation onto the surface of droplets. In this case, the
second term in equation (1.3) can be easily translated in a term proportional to s, through
equation (1.1):

−A2
dqv

dt
= − s

τs
τs =

4πA2A3ρw〈R〉
V

(1.4)

where V is the volume of the parcel and ρw is the density of water. I will get back to this
issue in chapter 2, where I will generalize equations (1.3) and (1.4) to include turbulence.

1.3 Initiation of collisions: the bottleneck of condensation

2

V1

V

Figure 1.5: Sketch of gravitational collisions. A large, fast drop collide with many smaller and slower
droplets during its falling path.
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When the droplet achieves a large enough size, its terminal velocity becomes appreciable
and the droplet begins its fall. During the path it might collide with other slower droplets
(see figure 1.5) or might be caught by a faster droplet above. After the collision, the two
droplets might separate and follow their own trajectory, but most probably they coalesce to
form a bigger drop.
From this picture it is clear that the gravitational collision efficiency depends on how broad
is the size distribution of cloud droplets. Indeed, in the presence of a monodispersed spec-
trum of droplets, the relative velocity between droplets tends to vanish and no gravitational
collisions are possible. In this respect, observations have shown that droplet size spectra in
warm clouds are indeed broad. This experimental observation consistently justifies the col-
lision efficiency by indicating the presence of very different droplets. However a theoretical
understanding of how broad spectra can be obtained by condensation is still lacking. Indeed,
by simply looking at equation (1.1) one realizes that, as soon as the particle grows, the rate
of growth decreases. If every droplet is exposed to the same value of supersaturation, this
immediately implies that small droplets reach the large ones very fast. As a consequence,
equation (1.1) in the presence of almost constant supersaturation gives a narrowing of the
droplet-size distribution in time. Contrarily, the experimental evidences of broad droplet-size
spectra are compelling. Broad spectra have been observed both near the cloud boundaries
and in the inner cloud core, in warm clouds as well as in cold clouds. This striking feature of
real clouds, that allows for the fast initiation of gravitational collision/coalescence and there-
fore rain formation, has not been univocally explained. Partial justifications are based on
entrainment with dry air [22], on exceptionally broad initial CCN spectra and in particular on
the presence of ultra-giant condensation nuclei [13]. The presence of the droplets themselves
has been proposed to be source for local fluctuations of the turbulent kinetic energy [12]
and of the vapor field [20] thus providing fluctuations in the environmental conditions.
Of course, in a turbulent medium, gravitation is not the only source of collisions. The kernel
of collisions receives substantial contributions coming from turbulence [7, 10]. The effect
of turbulence can enhance droplet density by the well-known preferential concentration of
inertial particles [16,21]. Caustic events are another mechanism of enhancement of collision
efficiency [27].
Besides the problem of collisions that will not be treated here, my research has focused on
the effects of turbulence on the droplet size spectra during the condensation stage. The
results I obtained are the focus of next chapter.



Chapter 2

Condensation in turbulent flows

In this chapter I present the results I obtained for condensation in turbulent environments.
The problem of droplet condensation in turbulence can be treated as general. Its appli-
cations range from health care to cloud physics to engineering. I mainly focused on the
cloud physics issue that finally resulted in the papers presented in this chapter. I am also
developing numerical simulations with laboratory-like settings that can be thus reproduced
by experiments in wind tunnels and can be interesting for engineering applications.
The main elements of the analysis are micro droplets and vapor, transported by a turbulent
flow. Droplets undergo size changes due to evaporation or condensation of the surrounding
water vapor. Turbulent transport significantly influences droplet growth, in that it locally
couples droplet trajectories with the vapor field. The goal is to evaluate the role of tur-
bulence for the evolution of droplet size distributions, that are initially considered narrow.
I investigated this general question by simulations of turbulent transport of micro droplets
and a vapor field. It emerges that droplet trajectories do not sample homogeneously the
whole volume. As shown in figure 2.1, droplets are concentrated in moist regions. This is
the visible consequence of correlations induced by the underlying turbulent flow. Another
consequence of correlation is that the history of each droplet is influenced by a long-lasting
memory of the initial vapor condition experienced. This provides a population of droplets
with strongly different evolutions and growth histories. From a series of direct numerical
simulations I could support this general picture and show robustness with respect to the
particular statistical regime of turbulence under consideration.

2.1 A model of condensation

The physical processes involved in the formation and evolution of warm clouds, are the
most diverse, spanning from electrostatics, to chemical reactions, to thermodynamics and
turbulence. A complete description of the couplings among all the different microscopic
actors is beyond the scope of my research. Rather, I focus on a basic model for condensation,
that describes the evolution of a vapor field and a lot of droplets transported by a turbulent
flow. These basic ingredients already provide a definitely non-trivial behavior that turns out
to be quite general. No particular atmospheric conditions are required, no vicinity with the
borders of the cloud, no ultra-giant nuclei or particularly broad condensation nuclei spectra.
The sole fundamental ingredient is turbulence. Different turbulent regimes do not affect the
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(a) (b) (c)

Figure 2.1: Correlations between droplet trajectories and the supersaturation field. The results have been
obtained by DNS of droplet condensation in (a) homogeneous isotropic 2D turbulence (b) Bolgiano 2D
convective turbulence and (c) homogeneous isotropic 3D turbulence (in this case the snapshot shows a
L× L× 2η slice of the domain). Details on the simulations are given in the text. Dark blue represents dry
regions, light blue represents moist regions. The small white points represent droplet positions after roughly
0.2τL. Droplets are segregated in moist regions. This indicates the presence of correlations that broaden
the droplet size distribution. This mechanism turns out to be qualitatively robust with respect to different
statistical regimes.

qualitative results which appear to be robust with the variation of statistics. This general
viewpoint essentially allows to highlight basic mechanisms that can be at work in real clouds
also, because they are direct consequences of turbulent transport.

The advecting flow is ruled by the Navier-Stokes equations, already introduced in part II:

∂tv + v · ∇v = ν∆v −∇ p

ρa
+ fv + B (2.1)

where ν is the viscosity, p is the pressure, ρa is the air density, fv is a source of energy
fluctuations and B is buoyancy. For the moment, let us neglect buoyancy and temperature
evolution that will be discussed in section 2.3.2. In the absence of buoyancy, equation (2.1)
describes a homogeneous isotropic turbulent flow. This scheme is an idealization of the
turbulent atmospheric regime. However it is expected to hold in real clouds for the spatial
scales that allow to disregard the effect of stratification of the atmosphere. In clouds, this
should be valid for spatial scales up to 100 m (see [24]). Recently, a series of works has
been published on the small scale structure of atmospheric turbulence and its interactions
with droplets’ evolution [1, 2, 12, 15]. Due to the lack of small-scale in situ measurements
of cloud turbulence, these works are based on laboratory experiments in cloud chambers
and direct numerical simulations. The general conclusion is that corrections to the above
assumptions, mainly for what concerns isotropy, should be considered when focusing on the
boundary between cloud and clear air. In the following I will always focus on adiabatic cloud
cores, where no boundary effects would be appreciable.
The second ingredient of the model is vapor. In order to solve the radius evolution (1.1) due
to condensation/evaporation, we need the supersaturation field, defined by equation (1.2).
This quantity has been traditionally considered as a function of time, like in Twomey’s model
introduced in section 1.2. This was justified by the fact that most of the work was focused
on a rising fluid parcel, which is a very small volume (we can imagine a fluid parcel like a
cube with a edge of few tens of centimeters). In this respect I generalize the framework
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and consider the supersaturation s as a field varying both in space and time. This is a
straightforward generalization that allows to consider space correlations, that are typically
crucial in turbulence. The simplest generalization of Twomey’s model (1.3) is the equation:

∂ts + v · ∇s = ks∆s + A1w −
s

τs
(2.2)

where ks is the diffusivity of water vapor in air and A1 ≈ 5×10−4m−1 is the supersaturation
gradient, already introduced in section 1.2. The vertical velocity w = v · ẑ is now a turbulent
fluctuating field (and not the constant updraft velocity of the parcel model (1.3)). The
absorption time τs depends now on the number density and radius of the droplets in a small
volume V around each point in space:

τ−1
s (x, t) =

A2A3ρw4π

V

N(V,x)∑

i=1

Ri(t) (2.3)

Equations (2.1) and (2.2) are a simple scheme of evolution for the vapor field. In partic-
ular the vapor is transported, changes for adiabatic cooling and is directly modified by the
presence of droplets. Indeed, where droplets evaporate they release vapor molecules and
cool the environment providing a source of supersaturation, while a sink of supersaturation
verifies where vapor condense onto droplet surface and release latent heat. Note that we do
not describe here the further source of fluctuations coming from the advection-diffusion of
temperature. In the derivation of Twomey’s model, temperature is implicitely assumed to
vary only for adiabatic cooling and latent heat effects.
The final ingredient of the model is the Lagrangian evolution of droplets. I start following
droplet evolution right after their activation and abandon the drop before it reaches a size
of about 20 µm which is typically considered the threshold for the beginning of collision. In
this range of sizes, droplets are essentially independent, because collisions are rare1. More-
over the low droplet Reynolds number, the low mass fraction of liquid water with respect
to air, and the low ratio between droplet radius and the Kolmogorov scale of atmospheric
turbulence (typically around 1 mm) allow to neglect droplet back reaction on the carrier
flow. For a detailed evaluation of these parameters see [24]. Finally, the evolution of droplet
trajectory can be described by Stokes drag since the density of water is much larger than
the density of air, β = 3ρf/(ρf + 2ρd) ≈ 10−3. Each independent, passive, Stokes particle
evolves following:

dX(t)
dt

= V(t)

dV(t)
dt

= −V(t)− v(X(t), t)
τd

+ g

dR(t)
dt

= A3
s(X(t), t)

R(t)

τd =
R2

3νβ

(2.4)

1This assumption is generally accepted. However, evaluations of the turbulent collision kernel are highly
non-trivial and some recent work hints to the possibility that caustics might occur already during the con-
densation stage [27].
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Figure 2.2: Orders of magnitudes of different spatial scales in cloud physics.

2.2 Degrees of freedom: large scales versus small scales

The set of equations composing the simple model described above is a challenging problem,
both from an analytic and a numerical point of view. In order to capture the non-trivial
correlations that might emerge from the model, I choose a numerical approach. Unfortu-
nately, the number of degrees of freedom in the problem is huge. A schematic picture of
this is shown in figure 2.2: the Reynolds number of cloud turbulence can reach values up
to 107 ÷ 108, with roughly 6 decades of scales dynamically coupled from about 1 km down
to 1 mm. The spatial scales of droplet evolution are even smaller, since droplet radii are
typically around some microns in the condensation stage. Also, there are a few hundred
droplets in a cm3 of a developed cloud, that sum up to around 1015 ÷ 1018 droplets in the
whole cloud. Clearly, a numerical simulation can describe only a portion of this huge number
of degrees of freedom.
A first possibility is to focus on a small portion of the volume describing the small scales of
the problem. Direct numerical simulations are the only way to investigate the small scales
of atmospheric motion, hence their importance. Indeed, small-scale in situ measurements of
turbulence in clouds are still unavailable. There are a few recent examples of this viewpoint
in literature [2,25,26]. My work began with the observation that, despite its general interest,
this approach might be unable to capture interesting features of condensation in turbulent
flows. If we take two initially close particles and follow their trajectories, we immediately
note an explosive separation due to turbulence. Thus, the first remark is that small-scale
simulations oblige droplets to remain close, while their natural behavior would lead them
to explore the whole cloud. The further remark is that the environmental conditions that
droplets can experience in a cloud are highly variable in space. On the contrary, droplets
obliged to remain in a small volume cannot experience these fluctuations and basically evolve
all with the same ambient conditions.

