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Introduction to biofluid dynamics What is biological fluid mechanics?

Introduction to biofluid dynamics

What is biological fluid mechanics?

Biological fluid mechanics (or biofluid mechanics) is the study of the motion of biological fluids in
any possible context (e.g. blood flow in arteries, animal flight, fish swimming, . . . )

In the present course we will focus on fluid motion in the human body.

There are many organs in the human body whose functioning involves fluid motion. Examples
are:

blood circulation
hearth pumping;
flow in the systemic arteries;
flow in the pulmonary arteries;
flow in the microcirculation;
flow in veins.

air flow in the respiratory system

flow in the eye
flow in the tear film on the cornea;
flow of the aqueous humour in the anterior chamber;
drainage of aqueous humour;
flow of the vitreous body due to eye rotations;
flow of the axoplasm in the optic nerve axons.

flow in the ureter

. . .
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Introduction to biofluid dynamics What is biological fluid mechanics?

Introduction to biofluid dynamics

What is biological fluid mechanics useful for?

Pure physiology: understanding how animals, and in particular humans, work.

Pathophysiology: understanding why they might go wrong. In other words understanding
the origins and development of diseases.

Diagnosis: recognising diseases from possibly non-traumatic measurements.

Cure: providing support to surgery and to the design of prosthetic devices.
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Introduction to biofluid dynamics What is biological fluid mechanics?

Peculiarities of physiological fluid flows

Thomas Young (1808):

The mechanical motions, which take place in animal body, are regulated by the same general
laws as the motion of inanimate bodies . . . and it is obvious that the enquiry, in what matter
and in what degree, the circulation of the blood depends on the muscular and elastic powers
of the heart and of the arteries, . . . , must become simply a question belonging to the most

refined departments of the theory of hydraulics.

There are some key features which characterise physiological flows.

Pulsatility. In most cases physiological flows are highly unsteady and are often pulsatile (e.g.
flow in the systemic arteries or in the respiratory system . . . ).

Complex geometries. Typically physiological flows take place in very complex geometries. In
order to study the problems by analytical means it is therefore necessary to idealise the
geometry in a suitable manner. It is a research challenge of recent years to perform
numerical simulations on real geometries.

Deformability. Not only the geometry of the flow domain might be complex but it also often
varies in time. This typically induces great complication in the mathematical analysis. Often
the problem to be solved is effectively a solid-fluid interaction.

Low Reynolds number flows. In many cases of physiological interest (but by no means
always) the Reynolds number of the flow is fairly low and this allows simplifying the
equations.
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Introduction to biofluid dynamics Suggestions for some textbooks

Some textbooks in biofluid dynamics

The following are a few reference books on fluid mechanics:

Acheson (1990);

Aris (1962);

Batchelor (1967);

Ockendon and Ockendon (1995);

Pozrikidis (2010).

The following textbooks consider various aspects of physiological flows in the human body:

Caro et al. (1978);

Ethier and Simmons (2007);

Pedley (1980);

Pedley (2000);

Ottesen et al. (2004);

White and Fine (2007);

Keener and Sneyd (1998).
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Basic notions of fluid mechanics The Continuum Approach

The Continuum Approach

Fluids (liquids, gases, . . . ) are composed of particles (molecules). Each molecule is composed of
a central nucleus surrounded by a cloud of electrons. Some typical dimensions are given in the
following table

Diameter of
an atomic nucleus 2 · 10−15 m
a gas molecule 6 · 10−10 m

Spacing of gas molecules 3 · 10−9 m
Diameter of

a red blood cell 8 · 10−6 m
a capillary 4− 10 · 10−6 m
an artery ≈ 10−2 m

In most applications of fluid mechanics, the typical spatial scale under consideration, L, is
much larger than the spacing between molecules, l . In this case we suppose the material to be
composed of elements whose size is small compared to L but large compared to l . We then
assume each fluid element occupies a point in space.

We assume each property, F , of the fluid (e.g. density, pressure, velocity, . . . ), to be a continuous
function of space x and time t

F = F (x, t).
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Basic notions of fluid mechanics The Continuum Approach

Forces on a continuum I

Two kind of forces can act on a continuum body

body forces;

surface forces.

Body forces
These forces are slowly varying in space. If we consider a small volume, δV , the force is
approximately constant over it. Therefore the force on the volume is

δF = f̃δV ,

where f is the force per unit volume. In most cases of interest for this course δF is proportional to
the mass of the element. Therefore we may write

δF = ρfδV ,

where ρ denotes the fluid density, i.e. mass per unit volume ([ρ] = ML−3), and f(x, t) is
independent of the density.
The vector field f is termed the body force field, and has the dimensions of acceleration or force
per unit mass

[f] = LT−2.

