Improving wave model validation based on RMSE

L. Mentaschi¹, G. Besio¹, F. Cassola², A. Mazzino¹

¹ Dipartimento di Ingegneria Civile, Chimica ed Ambientale (DICCA), Università degli studi di Genova

² Dipartimento di Fisica (DIFI), Università degli studi di Genova

Motivation

• This work has been developed during a tuning of WWIII in the Mediterranean sea.

• RMSE, NRMSE and SI provided unsatisfactory indication of wave model performances during a validation of WWIII in the Mediterranean sea in storm conditions.

• A best fit of the model based on RMSE led to parametrizations affected by strong negative bias.

Conclusions

• RMSE, NRMSE and SI tend to be systematically better for simulations affected by negative bias. This is mostly evident when:

- We are tuning parameters involving an amplification of the results.
- Correlation coefficient appreciably smaller than 1 , $\rho < 0.9$.
- Standard deviation of the observations of the same order of the average,

 $\sigma_{o} \, / \, O \, \sim 1$.

• The indicator HH introduced by Hanna and Heinold (1985), defined by:

$$HH = \sqrt{\frac{\sum (S_{i} - O_{i})^{2}}{\sum S_{i}O_{i}}} = \sqrt{\frac{(S - O_{i})^{2}}{SO}}$$

provides more reliable information, being minimum for simulations unaffected by bias.

Validation of wave model in the Mediterranean sea

Model Wavewatch III

- Ardhuin et al. (2010) source terms (41 parameterizations).
- Tolman and Chalikov (1996) source terms, not tuned to the Mediterranean sea conditions.

Statistical indicators used for validation

Normalized Bias (NBI)

Root Mean Square Error

Normalized Root Mean Square Error (NRMSE)

Correlation coeff. (p)

$$NBI = \frac{(\overline{S} - \overline{O})}{\overline{O}}$$

$$RMSE = \sqrt{(\overline{S} - \overline{O})^{2}}$$

$$RMSE = \sqrt{\frac{(\overline{S} - \overline{O})^{2}}{\overline{O}^{2}}}$$

$$NRMSE = \sqrt{\frac{(\overline{S} - \overline{O})^{2}}{\overline{O}^{2}}}$$

$$\rho = \frac{\sum (S_{i} - \overline{S})(O_{i} - \overline{O})}{N\sigma_{s}\sigma_{o}}$$

Statistics on 17 storms and 23 buoys

	ACC350	BJA	T & C
NBI	2.1%	-4.6%	-11.2%
ρ	0.889	0.885	0.883
NRMSE	0.2864	0.2800	0.2798 (-2.3%)

Drawback of using RMSE

A numerical example

Geometrical decomposition of RMSE

Scatter component

$$SC = \sqrt{\sum \left[\left(S_{i} - \overline{S} \right) - \left(O_{i} - \overline{O} \right) \right]^{2}}$$

Bias component $BI = \overline{S} - \overline{O}$

$$RMSE^{2} = SC^{2} + BI^{2}$$

Geometrical decomposition of NRMSE

Scatter component (also called Scatter Index)

$$SI = \sqrt{\frac{\sum \left[\left(S_{i} - \overline{S} \right) - \left(O_{i} - \overline{O} \right) \right]^{2}}{\sum O_{i}^{2}}}$$

Bias component

$$BC_{NRMSE} = \sqrt{\frac{O^2}{\overline{O^2} + \sigma_o^2}} NBI$$

$$NRMSE \quad ^{2} = SI \quad ^{2} + BC \quad ^{2}_{NRMSE}$$

Are SI and BC independent?

In general σ_s and s are not independent. Let's assume this relation:

$$\frac{\sigma_s}{\overline{S}} \sim const \ .$$

Holds for amplifications

NBI=0.1

Example of set of simulations with constant ratio σ_s/\overline{s} :

$$S_{NBI-i} = (1 + NBI_{-})S_{0i}$$

where S_{0i} is the unbiased simulation.
Amplification factor: $\alpha = 1 + NBI$
 $\frac{\sigma_s}{\overline{s}} \sim const$.
 $\rho \sim const$.

Relationship SI – NBI

We can express both \overline{s} and σ_s as functions of NBI

•
$$S = O (1 + NBI)$$

•
$$\sigma_s / S = const$$
 . \Rightarrow $\sigma_s = \sigma_{so}(1 + NBI)$

Also SI can be expressed as a function of NBI

SI grows linearly in NBI around NBI=0

$$SI \sim SI_0 \left(1 + \frac{1}{2}NBI\right)$$

Fits well real world data

$$SI \sim SI_0 \left(1 + \frac{1}{2}NBI\right)$$

The simulation with the minimum value of RMSE/NRMSE underestimates the average value

Conditions when this effect is most evident

Standard deviation of the same order of the mean

$$\frac{\sigma_{o}}{\overline{O}} \approx 1$$

• Correlation appreciably smaller than 1 (0.7 - 0.9), since SI is minimum for

$$NBI = 1 - \rho$$

How to overcome this problem?

Hanna and Heinold (1985) indicator:

$$HH = \sqrt{\frac{\sum (S_{i} - O_{i})^{2}}{\sum S_{i}O_{i}}} = \sqrt{\frac{(S - O_{i})^{2}}{\overline{SO}}}$$

Property of HH: ρ constant → HH minimum for null bias

$$HH^{2} = \frac{\sum (S_{i} - O_{i})^{2}}{\sum S_{i}O_{i}} = \frac{\overline{S}^{2} + \sigma_{s}^{2} + \overline{O}^{2} + \sigma_{o}^{2}}{\overline{S}O + \rho\sigma_{s}\sigma_{o}} - 2$$

•
$$S = O (1 + NBI)$$

- $\sigma_s / S = const$. \Rightarrow $\sigma_s = \sigma_{so}(1 + NBI)$
- $\sigma_{so} \sim \sigma_{o}$

Wavewatch III validation on the Mediterranean sea.

	ACC350	BJA	T & C
NBI	2.1%	-4.6%	-11.2%
ρ	0.889	0.885	0.883
NRMSE	0.2864	0.2800	0.2798 (-2.3%)
HH	0.3459	0.3502	0.3634 (+4.8%)

HH has a minimum for null bias

Mentaschi et al. 2013

Conclusions

- RMSE, NRMSE and SI tend to be **systematically better for simulations affected by negative bias**. This is mostly evident when:
 - We are tuning parameters involving an amplification of the results.
 - Correlation coefficient appreciably smaller than 1 , $\rho < 0.9$.
 - Standard deviation of the observations of the same order of the average, $\sigma_o / \overline{O} \sim 1$
- HH indicator overcomes this problem introducing a different normalization of the root mean square error.

Thank you!