2.3 Condensation and turbulence

The guiding idea of my work is that the dramatic fluctuations experienced by droplets
inside cloud turbulence may justify the significant spreading of size distributions described in
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section 1.2. In order to verify this general idea I performed direct numerical simulations in
different settings and highlighted the presence of a robust mechanism for the formation of
broad size spectra. Strong fluctuations are typical of large scales and this is the reason why I
initially chose to describe a whole cloud instead of a single fluid parcel. Keeping in mind the
lesson learned from large scales, I recently modified viewpoint and performed small scales
simulations of increasingly larger clouds. This allowed me to draw a trend of the droplet-size
spreading and to extrapolate it to obtain the large-scale expectation.

2.3.1 Homogeneous isotropic 2D turbulent transport

I first considered the simplest version of the model equations (2.1), (2.2) and (2.4), in two
dimensions, neglecting buoyancy and the droplet back reaction on the vapor field (term
−s/τs in equation (2.2)). This finally results in a homogeneous isotropic scheme that holds
for adiabatic cloud cores at spatial scales up to around 100 m, where turbulent mixing is
more important than stratification. As mentioned above, I began by focusing the large
scales of the problem. I resolved the spatial scales from 100 m down to roughly 10 cm on
a two-dimensional 1024 × 1024 grid. For smaller scales the turbulent fields were basically
smooth.
In this large volume, I followed the trajectories and radii of thousands of droplets, initially
put at random with uniform probability in the volume. Since I could not consider the huge
number of droplets typical of cloud conditions, the sink of water vapor onto droplet surface
was basically negligible (and this is the reason why I neglected the term −s/τs in equa-
tion (2.2)). The main result of this set of simulations is that I found a remarkable spreading

Figure 2.3: Droplet size spectrum evolution obtained by pseudo-spectral DNS of model equations (2.1)
with no buoyancy, (2.2) with no droplet-vapor interaction term and (2.4) in two dimensions. Details on the
simulations are given in the paper presented below. The particles are initially monodispersed with radius
r0 = 5 µm and positioned at random. After one large-eddy turnover time, roughly 40% of droplets reach a
size of 20 µm.

of size distribution as shown in figure 2.3. After one large-eddy turnover time, roughly 40%
of the total population had reached the threshold size for the beginning of collisions.
Besides, I observed that after a small fraction of a large-eddy-turnover time, droplets segre-
gated in moist regions as shown in figure 2.1(a). Indeed, droplets dwelling for long enough
in a dry region evaporate completely, leaving dry regions void of particles. The persistence
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of droplets in regions with the same vapor content is due to correlations coming from turbu-
lence as both are advected by the same velocity field. Of course segregation can be observed
only in the case where correlations of droplet trajectories with the (negative) value of su-
persaturation last longer than the time needed for droplets to evaporate. Therefore, when
droplets become large enough, they need so much time to completely evaporate that they
manage to escape from the dry region and segregation disappears. This happens at about
one large-eddy turnover time.
This effect suggested the presence of long-lasting correlations between droplet trajectories
and supersaturation values. After a detailed analysis of the statistics I could conclude that
correlations were actually active and this allowed me to find a reason for the remarkable
spreading of size distribution that I observed. Indeed, droplet population can be roughly
divided in two parts. Some droplets are initially placed at random in a moist region and
remain correlated to high values of supersaturation thus growing fast. Other droplets, cor-
related to less moist regions, grow slower. At the very bottom we find droplets correlated
to very dry regions that, as already discussed above, disappear. This intuitively justify the
observed spreading of size distributions. Correlations are also responsible for a mean growth
of droplet radii also in the presence of a zero mean supersaturation. Indeed, droplets that
survive do not sample the volume at random, but are more probably located in the moist
regions. In other words the Lagrangian average of the supersaturation is higher than the
Eulerian one. Note that broad size distributions are observed also at local level, so that large
and small droplets turn out to be close together.
The results here described have been published in the paper presented at page 97.

2.3.2 Bolgiano 2D convection

Figure 2.4: Schematic picture of convection and droplet evolution in clouds.

The real dynamics of cloud formation is of course more complex than what described above.
In particular, convection is a key point of the large-scale atmospheric circulation (see fig-
ure 2.4). The general picture of cloud formation is that cloud condensation nuclei are
introduced inside the cloud from below. After being activated, they grow as cloud droplets
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while rising toward the top of the cloud. In the case of appropriate conditions, droplets
might grow enough during the updraft condensation, and once arrived around the top might
begin their fall. In this case, the successive collision/coalescence stage takes place during
the fall and the cloud might precipitate.
In order to check the robustness of the qualitative mechanism described for the former case,
I consider a more detailed version of the model, introducing convection. I add the evolution
of temperature ruled by equation:

∂tT
′ + v · ∇T ′ = (G− Γa)w + kT ∆T ′ (2.5)

where kT is the temperature diffusivity, T ′ are temperature fluctuations with zero mean,
while the mean temperature profile is linear with the quote, with gradient G. The term
Γaw is the source of temperature fluctuations coming from adiabatic cooling, Γa being the
adiabatic lapse rate. Then I consider the coupling of temperature with the velocity field
through the Boussinesq scheme (buoyancy in equation (2.1) is B = [1− α(T − T0)]ẑ), in a
two-dimensional Bolgiano regime. Equations for droplet trajectories and radii (2.4) remain
unchanged, while I consider equation (2.2), accounting for the term of exchange between
water and vapor −s/τs. Once more, I focus on the whole cloud, so that to consider the
interaction between droplets and vapor I need to renormalize the particle number density.
The main conclusion of the work is that the qualitative mechanism of correlation/segregation
holds in this case also (see figure 2.1(b)), despite the completely different statistical regime.
This is a remarkable feature of the result, since my main point is to convey the idea that,
though with different quantitative connotations, this might hold in general conditions.
By accounting for the loss of water vapor onto droplet surface, I obtain an expected slowing

down of the condensational growth and spreading (see figure 2.5). Indeed, I consider here
the fact that droplets grow absorbing vapor from the surrounding, thus providing a drier
and drier environment for their own growth. The final expectation on droplet size spectra
broadening results less optimistic and more reasonable for typical cloud conditions.
In this framework, the initial condition for the vapor field is obtained as the stationary state
achieved by equations (2.2), (2.1) and (2.5). However, with the initial activation of droplets
the stationary state is lost, in favor of a decaying dynamics. Roughly speaking, droplets in
moist regions absorb vapor whose loss is not compensated by droplet evaporation, because
after a while droplets in dry regions evaporate completely and disappear (giving the same
segregation phenomenology observed for the non-convective case). The net effect is that
the environment becomes on average undersaturated. The mean radius growth shown in
the bottom panel of figure 2.5, is thus even more remarkable, since it lasts despite the mean
undersaturation. The results here described have been collected and published in the paper
presented at page 105.

2.3.3 Homogeneous isotropic 3D turbulence

As anticipated in the introduction of the present section, I have recently approached the
problem with a slighlty different viewpoint. The idea is to describe the effects of the strong
turbulent fluctuations on condensation by focusing on small, increasingly larger clouds. In
this framework, I performed a series of simulations of equations (2.1) with no buoyancy, (2.2)
with the term of interaction droplet-vapor and equations (2.4) for the Lagrangian evolution
(details in table 2.1). These allowed me to draw a trend of the size-distribution behavior with
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Figure 2.5: Time evolution of the droplet size spectrum obtained by DNS of condensation in 2D Bolgiano
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on vapor. Bottom: time evolution of the mean value of droplet size distribution with accounted (red) and
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Figure 2.6: Droplet size distribution after τL. Results have been obtained through 3D DNS of condensation
in homogeneous isotropic turbulence, described in the text. Details on the parameters are given in table 2.1.
Red, green, blue and purple lines correspond respectively to simulations (a), (b), (c) and (d). Droplets were
initially put randomly with homogeneous distribution in space and monodispersed radius r0 = 5µm. In the
inset: evolution of the droplet size variance with time for the four simulations. The color are organized as in
the main frame.

the size of the cloud or equivalently with the Reynolds number of cloud turbulence. While
the results for each single simulation (see figure 2.6) give a limited degree of spreading, as
already pointed out in [25,26], the trend of the latter with Reynolds is a positive power law,
pointing to a relevant spreading achieved for sufficiently large clouds. This is due to the fact
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N L τL Reλ ε η τη σs(t = 0) vrms Ndrops cpu
cm s cm2/s3 cm s ×10−3% m/s ×105 hours

(a) 643 9 2.0 40 10 0.1 0.1 1.5 0.04 0.93 1
(b) 1283 18 3.5 65 9 0.1 0.1 3.4 0.05 8.2 12
(c) 2563 38 5.5 105 10 0.1 0.1 6.1 0.07 71 145
(d) 5123 70 7.6 185 11 0.1 0.1 12 0.1 320 1110

Table 2.1: Parameter of the DNS. From left to right: number of gridpoints N , integral scale L, large-eddy
turnover time τL, microscale Reynolds number Reλ, average energy dissipation rate ε, Kolmogorov spatial
scale η, Kolmogorov timescale τη, initial supersaturation standard deviation σs(t = 0), velocity standard
deviation vrms, number of droplets Ndrops and cpu hours per large eddy turnover time.

that droplet radius grows according to the local supersaturation fluctuation experienced on
the trajectory. In larger clouds the fluctuations in the vapor field are stronger. Therefore,
the radius growth varies more and more from a droplet to another and the size distribution
broadens faster and faster.
The spreading of the size distribution after one large-eddy turnover time τL is considered as
a function of the microscale Reynolds number Reλ ∼ Re1/2 (see, e.g., [9]). On the basis of
equation (1.1), one can roughly estimate the square size broadening as:

σ(R2) ∼ 2A3σ(s)τL (2.6)

The supersaturation field s is initially in a stationary state, whose fluctuations can be simply

estimated on the basis of equation (2.2) σ(s) ∼ A1L ∼ Re3/2
λ . By substituting this dimen-

sional relation in equation (2.6) and remembering that τL scales as τL ∼ Reλ, we easily

end up with σ(R2) ∼ Re5/2
λ , shown for comparison in figure 2.7. We expect this behavior

to be modified when vapor fluctuations start to appreciably decay after the introduction of
droplets. Indeed, the latter grow absorbing water vapor from the surrounding. The extrap-

olation of the power law Re5/2
λ to the Reynolds number of real cloud turbulence gives a

spreading of around (25. ± 3.)µm2 after τL ≈ 150s.

 0.0001

 0.001

 0.01

 0.1

200100      30

!
! R

2
 [
"

m
2
]

Re"

Figure 2.7: Droplet square size distribution standard deviation achieved after one large-eddy turnover time,
as a function of the Reynolds number of cloud turbulence. The dashed line is the dimensional prediction
σR2 ∝ Re5/2

λ (see text). The trend of this curve points to a spreading of (25.± 3.)µm2 after τL ≈ 150 s for
a cloud core of size L ≈ 100 m with initial supersaturation fluctuations srms ≈ 2%.

Finally I considered the following point. The broadening mechanism is essentially based
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on the fact that droplets experience different ambient conditions. While it is impossible
to simulate a flow with the huge inertial range of real cloud turbulence, one can obtain
appropriate supersaturation fluctuations by simply tuning the coefficient A1. This essentially
corresponds to simulate the large scales of the problem and is equivalent to what already
discussed in section 2.3.1, here applied in a three dimensional context, accounting for the
droplet feedback on vapor. Is this enough to obtain the spreading expected on the basis of the
small-scales trend? I performed the large scale simulation, tuning the parameters on a cloud
core of size L = 100m. With N3 = 2563 grid points we are allowed to resolve spatial scales
down to η ≈ 30cm. Other typical values are: vrms ∼ 0.6ms−1, σs ≈ 2%, Ndrops = 7.×106,
TL ≈ 150 s. For large enough supersaturation fluctuations, the segregation mechanism
already observed in the two-dimensional case, appears (see figure 2.1(c)). In figure 2.8,
the droplet size spectrum after τL is shown for this simulation. With the same initially
monodispersed spectrum, I obtained a droplet-size spectrum broadening of σR(τL) = (1.7±
0.5)µm; σR2(τL) = (18. ± 5.)µm2, slightly smaller than expected on the basis of the
extrapolation described above. This points to the fact that the substantial contribution to
the fast droplet size spreading is given by the strong fluctuations of the vapor field, hence the
great importance of large-scales. A correction might arise for real cloud turbulence due to
the much stronger intermittency with respect to the simulated turbulence. The results here
presented have been collected in the paper presented at page 115, now under submission.
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Figure 2.8: Droplet size distribution for the simulation matched to the large scales of the cloud, after
τL ≈ 150s. In the inset: time evolution of the standard deviation of radius and square radius.