In general f and f̃ depend on space and time: f = f(x, t) and f̃ = f̃(x, t). If we want to compute
the total force F on a finite volume V we need to integrate f over V

F =

∫∫∫
V

f̃dV =

∫∫∫
V
ρfdV .
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Basic notions of fluid mechanics The Continuum Approach

Forces on a continuum II

Surface forces

The force is approximately constant over a small surface δS , and therefore the force on the
surface is

δΣ = tδS ,

where t is the force per unit area or tension, and has dimensions given by

[t] = ML−1T−2.

As well as depending on position x and time t, the vector t also depends on the orientation of the
surface. The orientation is uniquely specified by the unit vector n normal to the surface, meaning
that t = t(x, t, n).
To compute the force Σ on a surface S we must integrate

Σ =

∫∫
S

tdS .
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Basic notions of fluid mechanics The Continuum Approach

Cauchy’s principle and the stress tensor

Cauchy’s stress principle asserts that

“When a continuum body is acted on by forces, i.e. surface forces and body forces, there are
internal reactions throughout the body acting between the material points.”

Based on this principle, Cauchy demonstrated that the state of stress at a point in a continuum
body is completely defined by the nine components σij of a second-order tensor called the
Cauchy stress tensor.
The stress vector t(n) at any point P, acting on a plane of normal vector n, can be expressed in
terms of the stress tensor

in component form as ti (n) = σij nj , or in vector form as t(n) = σ · n,

where σij represents the ith component of the stress on the plane with normal ej .

Properties of the stress tensor
The stress tensor is symmetric, i.e. σij = σji .

The terms on the principal diagonal of the stress tensor matrix are termed the normal
stresses. The other six (not on the principal diagonal) are shear stresses.

In a fluid at rest we have

in component form as σij = −pδij , or in vector form as σ(n) = −pI,

where p(x, t) is the pressure and δij is the Kronecker delta. In this case the stress tensor is a
multiple of the identity.
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Basic notions of fluid mechanics Statics of fluids

Statics of fluids I

Equation of statics in integral form
Given a volume V with surface S , the equilibrium of forces acting on the body can be written as∫∫∫

V
ρfdV +

∫∫
S

tdS = 0.

For a fluid at rest, since t = −pn, we can write∫∫∫
V
ρfdV +

∫∫
S
−pndS = 0, (1)

and applying Gauss’ theorem ∫∫∫
V

(ρf −∇p) dV = 0.

It can be shown that there are no resultant moments acting on the volume, and therefore
equation (1) provides necessary and sufficient conditions for equilibrium.

Equation of statics in differential form
Since the volume V is arbitrary, the integrand must be zero everywhere

ρf −∇p = 0. (2)
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Basic notions of fluid mechanics Statics of fluids

Statics of fluids II

Incompressible fluids in a gravitational field

For many problems of practical relevance we can assume

ρ =constant;

f = (0, 0,−g), with respect to a system of coordinates (x1, x2, x3) with x1 and x2 horizontal
and x3 pointing vertically upward, and with g being the acceleration of gravity (g ≈ 9.81 m
s−2).

In this case equation (2) can be easily solved, leading to the following result, known as Stevin’s
law

h = x3 +
p

γ
= const.,

where γ = ρg is the specific weight (force per unit volume) of the fluid ([γ] = ML−2T−2).

This implies that the pressure increases linearly as we move vertically downwards, and the rate
of increase is equal to the specific weight of the fluid.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 18 / 335



Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids I

Kinematics is the study of fluid motion.
Two main approaches are adopted in fluid mechanics

Eulerian reference frame (spatial approach);

Lagrangian reference frame (material approach).

Eulerian approach
We define a system of coordinates fixed in space, x = (x1, x2, x3). This means that any vector x
denotes a particular point in space (note that this point will, in general, be occupied by different
fluid particles at different times).

When a fluid property (say F ) is described as F (x, t), it tells us how F varies in time at a fixed
point in space. We can also define ∂F (x, t)/∂t, which is the rate of change in time of F in x. In
most cases this approach is very convenient.

Important note on derivatives:
Consider the velocity field, i.e. we take F = u. If we take the partial derivative of u with respect
to time, i.e. ∂u(x, t)/∂t, we do not get the acceleration of the fluid! This is because the point x
is, in general, occupied by different fluid particles at different times. The quantity ∂u(x, t)/∂t is
the rate of change of the velocity at a single point rather than the rate of change of the velocity
of fluid particles (which we usually term the acceleration). We will return to this point shortly.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids II

Lagrangian approach
We define X = (X1,X2,X3) as a system of coordinates fixed with material particles. This means
that any value of X is always associated with a particular fluid particle.