2.4 Laboratory-like framework and perspectives

An interesting development for this work would be to take into account the successive col-
lision stage. The final droplet-size spectra of the condensation stage would be the initial
condition for collision/coalescence. Depending on how broadly the initial droplet radii are
distributed, one can evaluate how efficient the gravitational collision processes. Besides,
one should consider that collisions are not only due to gravity, but also to turbulent trans-
port. There is a long debate on how can clustering enhance the turbulent collision kernel
(indicating the efficiency of turbulent collisions). In this respect, it would be interesting
to first evaluate the degree of clustering achieved already in the condensation stage, to
check whether collisions can happen already for small droplets due to their enhanced num-
ber density. Recent results have been published on this issue, coming both from in situ



measurements [16] and from laboratory experiments [15]. These could serve for comparison.
Finally it would be interesting to evaluate the degree of droplet clustering in the successive
stage, where droplets are larger and the effect is known to be more pronounced.

As already mentioned, the problem of the interactions between condensation and turbu-
lence concerns different fields. In particular I am interested in the effects of turbulence on
the evaporation of fuel droplets inside engines. This is an important effect for the correct
design of spark-ignition engines. Indeed a faster evaporation of fuel allows for a more effi-
cient fuel-air mixing occurring in the combustion chamber [30]. This may allow to improve
both the performances and the emissions of the engine.
In order to faithfully reproduce the details of the system, I modified the model equations
described in section 2.1 to take into account further possible couplings between the flow,
the particles and the temperature and the vapor fields. I plan to perform simulations of a
flow of particles entering a chamber with the possibility to evaporate and check the influence
of turbulence on the evaporation time. Moreover, I would like to quantify the corrections
given by the further couplings considered and check whether these change the qualitative
mechanism I showed for the more simple settings. In particular, I would like to evaluate the
corrections to the passive scalar scheme for the supersaturation due to the explicit integration
of temperature fluctuations. This project is made in collaboration with C. M. Casciola and
F. Salvadore from the University of Rome “La Sapienza”. It would be extremely interesting
to compare the numerical results with experiments of droplet condensation/evaporation in
wind tunnels.
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Abstract. – The problem of droplet growth by condensation in a turbulent flow of nearly
saturated vapour is addressed theoretically and numerically. We show how the presence of
an underlying turbulent velocity field induces a correlation between droplet trajectories and
supersaturation. This leads both to the enhancement of the droplet growth rate and to a fast
spreading of the droplet size distribution.

Introduction. – The evolution of microdroplets in a turbulent environment is an issue of
great interest for a variety of applications ranging from health care [1], to engineering, to atmo-
spheric sciences [2–4]. In the latter context, microdroplet growth by condensation/evaporation
is a phenomenon of paramount importance for the early stages of cloud evolution. Warm
clouds are essentially a polydisperse aerosol of water droplets suspended in a moist air. The
smallest droplets are created by condensation onto sub-micron solid particles (cloud conden-
sation nuclei), whereas raindrops typically exceed 1mm in radius. This observation naturally
motivates one to investigate droplet growth, which eventually leads droplets to fall under grav-
itational force. Different stages follow droplets formation. First, they grow by condensation
of vapour molecules on their surface. Second, upon having reached a radius of the order of
20µm, they begin to coalesce to form bigger drops. Here we focus on the first stage of the
growth by condensation. Experimental measurements of droplet radii (see, e.g., [5, 6]) in fair
weather clouds show a broad distribution in the range 1–20µm. The presence of droplets with
very different sizes can significantly enhance the efficiency of successive collisions and thus
contribute to a fast initiation of the precipitation process. However, up to now this effect has
not been reproduced by classical models of the condensation stage [7]. Their basic ingredient is
the assumption that droplets are essentially confined to a small portion of the cloud, dubbed
“fluid parcel”, where they experience the same value of humidity. Many efforts have been
made to evaluate the influence of fine scale turbulence on the macroscopic properties of clouds
(see [8] for a review). Recent numerical simulations of a turbulent ascending moist air parcel
show that resolving the fluctuations below the scale of the parcel itself does not result in a
significant spectral broadening [9–11]. The theory assuming Brownian random walk of an air
c© EDP Sciences
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parcel in a vertical gradient of humidity does not give much broadening too [12]. Here we use
a straightforward approach considering air velocity and vapour concentration as fields in space
and evaluate droplet distribution in such a strongly fluctuating system. We thus consider the
fundamental problem of a turbulent flow v which advects a vapour field and a number of
droplets. Cloud physics is discussed as one of the possible applications of this analysis.

The idea is that the simultaneous transport of droplets and vapour by the same velocity
field induces correlations between droplet trajectories and supersaturation values. Such cor-
relation allows droplets to experience the same supersaturation value for a very long time.
Let us stress that we do not consider edge effects like entrainment of dry air; the fluctuations
of supersaturation are produced inside the cloud by the turbulent velocity field acting on the
vertical gradient of humidity sustained by temperature. Strong fluctuations of humidity and
the correlation between droplet trajectories and supersaturation lead to a significant spreading
of the distribution of droplets radii.

In this letter we perform direct numerical simulations of the evolution of droplet trajec-
tories and radii and of the velocity and supersaturation fields. We show a relevant effect of
correlation induced by turbulent transport which reproduces a remarkable spreading of the
size distribution. Droplets and water vapour molecules are the protagonists of this peculiar
process. We discuss the possible impact of these ideas for condensation in clouds.

Model and DNS. – We consider the simplest generalization of the one-dimensional
Twomey’s model [13]. Twomey considered every droplet to grow in the same humidity condi-
tions, while we consider the presence of vapour to vary in space and time. For this reason we
introduce the supersaturation field s(x, t) := e

es
(x, t)− 1, where e and es are the vapour pres-

sure and the saturation vapour pressure, respectively. s(x, t) quantifies the amount of vapour
which is present in point x at time t: droplets are able to grow only where s is positive, that
is in moist air (see eq. (3)). On the contrary, droplets tend to evaporate where s is negative
(dry regions). The field s is taken as a passive scalar transported by a homogeneous turbulent
flow v(x, t) which is not affected by its presence. Here we assume that local fluctuations of
es are small so that fluctuations in s can be considered as a sum of fluctuations in e and
es. In addition, vapour diffusivity and thermodiffusivity are close which makes s approxi-
mately satisfying the advection-diffusion equation. These assumptions lead to the following
dynamical equations:

∂ts + v ·∇s = A1w − s

τs
+ D∇2s, (1)

∂tv + v · ∇v = −∇p + ν∇2v + f , (2)

where w is the vertical component of the velocity field which obeys the Navier-Stokes equa-
tion (2). Let us remark that the passive scalar approximation for s can be applied in warm
clouds, because here the parameters A1 and τs depend very weakly on temperature(1). The
effect of the vertical temperature gradient, which certainly affects the global circulation in
a cloud, can be neglected upon focusing on a volume of some hundreds of meters (see [14]).
As we will discuss later, we are interested in such volume (large but not the largest), where
the homogeneous-isotropic turbulence scheme holds. In the advection-diffusion equation (1),
A1 is the steady vertical gradient of the supersaturation so that the term A1w is a source of
supersaturation due to adiabatic ascent and the term −s/τs is the loss of water vapour due
to condensation on droplet surface [2]. The balance of the source and sink with mixing and

(1)For warm-clouds temperatures, ranging from 273 to 300 K, we have A1 ranging from 4.6E − 4 m−1 to
5.7E − 4m−1, and (considering droplets of radius 10 µm and number density 100 cm−3) τs ranging from 3.1 s
to 3.2 s.
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Fig. 1 – Spatial distribution of droplets (white points) and supersaturation field (light gray: supersat-
urated vapour s > 0, dark gray: subsaturated vapour s < 0). Droplets are preferentially concentrated
in supersaturated portions of the cloud. This figure is obtained through a direct numerical simula-
tion of a bi-dimensional domain L × L. Evolution equations for velocity v and supersaturation s
are integrated by a pseudo-spectral code with second-order Runge-Kutta scheme for time marching
and periodic boundary conditions, with initial conditions obtained by running a simulation for about
20 large-eddy turnover time, in order to obtain a steady state. The velocity field is in the inverse
cascade regime and shows power spectra very close to Kolmogorov 1941 prediction. For the velocity
field, the energy injected at an average rate ε by a small-scale random forcing is dissipated on large
scales by a linear friction −αv. Also the scalar field is in a steady state of direct cascade forced
by the velocity field component in the direction of gravity (see eq. (1)). The resolution is 10242.
Lagrangian equations (3), (4), (5) for N = 20000 droplet sizes and trajectories are integrated by an
Euler method via bilinear interpolation of v and s. For this value of N the term s/τs is negligible
compared to other terms in eq. (1). We chose absorbing boundary conditions for R, i.e. a droplet
whose size vanishes is abandoned, and no new particles are considered to enter the volume. Initially
droplets are homogeneously distributed.

diffusion determines the equilibrium value of supersaturation fluctuations. The timescale τs

(absorption time) parameterizes such absorption of supersaturation as discussed in [8]. Its
value depends on the presence of droplets: τ−1

s ∝ n
∫ ∞
0 rP (r, t)dr, where n is the numerical

density of droplets, r is the value of droplet size and P (r, t) is the size distribution. In the
following analysis the sink term turns out to be negligible due to the smallness of n. This
does not affect the qualitative behaviour of the supersaturation field. Equations (1), (2) are
coupled with the Lagrangian evolution of droplet sizes R and trajectories X:

Ṙ(t) = A3s(X(t), t)/R(t), (3)

Ẋ(t) = U(t) +
√

2Dη(t), (4)
U̇(t) = −[v(X(t), t) − U(t)]/τd + gẑ, (5)

where τd = r2/(3νβ) is the Stokes timescale which characterizes every droplet(2) (τd ≈ 5·10−4–
8 · 10−3 s for water droplets of radius 5–20µm in air). Note that we consider isolated droplets
because during the condensation stage interactions between droplets are negligible.

(2)ν is the kinematic viscosity of air and β = 3ρa/(2ρd + ρa).
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Fig. 2 Fig. 3

Fig. 2 – Eulerian (gray, red on-line, curve) and Lagrangian (black curve) PDF of supersaturation at
time t = τL, where τL = ε−1/3L2/3 is the large-eddy turnover time.

Fig. 3 – Distribution P (r) of droplet size r divided by the initial size r0, at times τL/5, τL/2 and τL.
The droplet size spectrum evolution shows a relevant spreading, which, after one τL produces 40% of
droplets with r > 4r0.

Equation (3) with the expression for A3 can be found in [2], it has been widely used in
classical models for an air parcel rising adiabatically. However, in our model, the size growth
rate varies from a droplet to another, because it corresponds to the supersaturation value
calculated along the trajectory of the droplet. Due to turbulent dispersion initially close
droplets will eventually experience disparate values of supersaturation. From fig. 1 we detect
a segregation effect in the spatial distribution of droplets. This feature is due to the presence of
turbulent correlations between droplets and water vapour which allow droplets to experience
for a long time the same supersaturation fluctuation. Consequently, when they fall for a long
time in a dry region (shown in blue on-line) they totally evaporate and disappear making dry
regions void of particles. A quantitative evaluation of the presence of correlations can be done
by comparing Lagrangian and Eulerian statisics of the supersaturation field. We verify that
the supersaturation values experienced by cloud droplets are greater than expected on the
basis of Eulerian statistics alone (see fig. 2).

In fig. 3 the evolution of size distribution in time is shown. As expected from the presence
of the correlation shown in fig. 1, we observe a relevant spreading of the size distribution
which qualitatively agrees with observations. At the end of the condensation stage we observe
a population of droplets having very different sizes: large droplets spent a long time in the
moist environment while droplets in dry air remained small (this is very important for cloud
physics, as remarked at the very beginning).

The question which naturally arises now is whether large and small droplets coexist locally,
in a small volume. This is a very important question for coalescence because collision and
collection are enhanced by the presence of very different droplets only if they come close, oth-
erwise they never meet. To address this issue we divide the computational domain in a grid of
M ×M non-overlapping boxes (for different values of M). Within every box we consider, at a
fixed time, the size distribution of the local population and evaluate it as a function of the vari-
able R/〈R〉box, where 〈R〉box is the local mean radius(3). Then we average the M2 local PDFs

(3)For M = 1 they reduce to the global spectrum (last curve in fig. 3) normalized to the global mean radius.
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Fig. 4 Fig. 5

Fig. 4 – Local distribution of droplet radii in 12 randomly picked boxes out of 4096 (M = 64) at time
t = τL.

Fig. 5 – PDF of droplet sizes averaged on M2 boxes, for M = 1, 16, 128. We have excluded all boxes
which contain only one particle. For the smallest boxes (M = 128) the number of almost void boxes,
i.e. with one particle only, amounts to 3.6%. This value decreases upon increasing the total number
of particles N . Here N = 106.

and compare the averages obtained for different M . In fig. 4 some of the local distributions
of droplet radii PDFs are shown for M = 64, at time t = τL: they are broad and therefore
droplets with different sizes cohabit within small volumes. In fig. 5 the mean distributions are
shown for M = 1, 16, 128. Again we observe broad distributions also for the smallest boxes
we consider which is about three times the viscous scale η of our velocity field. The result
shows that the broadening of the spectra is non trivial for the smallest scale we can consider.

Since the mean supersaturation is taken to be zero, a rough mean-field-type argument
would yield no mean growth of droplet sizes (see eq. (3)). This prediction coincides with the
classical one, which does not take into account the vapour field fluctuations. It turns out that
the mean droplet size grows although the mean supersaturation value is set to zero (see fig. 6).
Fluctuations thus play a crucial role for the growth of droplet radius.

To evaluate the role of inertia and sedimentation in this problem we compared the above
simulations with analogous simulations where droplets are treated as fluid particles. Along
Lagrangian trajectories we should observe the maximum correlation between droplets and
vapour because here the supersaturation value is conserved. We would expect that inertia
effects work against correlations, as they tend to deviate droplets from Lagrangian trajectories.
Such effect is very weak, as we do not detect any differences between the two evolutions of
the mean radius for the case with and without inertia effects (see fig. 6).

We observed no influence of inertia effects also for the segregation effect and the spreading
of the size distribution. The only difference between the two simulations is visible from the
evolution of mean-Lagrangian supersaturation, shown in fig. 7. From this figure we learn that
in the early stage of their growth (t/τL < 0.4) droplets are so small that inertia effects are
completely negligible. They become visible (even if very weak) only at the end of the conden-
sation stage. In view of these comparisons we can conclude that inertia and sedimentation do
not change the qualitative picture of condensation we have drawn in the absence of inertia.

From the above results it turns out that turbulent fluctuations of the supersaturation field
play a crucial role for droplets evolution. They allow droplets to behave in different ways
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Fig. 6 Fig. 7

Fig. 6 – Temporal evolution of 〈r〉, with s = 0. The turbulent model allows the mean droplet size
to grow by condensation although the Eulerian supersaturation average is set to zero. Notice that in
these conditions classical models provide a constant mean droplet radius.

Fig. 7 – Mean-Lagrangian supersaturation for the model with (black curve) and without (gray, red
on-line, curve) inertia effects.

depending on the particular fluctuation they experience, and lead to the segregation effect
and the broadening of size spectrum.

As mentioned in the introduction, classical models of condensation in clouds focus on a
single fluid parcel and do not reproduce the observed broadening of size spectra. We can
now understand the reason for this shortcoming: droplets initially belonging to the same fluid
parcel separate explosively and reach separations comparable with the cloud size in a time
comparable with the condensation growth timescale: t ) (L2/ε)1/3 ) 103 s for L = 103 m
and ε ∼ 10−3 m2 s−3. This makes questionable the very concept of fluid parcel. Therefore,
to obtain the above results for a cloud, one should adopt a complementary point of view
that consists in the simulation of the whole cloud volume. Such an approach must take
into account that the spatial scales involved in atmospheric turbulence range from ≈ 1 km
to ≈ 1mm. Accordingly, the degrees of freedom in a three-dimensional turbulent flow are
approximately Re9/4 ≈ 1018 for typical cloud conditions. It is clearly impossible to simulate
a system with such a huge amount of degrees of freedom. A possible way to overcome the
problem is to examine a 2D turbulent flow. Moreover from the above results one expects that
the most important scales in the problem are the largest ones(4). One should indeed resolve
the largest scales avoiding the detailed description of small scales.

Such approach does not describe timescales small enough to be comparable with the
Stokes timescale for droplets. Hence the inertia effects cannot be taken into account. Even
though droplet density, ρd, is much larger than air density, ρf , that approximation is rea-
sonable for small droplets. Indeed the Stokes number for such droplets in a turbulent flow
is St = τd/τf ∼ (2ρdε1/2r2)/(9ρfν3/2) ≈ 0.005–0.08 for R ≈ 5–20µm, where τd and τf

are timescales associated to the droplet and to turbulent fluctuations, respectively and the
numerical evaluation has been carried out for ε ∼ 10−3 m2 s−3 and ν ∼ 10−5 m2 s−1.

Another point that is worth emphasizing in dealing with cloud physics is that the number of
droplets in a cloud reaches values of 1017–1018. In the condensation stage it is not necessary to

(4)Furthermore, the assumption that for scales smaller than the fluid parcel scale there is no broadening and
every droplet behaves in the same way seems to be reasonable according to [10].
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consider this huge number of droplets because they do not interact with each other. Rather, we
can follow the history of a large number of droplets which are representative of the statistical
behaviour of the whole droplet population. The only drawback is that with a realistic number
of droplets for a simulation the parameter τs is much larger than the largest timescale in the
cloud. Indeed the simulated vapour field does not perceive the presence of droplets, because
the sink term −s/τs in eq. (1) vanishes. But this is not the case of typical conditions for a
developed cloud, in which the absorption time is 1–10 s (see [15]) and actually the sink term is
relevant for producing vapour depletion. Therefore a way to evaluate an effective absorption
timescale must be devised to reproduce the effect of droplets also on the vapour field.
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The evolution of microdroplets transported by a turbulent flow is considered. Droplets surrounded by
moist air are able to grow by diffusion of water vapour on their surface. A two-dimensional model
of dry Boussinesq thermal convection is considered in which the turbulent velocity field is driven
by a temperature gradient. The evolution of the velocity, temperature, vapour fields and of droplet
trajectories and radii is analysed by means of high-resolution direct numerical simulations. Despite
the fact that the environment becomes drier and drier, a mean growth of droplets is obtained. The
mechanism identified is based on the presence of correlations between the vapour field and droplet
trajectories. Besides, a spreading of size distribution is observed, with the formation of droplets with
very different sizes. Improvements with respect to previous models are discussed.
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1. Introduction

The development of clouds is a topic of great interest, due to the clear importance of clouds
for life on Earth. Their shape, lifetime, composition, can alter important climate parameters.
The numerous physical processes which take place inside these enormous natural laboratories,20
make the problem complicated both from a theoretical and from an experimental point of view
[1]; measures of small-scale characteristics in clouds are very difficult and their knowledge
is still not complete. In this major problem some fundamental issues still must be fully un-
derstood. Measures in clouds reveal a broad-size distribution of small droplets while classical
air-parcel models point to narrowing size spectra during the condensation stage. Indeed, as25
long as the collisions are rare (for droplets smaller than about 20 µm in radius), condensation
is the only mechanism which can sustain droplet growth. However, the classical model of con-
densation inside a fluid parcel [2] predicts a narrowing of droplet size spectrum. Though some
improvement has been achieved by including the effect of entrainment [3] of dry air inside
the cloud, such a mechanism can only partially justify the presence of a wide range of droplet30
sizes, as it concerns only the cloud boundaries, whereas the spreading of size distribution is
measured in adiabatic cloud cores as well. Other mechanisms have been proposed to explain
such a property of the inner part of the cloud: the effect of stochastic fluctuations in the vapour
field has been considered in [4], as well as in [5, 6] where droplet reaction on the vapour field

Q1

is responsible for its local fluctuations. The effects of developed turbulence have been first35
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included in [7]. There, an ascending fluid parcel of moist air was considered, where droplets
were able to grow by condensation: this resulted in a very limited degree of spreading of the
size distribution.

In a recent paper [8], a very simple model of condensation in clouds was considered. Such
simplicity allowed the authors to isolate a spreading mechanism due to correlations produced 40
by the carrying flow: the idea was that droplets and vapour are correlated since they are
advected by the same velocity field. Therefore, every droplet experiences the same ambient
conditions for a timescale comparable to the large-eddy turnover time. In this picture, droplets
belonging to a very moist region are able to grow faster than other droplets correlated to less
moist regions, thus spreading the size distribution. Finally, droplets correlated to dry regions 45
will evaporate and disappear leaving dry regions void of particles. That shows the importance
of large-scale spatial fluctuations of the vapour field: droplets behave differently since they
grow within different conditions of humidity. Clearly, in order to observe this mechanism the
investigation of a large part of the cloud is required.

The aim of the present work is to verify the robustness of the identified mechanism in a more 50
realistic framework including previously neglected aspects. In particular, in [8] homogenous
isotropic turbulence was considered, sustained by an injection of energy modelled as a random
process. Moreover, the back reaction of droplets on the vapour field was neglected, due
to the small number of droplets. We wish now to make a further step by including two
additional ingredients: the thermal convection due to an imposed temperature gradient and the 55
effect of droplet feedback on vapour. Even if, in principle, results can substantially change,
because of the different dynamics with the peculiar statistical properties of the Bolgiano
regime for all the involved fields, we show the persistence of the described mechanism with
a considerable broadening of size distribution. The qualitative picture does not present any
remarkable difference. 60

2. The model

This section is devoted to describe the model we introduce to perform a numerical analy-
sis of the condensation problem in two dimensions. As discussed above, we consider im-
provements of the model presented in [8] to describe more realistic features, namely the
convection due to thermal unstable stratification and the feedback of droplets on the vapour 65
field.

Convection is driven by the temperature field T , which is an active scalar coupled to the
velocity field via the buoyancy term. In particular, we are dealing with a stratified medium (our
idealised atmosphere), where a cooling contribution proportional to the vertical component
w of the velocity field (w = v · ẑ) is explicitly taken into account in the equation for the 70
temperature field. The physical meaning of such a term is the cooling of an ascending air
parcel at a constant rate !a (adiabatic lapse rate). Note that we set !a to the moist value,
which amounts to incorporating an average contribution due to latent heat effects. Because of
stratification we can split the temperature as the sum of two terms, a mean profile −Gz and a
fluctuation T ′ around it with zero average which satisfies the equation 75

∂t T ′ + v · ∇T ′ = (G − !a)w + κ$T ′, (1)

where the term (G − !a)w is the injection of scalar fluctuations and κ is the molecular
diffusivity. Note that, here, the role of temperature is to sustain, as a local pumping term,
velocity fluctuations. The simplest, even if non-trivial, way to obtain a convective background
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is to focus, as a first step, on a two-dimensional setup. This is the essence of the Bolgiano
turbulent regime.80

Temperature fluctuations drive the vorticity field ω, which follows the equation

∂tω + v · ∇ω = βg × ∇T ′ + ν$ω, (2)

where g is the gravitational acceleration, β is the thermal expansion coefficient and ν is the
kinematic viscosity. Since compositional effects are generally thought to be small (see [9]),
we consider here dry buoyancy. We focus on the Bolgiano regime [10] in which the dynamics
is ruled by the scale-by-scale equilibrium between the inertial term v ·∇ω and the Boussinesq85
buoyancy term βg × ∇T ′ (see the appendix for a description of this regime).

Let us now discuss the inclusion of the back reaction of droplets on the vapour field.
To do that, we first introduce an important ingredient of the considered model: the vapour
field. The supersaturation field s(x, t) quantifies the amount of vapour which is present in
the position x at time t . It is defined by s(x, t) ≡ e(x, t)/es(x, t) − 1, where e and es are90
the vapour pressure and the saturation vapour pressure, respectively. In the regions where
s is positive (moist regions) vapour exceeds the equilibrium point and therefore tends to
condense. Conversely, dry regions are poor of vapour and water here is expected to evaporate.
According to a simple generalisation of the well-known Twomey’s model [2], where we
considered space/time dependences brought by the turbulent velocity field instead of the sole95
time dependence of the classical Twomey’s model, the supersaturation field is considered as
a passive scalar and is thus ruled by the equation

∂t s + v · ∇s = A1w − 1
τs

s + D$s, (3)

where A1w is a local source (or sink) of supersaturation due to the cooling (or heating) of an
ascending (or descending) volume, while −s/τs accounts for the local feedback of droplets
on vapour. We wish to introduce such interaction at local level in order to describe the spatial100
variations in the statistics of s, which depend on how many droplets are locally present. The
absorption time τs is thus considered here as a field, evolving in space and time according
to the size and number density of droplets. During evolution, in each point x, τs is inversely
proportional to the sum of the radii Ri of the N (x, t) droplets present in a little volume around
x (see e.g. [11]):105

1
τs

(x, t) = A
N (x,t)∑

i=1

Ri (t), (4)

where A is a function of thermodynamic parameters and temperature. The coefficients A
and A1 can be considered constant since their maximum variation within the whole domain
(few hundreds meters) is less than 1% (see [12]). In the numerical procedure we consider
that every droplet affects the value of τs in the four nodes surrounding its position. The
weight of the contribution to each node depends on the distance from the node via bilinear110
interpolation.

The Lagrangian equations for the trajectory and radius of each droplet are required to
complete the model. Thanks to the small droplet Reynolds numbers, the small Stokes numbers
and the small mass loading (ratio of the total mass of particles and the mass of the carrier
fluid), we can consider droplets as independent, passive particles (see [13]). Moreover we115
assume droplets as tracer particles (see discussion in [8]), since the Stokes timescale of the
largest droplet in our simulations is about 0.01 s, much shorter than the shortest timescale
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associated with our turbulent velocity field (τη ≈ 2.5 s). Hence, for the i th droplet we obtain

d
dt

Xi (t) = v(Xi (t), t) +
√

2Dηi (5)

d
dt

R2
i (t) = 2A3s(Xi (t), t), (6)

where ηi are independent white noises and A3 can be considered as a constant. Note that
gravity acceleration has been neglected in equation (5), since the terminal velocity is a small 120
fraction (from 0.01 to 0.25) of the minimum velocity we can resolve.

The feedback of droplets on vapour has now an important role linked to the correlation
effect shown in [8]. If such effect was still present, dry regions would be void of droplets,
providing no vapour loss there. All droplets would be segregated in moist regions where they
would grow consuming the surrounding vapour thus slowing down their growth. This could 125
change the prediction on the spreading of size distribution. Moreover, let us stress that the air
can become undersaturated on average, as discussed in the following; thus from equation (6),
with a mean-field-type argument, we would not expect any mean growth of radii. The aim of
the following section is therefore to quantify the importance of the droplet back reaction on
vapour in the present framework. 130

3. Results

As discussed in the previous section, we focus on a regime which presents the different
statistical properties of velocity, temperature and supersaturation with respect to Kolmogorov
1941s. We wish now to consider the evolution of droplets advected by a convective velocity
field and interacting with the described supersaturation field. We performed a series of high 135
resolution (10242) direct numerical simulations of model equations (1)–(6), integrating the
2D velocity field v , the temperature field T and the supersaturation field s by a standard
2/3-dealiased pseudospectral method on a doubly periodic square domain of length 2π. The
dissipative terms have been substituted, as customary, by hyperviscous terms of order eight
for the viscosity and of order 4 for the diffusivities. A linear friction term is added to the 140
vorticity equation to prevent the energy from accumulating at the lowest accessible modes.
The time evolution is implemented by a standard second-order Runge–Kutta scheme with a
time step of about τη/250. Once the stationary state is reached (after about 17 τL ), we put one
million droplets randomly in a space and with the initial size around R0 = 4 µm, growing
according to equation (6); we follow their evolution for over 2 τL . Since the atmospherical 145
Reynolds number can reach enormous values, around 107–108, we have to choose the range
of scales we are interested in. If we focus the attention on a small fluid parcel, describing
the small-scale dynamics in great detail, we cannot take into account the effect of large-scale
fluctuations of the fields. Namely we would have almost the same ambient conditions for
all droplets inside the computational domain, because fluctuations are tiny at small scales. 150
But droplets transported by the turbulent flow are in fact able to span a very large volume of
the cloud and therefore to experience very different ambient conditions. We then choose to
simulate the evolution of the whole cloud, not resolving the small-scale details (see [8] for
discussion).

Before showing the results, we give a remark on the mean vapour field. The equation of 155
evolution of s, does not preserve its average: it is not clear a priori the general trend of the
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Figure 1. Mean supersaturation evolution in time. Here, σ (s0) is the standard deviation of the initial field s(x, 0)
and τL is the large-eddy turnover time. Note that there is a constant negative trend which suggests the presence of
correlations between s and τ−1

s as discussed in the text.

mean supersaturation 〈s〉. Indeed, by averaging equation (3) we obtain

4C/Art

d
dt

〈s(x, t)〉 = −
〈

s(x, t)
τs(x, t)

〉
. (7)

Let us guess the sign of 〈s/τs〉. If the fields s(x, t) and τ−1
s (x, t) were independent, 〈s/τs〉 =

〈s〉〈τ−1
s 〉 and the rhs of equation (7) would have the sign opposite to 〈s〉, given that 〈τ−1

s 〉 > 0.
In this case equation (7) tells us that the mean supersaturation decays in time. Consider now the160
extremely correlated situation in which all droplets are concentrated in moist regions. In this
case, dry regions would be totally void of droplets: here τ−1

s would vanish (see equation (4)). In
contrast, we would have droplets—and therefore τ−1

s > 0—only in moist regions, i.e., where
s > 0, providing 〈sτ−1

s 〉 > 0. From equation (7) we can conclude that in the presence of
correlations there is a general negative trend of 〈s〉. The result shown in figure 1 demonstrates165
that the average supersaturation has a constant negative trend which confirms the presence of
correlations between droplets and vapour. As a consequence we are dealing with a drier and
drier environment, which works against the growth of droplets.

We wish now to ask directly whether correlations are actually present. The answer is given
in figure 2, where we show the snapshots of the field s(x, t) beside the field τ−1

s (x, t). The170
figure shows that droplets are present (i.e. τ−1

s (x, t) > 0 in the left panel) only in moist regions
(shown in light blue in the right panel).

From these results we can conclude that the dynamical state produced by thermal convection
does not affect the presence of correlation and the segregation of droplets in moist regions
detected in the framework of homogeneous isotropic turbulence [8]. We come now to the175
quantitative description of droplet size spectrum evolution.

The picture we have qualitatively drawn for the back reaction of droplets on vapour is that
every droplet grows absorbing the surrounding vapour, providing a drier and drier environment
and slowing down its growth. Since τ−1

s is proportional to droplet radii, the larger the droplet,
the faster the vapour loss. Therefore we expect that such feedback results in a slowing down of180
the mean droplet growth and of the spectrum broadening as well. In figure 3 we compare the
mean radius growth obtained by two simulations beginning with the same initial condition:
in order to obtain the effect of droplet feedback on water vapour, one of the two simulations
neglects the term −s/τs in equation (3). As we expected, neglecting the back reaction of
droplets on vapour results in an overestimate of the mean growth rate. Indeed, in a large-eddy185
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Figure 2. Left panel: snapshot of the field τ−1
s (x, t) obtained by summing the radius of droplets inside a small

volume δVx around point x at time t = 0.1 τL (entire domain). From equation (4), τ−1
s vanishes where no particles

are present (black regions). Right panel: snapshot of the supersaturation field s(x, t) at the same time t = 0.1 τL . Dry
regions are represented in dark blue, while moist ones are represented in light blue. Dark regions of the left panel
correspond to dark regions of the right one: dry regions are void of droplets. Note that the different patterns with
respect to figure 1 in [8] are due to the different dynamical regime considered.

turnover time τL , which corresponds to ∼100 s, droplets grow due to the sole condensation

4C/Art

mechanism, until ∼50 µm on average. This value is actually much larger than observed in
real clouds (see e.g. [1]). Taking into account this term goes in the direction of slowing down
the condensational growth, making the prediction more realistic.

With the same spirit we compare the evolution of droplet size spectrum obtained with the 190
same couple of simulations. The result of the comparison is shown in figure 4 for the two
cases with and without the feedback of droplets on vapour: again the expectation of a slower
spreading was right. However, the quantitative data show that also taking into account the
droplet feedback on vapour, the condensation stage produces droplets with a significantly

4C/Art

broad size distribution. 195
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Figure 3. Growth of the mean radius in time, for the case with (red line) and without (blue line) the sink term
−s/τs . Note that neglecting the feedback of droplets on water vapour results in an overestimate of the mean growth
of droplets.
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Figure 4. Droplet size spectrum for the case with accounted (left panel) and neglected (right panel) feedback of
droplets on vapour. Note that, since R0 = 4 µm, neglecting the feedback term results in the production of droplets
with radii up to 85 ÷ 90 µm after one τL (≈100 s), while accounting for such term results in a more reasonable
maximum size of 20 ÷ 22 µm.

4. Conclusions and perspectives

The aim of the present work was to improve the results obtained in [8] for droplet condensation

4C/Art

in highly idealised models of turbulent clouds. Two new ingredients were introduced to move
towards a more realistic framework. We considered indeed thermal convection to drive the
velocity field through buoyancy. The latter mechanism changes the stationary state of the200
turbulent system and yields a very different statistics with respect to the classical 2D inverse
cascade regime. Moreover, we consider here the feedback of droplets on vapour which was
previously neglected. Such interaction is modelled by an additional term in the equation of
evolution for the vapour field and, heuristically, works against the fast growth and spreading
of droplet radii. The results show that the spreading mechanism identified in [8] is still present205
despite the different statistical properties of the turbulent regime analysed. The slowing down of
spreading and mean growth does not affect the general behaviour of the droplet size spectrum;
in contrast, it results in a more realistic prediction.

A necessary step in the direction of a description of droplet condensation is a complete
3D simulation of the system. Such issue could support the significance of the mechanism210
identified for a more exhaustive picture of droplet growth by condensation in warm clouds.
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Appendix A. The Bolgiano regime

The two-dimensional Boussinesq turbulent convection is described by the following couple
of partial differential equations [14]:

∂tω + v · ∇ω = −β∇T × g + ν$ω (A1)

∂t T + v · ∇T = κ$T . (A2)
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Here, T is the temperature field and the vorticity ω is a scalar field, since in a plane flow ∇×v
has only the normal component. In order to mimic both the fact that the fluid is supposed to 220
be heated from below and that the mean temperature profile in a cloud is an almost linearly
decreasing function of the elevation, a mean profile 〈T (r , t)〉 = G ·r is assumed, with a constant
gradient G pointing downwards in the direction of the gravity field. In a similar model, studied
in [15–17], no mean gradient is present and a forcing term is added to the equation for the
temperature field. There, the average temperature becomes constant and turbulence is not 225
excited locally, but emitted from the underlying layer.

In equation (A2) the temperature field affects the vorticity through the buoyancy forces,
thus providing an example of active scalar turbulence. At large enough values of β, the buoy-
ancy forces can equilibrate the inertial terms in the velocity dynamics, while the temperature
fluctuations cascade towards the small scales at a rate ε. 230

Let us briefly recall the phenomenology of 2D turbulent convection (for the 3D case, see e.g.
[18, 19]). The balance of buoyancy and inertial terms in equation (A2) introduces the Bolgiano
length scale lB [18]. At small scales, r , lB, the inertial term is larger than buoyancy forces
and the temperature is basically a passive scalar. At scales r - lB, buoyancy dominates and
affects the velocity, which performs an inverse energy transfer in two dimensions. However, 235
unlike what happens in the usual 2D Navier–Stokes turbulence, the kinetic energy input rate
here depends on the scale. Dimensional arguments yield:

ε(r ) = βg · 〈v(x + r , t)T (x, t)〉 ∼ r4/5 (A3)

and the dimensional expectations for both velocity and temperature structure functions:

Sv
N (r ) = 〈(δrv‖)N 〉 ∼ [ε(r ) r ]N/3 ∼ r ζ v

N ζ v
N = 3N

5
(A4)

ST
N (r ) = 〈(δr T )N 〉 ∼ r ζ T

N ζ T
N = N

5
. (A5)

Numerical results show that no intermittency corrections are observed for the velocity,
whereas the temperature field appears strongly intermittent and saturates to a constant value 240
(see [14]). Second-order structure functions for both velocity and temperature are reported in
figure A1, in good agreement with the dimensional predictions (A4) and (A5).
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Abstract

We consider the growth by condensation of small water droplets in a homoge-
neous isotropic turbulent flow. Droplet size spectra evolution is described by means
of high-resolution (up to 5123 grid points) 3D direct numerical simulations of a sim-
ple model of advection and condensation. The dynamics and growth of millions of
droplet is integrated. A droplet-size spectra brodening is obtained and it is shown
to increase with the Reynolds number of turbulence. An evaluation of this increase
points to a significant spreading achieved by real cloud turbulence. Results can be
understood in terms of dimensional arguments and give an interesting information
for a possible LES analysis of the problem at hand.

1 Introduction

The growth of microdroplets by condensation is a long-standing problem of cloud physics
[1], meteorology [6], medicine [7] and engineering [8]. A fundamental understanding of
key issues such as the turbulent mixing inside clouds or the interaction of turbulence with
microphysics is important for a variety of applications (the parameterization of small scales
in models resolving larger scales, the analysis of radiative transfer through clouds, the
prediction of the initiation of precipitation). The peculiar features of turbulence, affecting
the motion on a wide range of space-time scales, can alter significantly the condensation
process, by providing a strongly fluctuating and intermittent moist environment. This is
a well-known concept in engineering, where turbulence is considered as a key ingredient
for the optimization of fuel-air mixing and the rate of fuel vaporization in engines [8].
Similar ideas have a long hystory in cloud physics as well: turbulence is believed to act
both on collision processes [9, 14, 13, 11, 35, 12, 10] and on condensation, that we focus
here.

Condensation is a fundamental process for the early stages of cloud evolution. It
is the only mechanism able to grow droplets immediately after their formation, when

1

115



they are few µm in size. When a few of them become large enough to fall - a radius
of 20 µm is commonly considered as a threshold - they begin to collide and coalesce.
Collisions are much more efficient than condensation as a growth mechanism. Indeed,
after nucleation droplet radius grows of roughly one order of magnitude by condensation.
In a comparable timescale, collisions grow droplets to raindrops, bridging a gap of around
2 orders of magnitude in size. However, the high efficiency of the latter is strongly
influenced by the general features of the former. In particular, gravitational collisions
are highly effective when the population of droplets coming from condensation span a
large variety of sizes. Uniform condensational growth leads to narrow droplet-size spectra
instead (see e.g. [3, 2]). Namely, provided that all droplets grow in similar ambient
conditions, small droplets grow faster than large ones and thus all droplets finally tend
to converge to the same size. This is the long-standing problem of the bottleneck in the
transition between condensation and collision-coalescence.

The presence of broad droplet-size distributions have been detected by in situ mea-
surements in warm clouds under very broad conditions [15]. Still, this property keeps
eluding full theoretical understanding despite the number of different approaches devel-
oped to this purpose. Some of them rely on the effects of entrainment and mixing with
non-cloudy air interesting the regions of the cloud near to the boundaries (see, e.g., [16]).
However, broad spectra are also observed inside the inner adiabatic cores [17], where no
boundary effects can possibly explain their presence. Droplets themselves have been pro-
posed to be sources of local variability in the environment conditions. Indeed, droplet
evaporation is an internal source of turbulent kinetic energy due to cooling associated to
the absorption of latent heat, coupled with buoyancy [19, 21, 20]. Besides, their presence
locally change the water vapor content through phase change [18]. The general conclu-
sion is that these microscopic fluctuations influence the process of mixing occurring at
the interface between cloud and clear-air. Also, the presence of ultra-giant condensation
nuclei has been proposed to explain the large raindrops production [22]. Other properties
such as salinity and surface curvature may produce absolute and relative broadening, as
proposed in [23].
Stochastic fluctuations of the environmental conditions, induced by turbulence have been
envisioned as a broadening mechanism since the ’60s, see e.g. [24, 26, 25], when the the-
ory of stochastic condensation was first proposed. This approach explains droplet spectra
broadening by observing that fluctuations of the ambient conditions make droplets grow
at different rates. This simple idea is very powerful, in that it interests the whole cloud,
regardless the presence of additional microscopic mechanisms, the presence of ultra-giant
nuclei or boundary effects such as mixing with dry air and entrainment. Although all
these ingredients play a role in these huge natural laboratories, their contribution may
differ according to different conditions. On the other hand, turbulence in clouds is a
spectacular phenomenon with a wide range of scales dynamically coupled in the process
of non-linear energy cascade. For this reason, turbulence is a very good candidate as
broadening mechanism generally at work within convective warm clouds. At a Reynolds
number approaching Re ∼ 108, turbulence is known to be highly intermittent, with statis-
tics strongly deviating from a gaussian one and a substantial probability of fluctuations
far exceeding the standard deviation [5]. This means that droplets coming close one to
the other might have previously experienced disparate conditions, thus invalidating any
expectation based on uniform condensation.
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Here we want to show that some qualitative features emerging from a simple idealised
setting - to be introduced below - may be well present in more complex models, just
because they are a consequence of basic properties of turbulence itself.

In view of this purpose, under consistent hypothesis, we consider a model of conden-
sation that privileges simplicity and generality with respect to the detailed description of
all the microphysical features. Droplets growth in a fully developed turbulent flow can
not be treated analitically and numerical simulations become a fundamental tool of inves-
tigation. Numerical approaches to cloud turbulence are very demanding because of the
huge number of active degrees of freedom. In terms of the spatial structure of the turbu-
lent fields, direct numerical simulations (DNS) can either focus on large-scale structures
[27, 28], or resolve the small scale features [29, 30, 31, 19]. The two choices are actually
complementary and both have strong and weak points (see Section 2, for further details).
Here we develop a third point of view. First we evaluate the spreading of droplet-size
distributions through a series of direct numerical simulations, at increasing resolutions,
matched to the small scales. Not surprisingly, each single DNS gives a small degree of
spreading, as already pointed out in previous works focusing on small rising fluid parcels
(see e.g. [30, 31, 19]). However this only tells us that small scale turbulence alone is not
enough to explain the large size spreading observed in clouds. Therefore, we evaluate the
dependence of the size spectra broadening on the turbulent Reynolds number, i.e. on the
range of spatial scales resolved. The broadening is found to increase with the Reynolds
number of turbulence with a trend that can be understood on the basis of dimensional
arguments. We extrapolate this curve to high Reynolds numbers to evaluate the effects
of realistic cloud turbulence within the model adopted. It turns out that homogeneous
isotropic turbulence in a cloud core of size around 100m would produce a remarkable
spreading of the droplet size distribution. Note that this does not clarify whether the
whole range of spatial scales is actually crucial to obtain the extrapolated behavior. We
perform a further simulation that provides arguments supporting a role of primary im-
portance for large scale fluctuations. This is an interesting conclusion in the context of
large-eddy simulations or, more generally, models that have to deal with the problem of
parameterization of small scales.

The paper is organised as follows. In Section 2, we introduce the model for the time
evolution of the vapor field and the droplets advected by the turbulent air flow. Section 3
is devoted to explain the numerical approach and DNS details. Results concerning the
spreading of droplet size spectrum are discussed in Section 4. Section 5 is devoted to
conclusions and perspectives.

2 Model equations and numerical procedures

We focus our attention on a turbulent velocity field carrying vapor and droplets. The
latter undergo size changes for evaporation or condensation of the surrounding vapor.
The three-dimensional velocity field v evolves according to the Navier-Stokes equations
for an incompressible flow,

∂tv + v · ∇v = −∇
p

ρa
+ ν∆v + f , ∇ · v = 0, (1)

where p is the pressure, ρa is the air density, ν is the air kinematic viscosity and f

is an external statistically homogeneous and isotropic pumping, providing a turbulent

3

Paper: Condensation of cloud droplets in homogeneous isotropic turbulence 117



stationary flow. Cloud turbulence is generated by large-scale turbulent fluctuations which
can be strongly anisotropic. Indeed the presence of gravity introduces a preferential
direction through large scales thermal gradients and buoyancy, the engine of convective
motions. However, we can assume that for sufficiently small internal cloud cores, vertical
stratification of the environment can be neglected and the small-scale flow is essentially
forced by nonlinear transfer from larger scales, rather than by buoyancy. Isotropy can
thus be assumed for the small scale motion. In [33], the authors argue that this should
be valid in warm-cloud cores for spatial scales up to L ∼ 100 m. In addition to large-
scale thermal gradients, anisotropy is also produced through buoyancy by microscopic
temperature fluctuations. Indeed sedimenting droplets can evaporate, absorbing latent
heat and thus locally cooling the environment. This effect can be important in some
conditions, as proved in [20, 21, 19] for the cloud-clear air mixing at small turbulent kinetic
energy rates. However, provided that we focus on the inner adiabatic core, away from the
cloud boundaries, on first approximation we neglect this microscopic source of anisotropic
fluctuations. With equation (1), we are thus focusing on the turbulent motion of in-cloud
air, neglecting the role of convective motions. Note that previous two-dimensional DNS
[27, 28] suggest that the qualitative effects of turbulence on condensation do not depend
on the specific statistical details of the turbulent regime analysed.

Water vapor molecules carried by the turbulent velocity field are the source for droplet
growth by condensation. The relevant quantity for droplet condensation/evaporation is
the supersaturation, which quantifies the presence of vapor available for cloud particles
growth. It is defined as s := e/es − 1, where e and es are the vapor pressure and the
saturation vapor pressure respectively. Droplets are able to grow when the surrounding
vapor content exceeds the saturation point (s > 0 in equation (4), moist air). On the
contrary droplets tend to evaporate when s is negative (dry regions). Exhaustive in
situ measures of the small-scales statistics of the vapor field are not available at now.
Therefore, different models proposed cannot yet be directly validated by comparison with
real data.
For the sake of generality and simplicity, we adopt here the simplest generalization of the
well known Twomey’s model [34]. While Twomey considered a one-dimensional equation
for the time-dependent supersaturation function, here we consider the turbulent vapor to
fluctuate both in space and time. For this reason we introduce the supersaturation as a
field s(x, t) := e

es
(x, t) − 1, that quantifies the amount of vapor which is present in point

x at time t. Since s(x, t) is allowed to fluctuate from positive to negative values, dry and
moist regions can coexist at the same time.
The generalization of Twomey’s equation [34, 1, 14, 31] for the supersaturation field is an
advection-diffusion equation:

∂ts + v · ∇s = κ∆s + A1w −
s

τs
. (2)

Here we assume that the scalar field s(x, t) is passively advected by the turbulent flow
v(x, t) which is not affected by its presence. Here, we are neglecting the compositional
effects of vapor on the buoyancy forces acting on the flow that are generally thought to be
small [4]. In the last equation, κ ≈ 10−5m2s−1 is the molecular diffusivity of water vapor
in air and w(x, t) is the vertical component of the turbulent velocity field v. The term A1w
acts as a source/sink term of supersaturation resulting from the variation in temperature
and pressure due to vertical motion. A1 can be interpreted as a global supersaturation
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gradient. The term −s/τs accounts for the double effect of condensation/evaporation on
supersaturation: on one side the phase change directly modifies the water vapor content,
on the other side it locally modifies temperature due to absorption or release of latent
heat. In dry regions, s(x, t) < 0, droplets tend to evaporate releasing vapor and cooling
the environment. Here, the term −s/τs is a source of supersaturation. Conversely in
moist regions, droplets tend to absorb vapor for condensation and to release latent heat,
here −s/τs acts as a sink term. The parameter τs is the relaxation timescale of the
supersaturation and depends locally on the concentration and size of droplets. In each
volume V , τs is defined as (see appendix A):

τ−1
s =

4πρwA2A3

V

n∑

i=1

Ri , (3)

where Ri are the radii of the n droplets inside the considered volume; A2 is a function
of thermodynamic parameters (see appendix A); ρw is the water density; A3 is the rate
of droplet radius growth by condensation (see equation (4)). In the numerical procedure,
we consider each droplet to affect the value of τs in the eight nodes of the grid cell
surrounding its position. The weight of the contribution to each node is calculated via a
three-linear interpolation. Table 1 shows the reference values of these parameters used in
the numerical experiments.
Note that Twomey’s one-dimensional equation for s is derived under a given temperature
profile neglecting fluctuations. It is difficult to quantify temperature fluctuations in clouds,
since in situ microscale cloud data are unavailable. For what concerns the vapor field, this
amounts to neglect an additional source of fluctuations induced by temperature advection
and diffusion. The remarkable feature of the simple model identified by equations (1) and
(2), is that despite its simplicity it allows to identify nontrivial mechanisms leading to the
spreading of the size spectra.

Given the evolution equation for the Eulerian turbulent fields, we can now introduce
the Lagrangian dynamics of cloud particles and the time evolution of their radii. A
complete description of the relation between the water vapor and the size of a droplet
would imply an integral equation for the local dynamics occurring at the droplet surface.
Nevertheless, since the typical timescales of microscopic dynamics are much smaller than
that of condensation, we consider the droplet to be instantaneously in equilibrium with the
surrounding vapor (a detailed quantification of this assumption is given, e.g., in refs. [29,
31, 14]). Under basic assumptions1, we end up with the following equation for the i-th
droplet growth rate (see also [1] for further details),

dRi(t)

dt
= A3

s(Xi(t), t)

Ri(t)
, (4)

where A3 is a function of the local conditions and is here assumed to be constant through-
out the entire volume (variations of this parameter with temperature in typical warm cloud
conditions are smaller than 3%). According to equation (4), the growth rate varies from

1We assume that (i) droplets are almost spherical (significant deformations from the spherical shape
are typical of much larger drops, from sizes of hundreds of µm on CHECK!!); (ii) the coefficient A3 is not
significantly altered by either the chemical composition of droplets or the size of the droplet itself (this
holds for droplets already activated onto condensation nuclei); (iii) curvature and salinity corrections are
negligible (this holds for radii larger than about 1µm)
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A1 A2 A3 Ndrops/V τs R St
(m−1) (kg−1m3) (µ m2s−1) (cm−3) (s) (µ m)

5 × 10−4 350 25.0 130 5.0 5 5 × 10−3

Table 1: Reference values for some of the physical parameters used in the numerical
experiments. The values of the vapor relaxation time τs, the droplet radius R and the
Stokes number St correspond to the initial conditions.

a droplet to another, since it depends on the supersaturation fluctuation s(Xi(t), t) mea-
sured along the trajectory Xi(t) of the single droplet. Due to turbulent dispersion initially
close droplets will eventually experience disparate values of supersaturation. This is the
striking difference with respect to Twomey’s model where all the droplets were exposed
to the same supersaturation value.
Cloud droplets can be described as independent, passive, Stokes particles, whose trajec-
tories Xi(t) and velocities Vi(t) evolve according to:

dXi(t)

dt
= Vi(t) (5)

dVi(t)

dt
= −

Vi(t) − v(Xi(t), t)

τ i
d

+ gẑ. (6)

Here v(Xi(t), t) is the fluid velocity at the particle position; τ i
d(t) =

R2
i
(t)

3νβ is the particle
response time (or Stokes time); β = 3ρa/(ρa + 2ρw) ≈ 3ρa/(2ρw) is the air/water density
ratio; and g is the gravity acceleration. Equations (5) and (6), derived from Maxey and
Riley [36], are valid for dilute suspensions of small spherical heavy particles. During the
condensation stage, this working hypothesis are well verified as discussed in [33].

3 Framework of numerical simulations and range of

parameters

This section is devoted to introduce the physical approach employed in the numerical
simulations. As discussed earlier, DNS of cloud physics present a major problem: there
is a huge number of degrees of freedom that cannot be fully described simultaneously.
Turbulence is organized in spatial structures of typical scales ranging from hundreds of
meters down to the Kolmogorov scale (typically 1mm). Similarly, the timescales range
from thousands to fractions of a second. Within this highly turbulent medium, a popula-
tion of 1015 ÷ 1018 droplets evolve. Moreover, even if droplets are much smaller than any
turbulent spatial scale, their trajectory span the whole range of turbulent scales. This
results in correlations with the fluctuations of the vapor field [27, 28] and with the struc-
tures of the velocity field [37]. Therefore, turbulent motion at any scale play a significant
role in droplet dynamics. However when dealing with experiments in silico, because of
computational limitations, it is compulsory to choose a setting which describes only a
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label N L TL Reλ ε η τη σs(t = 0) vrms Ndrops

(cm) (s) (m2s−3) (cm) (s) (%) (ms−1) (×105)

(a) 643 9 2.0 40 10−3 0.1 0.1 1.5 × 10−3 4 × 10−2 0.93
(b) 1283 18 3.5 65 9. × 10−4 0.1 0.1 3.4 × 10−3 5. × 10−2 8.2
(c) 2563 38 5.5 105 10−3 0.1 0.1 6.1 × 10−3 7. × 10−2 71
(d) 5123 70 7.6 185 1.1 × 10−3 0.1 0.1 1.2 × 10−2 1. × 10−1 320

Table 2: Parameter of the DNS. From left to right: number of gridpoints N , integral scale
L, large-eddy turnover time TL, microscale Reynolds number Reλ, average energy dissipa-
tion rate ε, Kolmogorov spatial scale η, Kolmogorov timescale τη, initial supersaturation
standard deviation σs(t = 0), velocity standard deviation vrms and number of droplets
Ndrops.

portion of the system. By this choice, the analysis forcely loses part of the degrees of
freedom, no matter how much complete and detailed the model is.

Recent results [27, 28], by means of direct numerical simulations in two dimensions,
pointed out the importance of the large-scale fluctuations of the vapor field. These provide
a strongly variable environment which is finally able to make the history of each droplet
different thus broadening the size spectra. Of course in such context, the small scales of
turbulence cannot be resolved and the analysis is limited to a statistically representative
subset of the whole population. In [30], the complementary setting is adopted: by
concentrating on a small rising parcel, authors can consistently describe in full details the
droplet evolution. This approach, which focuses on what would happen in a cloud of very
small dimensions, provides small fluctuations that eventually produce a limited degree of
spreading.

Here we wish to put toghether the two complementary approaches. The goal is to
obtain an estimate of the spreading of the droplet size spectrum due to condensation in a
cloud core of size around L = 100m. As a first step, we perform a series of direct numerical
simulations at increasing resolution. The grid spacing δx of each simulation corresponds
to 1 mm. At each increase in resolution we are allowed to resolve larger integral scales
L, corresponding to the size of the cloud. We consider four numerical experiments, la-
beled as run (a), (b), (c) and (d), with 643, 1283, 2563 and 5123 grid points respectively.
The integral scale of the system varies from L ∼ 9cm up to L ∼ 60cm. The microscale
Reynolds numbers Reλ ≈

√
Re [5] range from Reλ ∼ 44 to Reλ ∼ 185. The ratio between

the air kinematic viscosity and the vapor molecular diffusivity is ν/κ = 1, so that the flow
and the scalar dissipative scales are of the same order. Table 2 lists all the relevant DNS
parameters.
Clearly the process of doubling the resolution, if iterated, would ideally lead to the de-
scription of the whole range of scales from η ≈ 1mm to L ≈ 100m. As we can only
perform the first iterations of this process, we will recover the result for the target system
as an extrapolation of the process to L = 100m (Reλ about few thousands). For each
DNS, equations (1) and (2) are integrated, by means of a fully parallelised MPI code,
using standard pseudospectral methods with dealiasing, in a computational domain peri-
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Figure 1: Log-log plot of the stationary supersaturation spectrum for the run (d) at Reλ ∼
200. It shows a well defined k−5/3 power law behavior, as expected from Kolmogorov-
Obukhov-Corssin theory. The turbulent velocity field also shows a Kolmogorov spectrum
(not shown). Inset: log-log plot of the standard deviation of the supersaturation field
σs, measured in the stationary state, versus the size of the system L. The behavior is in
agreement with the dimensional prediction σs ∼ A1L.

odic in the three directions. Molecular viscosity (and diffusivity) is chosen so as to match
the Kolmogorov lengthscale with the grid spacing η & δx: this choice ensures a good
resolution of the small-scale dynamics. Kinetic energy is injected at an average rate ε,
by keeping constant the total energy in each of the first two wavenumber shells [38]. The
scalar field is forced by the assigned gradient A1; the term −s/τs is off as long as droplets
are not injected into the flow. Time stepping is done using a 2nd order Adam-Bashfort
scheme. The time step is chosen to accurately resolve the smallest turbulent fluctuations,
and the particle acceleration.

Starting from a zero field initial condition, the system reaches, after few large-scale
eddy turn over times TL = L/vrms, a statistically stationary state. Figure 1 shows the
supersaturation spectrum at the stationary state for run (d) before particles injection. In
agreement with classical Kolmogorov-Obukhov-Corrsin theory (see e.g. [40]), this exhibits
a k−5/3 power law behavior in the Fourier space. Since the scalar spectrum is peaked on
the large scales, as the integral scale increases, we approach larger and larger fluctuations.
In the inset of Fig. 1, we show that the supersaturation standard deviation σs increases
with the size of the system. The behavior is compared with the expectation σs ∼ A1L,
based on a dimensional balance of terms in equation (2). From the physical viewpoint,
the increase of the cloud size corresponds to a stronger adiabatic cooling. This directly
provides larger fluctuations in the vapor field, since the adiabatic cooling drives s through
the source term A1w in equation (2). The extrapolation of the vapor field standard de-
viation to L ≈ 100 m gives σs(L = 100m) ∼ (2.0 ± 0.6)%, a reasonable value for warm
clouds.
Once the steady state has been attained, a monodispersed (with initial radius Ri = 5 µm)
population of droplets is injected into the flow. Initially, these are distributed homoge-
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neously in space and with velocities equal to the local fluid velocity. Equations (5) and
(6) are then advanced in parallel, by a standard second order Runge-Kutta method. We
chose absorbing boundary conditions for droplet radius, i.e. a droplet whose size vanishes
is abandoned, and no new particles are considered to enter the volume. Lagrangian ve-
locities are computed via linear interpolation in the three spatial directions [39], which
was demonstrated adequate to obtain well resolved particle accelerations. Similarly, we
compute the vapor field s(X(t)) at the particle position. Droplet concentration is for
all experiments ≈ 130 cm−3, which means that, on average, about one out of eight cells
contains a droplet. In the largest simulation we followed the time evolution of 32 millions
droplets. Coupling between droplets and the vapor field takes place via the term −s/τs

of eq. (2), so that the initial vapor available is consumed for condensation onto droplet
surface. From now on the symbol σs stands for the standard deviation of the supersatu-
ration in the stationary state, which is the initial condition for our Lagrangian analysis.
The complete system -flow, scalar and droplets- has been studied, at the largest resolution,
for about two large-scale eddy turn over times. Longer time integrations were performed
at lower resolutions.

4 Results and Discussion

Our simulations start with a spatially uniform distribution of monodispersed droplets
with vanishing acceleration (velocity equal to that of the fluid). As cloud particles are
released, they explore the volume space and experience the range of vapor fluctuations
available in the system. The fluctuations of the vapor field decrease due to the feedback
of droplets. After 2 − 3 large scale eddy turn over times it generally stabilizes to a lower
value of scalar energy. Our main focus is on the evolution of droplet size distributions.
In Figure 2, the droplet size distributions are shown for runs (a)-(d) after one large scale
eddy turn over time. A small degree of spreading is present for each simulation, and in-
creases with the size of the cloud. This increase is due to the fact that larger domain sizes
correspond to larger supersaturation fluctuations and longer large-eddy-turnover times.
In other words, travelling in a larger cloud volume, droplets are exposed to more and
more intense fluctuations of vapor for longer and longer times. In the inset of Fig. 2
we show the time evolution of the size distribution standard deviation σR. For t ≤ TL,
this behaves linearly meaning that at short time lags, droplets grow with the vapor fluc-
tuation initially experienced and do not feel the underlying local variations. A similar
linear growth is observed for the standard deviation of the droplets square radius as well
σR2(t) = (〈R4(t)〉−〈R2(t)〉2)1/2 (not shown). This is because the droplet size distribution
is close to Gaussian, and the mean radius is much larger than the standard deviation
hence σ2

R2 ≈ 2σ4
R + 4σ2

R〈R〉2 ≈ 4σ2
R〈R〉2.

At larger times, when vapor is appreciably absorbed for condensation droplets growth
slows down. From these results we try now to estimate the droplet size spreading achieved
when the integral scale approaches a realistic value. To this purpose we evaluate the stan-
dard deviation σR2 of the distribution of the square radius at time TL for each run. Note
that experimental measures of the square radius can be found in [17]. In Fig. 3, the
standard deviation σR2(TL) is plotted as a function of the Reynolds number Reλ charac-
terizing flows (a),(b),(c) and (d). The simplest expectation, based on self-similarity of the
growth process under different turbulent regimes, is that the final degree of spreading will
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Figure 2: Droplet size distribution after one large-scale eddy turn over time, t = TL, for
the 4 DNS (a) (blue triangles), (b) (red dots), (c) (green circles) and (d) (black squares).
In each run, droplets’ initial distribution is δ(R − R0), with R0 = 5µm (not shown).
Each simulation presents a small degree of spreading, which increases with the Reynolds
number. Inset: log-log plot of the time evolution of the standard deviation of the size
distribution for the run (a)-(d). Color coding is the same of the main frame.

depend on the Reynolds number as a power law. A dimensional analysis of equation (4)

leads to σR2(TL) ∼ A3σsTL ∼ Reξ
λ. Remembering that in a turbulent flow σs ∼ Re3/2

λ and
TL ∼ Reλ, we easily end up with ξ = 5/2. The dimensional scaling is shown in figure 3 for
comparison. Of course this is a very simple estimate based on pure dimensional balance.
Corrections are expected due to mechanisms excluded by the analysis. For instance, the
supersaturation values undergo an initial transient due to vapor absorption on droplet
surface. Additionally, according to [27], droplet trajectories correlate with vapor fluctua-
tions.
The dimensional scaling with the Reynolds number of the flow can be extrapolated to draw
the expectation for a real cloud. For a cloud of parameters L = 100m and Reλ ≈ 2500,
we obtain a square radius standard deviation σext

R2 & (25. ± 3.)µm2.
To further investigate the validity of these basic arguments and the role of turbu-

lent large-scale fluctuations, we performed another numerical experiment, labeled run (e),
resolving the large scales of the problem. The parameters in run (e) are L ≈ 100 m,
η ≈ 30cm, vrms ≈ 0.6ms−1, σs ≈ 2%, Ndrops = 7.× 106, TL ≈ 150 s and numerical resolu-
tion N3 = 2563 grid points. Note that the level of vapor fluctuations are now appreciable
and reasonable for typical warm cloud conditions. Space-time integration of the system
has the same features described in Section 3. Note that with these parameters, we can
not follow the evolution of 150 cm−3 droplets, since their number would be too large. We
put an amount of droplets that assures the significance of the statistics and account for
the correct renormalization factor in the computation of the relaxation time τs in equa-
tion (2).
The phenomenology obtained is qualitatively similar to that described in [27]: there are
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Figure 3: Log-log plot of the spreading of droplet size distribution σR2(TL) for the square
radius R2, measured after one large-scale eddy turn over time TL, as a function of the
microscale Reynolds number *lambda. The spreading is larger as the Reynolds number
increases, since droplets evolve in conditions which are more and more differentiated.
The dimensional prediction σR2 ∼ Reξ

λ with ξ = 5/2 is shown for comparison (see the
text). The extrapolation of this law to the target cloud of parameters L = 100m, σs ∼ 2%
and Reλ ∼ 2500, gives a size spreading σext

R2 ∼ 25µ m2.

correlations between droplets and vapor due to the long-ranged correlations of the underly-
ing turbulent velocity field. Droplets experience for a long time the same supersaturation
fluctuation. If the supersaturation fluctuations are large enough, correlations become vis-
ible. Indeed they last longer than the time needed for droplets to completely evaporate
so that droplets dwelling in dry regions disappear leaving these regions void of droplets
(see figure 4). Conversely, droplets belonging to moist regions grow at different rates,
according to the value of supersaturation they are correlated to. This provides a remark-
able spreading of the size distribution, as shown in figure 5. The spreading of the size
distribution can be quantified in terms of the standard deviation of the radius and of the
square radius. After one large-scale eddy turn over time we obtain σR(TL) & (1.7±0.5)µm
and σR2(TL) & (18. ± 5.)µm2, respectively. Note that of course simulation (e) does not
resolve the whole range of spatial scales of realistic turbulence. However, by matching the
parameter on the large scales of the problem, it reproduces the intensity of large scales
fluctuations. The final spreading achieved is comparable to the expectation based on the
extrapolation process described above. This points to the fact that the substantial con-
tribution to droplet size spreading is given by the strong fluctuations of the vapor field,
typical of the largest turbulent eddies. Hence the role of primary importance of the large
scales.

11

Paper: Condensation of cloud droplets in homogeneous isotropic turbulence 125



Figure 4: An instantaneous snapshot of spatial distribution of droplets (white points) and
supersaturation field (light blue: supersaturated vapor s > 0, dark blue: undersaturated
vapor s < 0) obtained by DNS (e) with σs ≈ 2%. Droplets are taken on a slice L×L×2η
of the whole volume. Due to correlations, droplets are selectively concentrated in the
moist portions of the cloud.
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Figure 5: Droplet size distribution measured after one large scale eddy turn over time
TL ∼ 150s for the run (e), matching the large scale cloud parameters. In the inset, time
evolution of the standard deviation of the radius distribution, σR(t), and of the square
radius distribution, σR2(t). At time t = TL, we measure σR(TL) & (1.7 ± 0.5)µm and
σR2(TL) & (18. ± 5.)µm2.
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5 Conclusion and Perspectives

In conclusion, turbulent fluctuations seem to play a relevant role for the broadening of the
droplet size distribution in an idealized setting for condensation in warm cloud adiabatic
cores. Our numerical simulations, up to a Reynolds number Reλ ∼ 200 and with millions
of droplets, show that the size spectrum broadening increases as a power law of the
Reynolds number. The observed behavior is consistent with the dimensional expectation.
The extrapolation of the dimensional power law to large Reynolds numbers suggests a
final broadening of the square size distribution of about (25. ± 3.) µm2 for a cloud core
of size L ≈ 100 m and Reλ ≈ 2500. This value is consistent with a further numerical
experiment matching the large scales of the problem and resulting in a final spreading
of (18. ± 5.) µm2. Although turbulence is active at any scale from η to L, this result
hints to a crucial role of large scales. Therefore an LES analysis, parameterizing the
effects of small scales on large scales, could capture the crucial features of the problem.
Some aspects of the particle-turbulence interactions in atmospherical clouds were not
discussed in this work. Buoyancy forces and the explicit dependence of the vapor field
on the local temperature fluctuations were not accounted for. As well as the microscopic
interactions of droplets on the turbulent flow. These ingredients may be relevant for a
correct quantitative evaluation of droplet size evolution. Further research is needed in
order to enlighten possible corrections to the presented results, coming from a complete
account of the neglected aspects.

We acknowledge discussions with Antonio Celani and Andrea Mazzino, who have
inspired and motivated this work. AS was partially supported by L’Oréal Italia - Unesco
For Women in Science Fellowship, and by HPC-Europa Transnational Acces Program.
AL acknowledges INFN, and CNR grant “Short-Term Mobility”. Numerical simulations
were performed at the supercomputing centre CINECA (Italy).

A Water-vapor interaction

The expression of the absorption time τs can be computed directly from the classical form
of Twomey’s model by identifying the terms:

s

τs
= A2

dρL

dt
A2 =

RaT

εes
+

εL2

pTcpa
(7)

where ρL = mw/V is the density of condensed water inside volume V , mw being the mass
of liquid water inside the volume; ε is the ratio between the molecular weight of water
and dry air; L is the latent heat of water evaporation; Ra is the specific gas constant for
dry air; T is the absolute temperature and cpa is the specific heat of dry air at constant
pressure p (see [1]). The evaluation of the constant A2 in typical warm cloud conditions
gives the reference value shown in table 1 and its variation with temperature is less then
1%, so that we assume it constant.
If we neglect entrainment (we focus on inner cloud cores), droplets inside the volume V
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are the only responsible for the local change in vapor content:

dρL

dt
=

1

V

dmw

dt
=

1

V

n∑

i=1

4πρwR2
i

dRi

dt
=

4πρwA3

V

n∑

i=1

Ri s (8)

where Ri are the radii of the n droplets inside the volume V . The rate of variation of the
radius is given by equation (4), where s is considered equal for each droplet inside the
small volume V . This is because, in the numerical analysis, V is a cube of wedge η, similar
to the vapor diffusive scale. The fluctuations of the scalar field are tiny under this scale,
and all the droplets inside the volume V experience approximately the same value of s.
In this sense, the Twomey’s parcel, where no spatial fluctuations of the supersaturation
field are accounted for, corresponds to our grid cell.
From equations (7) and (8) we end up with the expression (3) for the absorption time τs.
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