Any fluid property F can then be described as F (X, t). This tells us how the value of F
associated with a material fluid particle varies in time. We can define ∂F (X, t)/∂t, which is the
rate of change in time of F associated with the particle X.

As the meaning of this time derivative is different from that taken with the Eulerian approach,
different notations are often adopted

∂F (x, t)

∂t
=
∂F

∂t
,

∂F (X, t)

∂t
=

DF

Dt
.

In some cases the Lagrangian approach is more convenient (e.g. it is often used for studying fluid
mixing).

Important note on derivatives:
In this case the partial derivative of u with respect to t does give the acceleration a

∂u(X, t)

∂t
=

Du

Dt
= a.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids III

Material derivative with respect to spatial coordinates
We can establish a relationship between the Eulerian and Lagrangian approaches if we know the
function

x = x(X, t), (3)

which is well defined since a point in space cannot be occupied by two particles. The above
equation represents the position x of a material particle, identified by X, in time. This is called
particle trajectory.

Since a particle cannot occupy two different points in space, equation (3) is invertible. Therefore
we can write

X = X(x, t).

Let us now consider a material derivative of any fluid property F

DF

Dt
=

∂F (X, t)

∂t

∣∣∣∣
X

=
∂F (x(X, t), t)

∂t

∣∣∣∣
X

=

(
∂F

∂t

)
x

+

(
∂F

∂xi

)
t

(
∂xi

∂t

)
X

=
∂F

∂t
+ ui

∂F

∂xi
. (4)

We can use this formula to compute the material derivative of F at each point in space and
time.

In particular, we can define the particle acceleration in terms of spatial coordinates as

a =
Du

∂t
=
∂u

∂t
+ (u ·∇)u or ai =

∂ui

∂t
+ uj

∂ui

∂xj
.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids IV

Flow field

Steady flow
If the spatial velocity does not depend on time in the Eulerian reference frame, the flow field
is said to be steady

u = u(x).

Uniform flow
If the spatial velocity does not depend on space the flow is said to be uniform

u = u(t).

Streamlines
We define a streamline as a line which is everywhere tangent to the velocity vectors.
Streamlines are defined by the solution of the equation

dx× u(x, t) = 0,

at a fixed time t. Alternatively
dx1

u1
=

dx2

u2
=

dx3

u3
.

In steady flows streamlines and particle trajectories are coincident.
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Basic notions of fluid mechanics Equations of motion for a continuum

Principle of conservation of mass

“The mass of a material body1 within a continuum remains constant in time.”

The above principle can be expressed mathematically in differential form as

∂ρ

∂t
+∇ · (ρu) = 0. (5)

Incompressible fluids

An incompressible fluid is one whose density ρ(x, t) is constant.

To a good approximation, many liquids are incompressible.

The assumption of incompressibility is good for most internal fluid flows in mathematical
biology.

For an incompressible fluid, the principle of mass conservation is equivalent to

∇ · u = 0. (6)

1A material body is a body that is always composed of the same fluid particles.
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Basic notions of fluid mechanics Equations of motion for a continuum

Principle of conservation of momentum

“The time derivative of the momentum of a material body of continuum equals the resultant
of all the external forces acting on it.”

In differential form this can be expressed as

ρ

(
∂

∂t
u + (u · ∇u)− f

)
= ∇ · σ, (7)

where σ is the stress tensor.

“The time derivative of the angular momentum of a material body of continuum equals the
resultant of all external moments acting on it.”

Using this principle it can be shown that the stress tensor σ is symmetric.
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Basic notions of fluid mechanics Equations of motion for a continuum

Definition of pressure in a moving fluid I

We have seen that, in a fluid at rest, the stress tensor takes the simple form

σij = −pδij ,

where the scalar p is the static pressure.
In the case of a moving fluid, the situation is more complicated. In particular:

the tangential stresses are not necessarily equal to zero;

the normal stresses can depend on the orientation of the surface they act on.

Therefore the notion that the normal stress is the pressure, which acts equally in all directions is
lost. We can define the pressure in a moving fluid as

p = −
1

3
σii , or, p = −

1

3
tr(σ).

Important note

Compressible fluids
From classical thermodynamics it is known that we can define the pressure of the fluid as a
parameter of state, making use of an equation of state. Thermodynamical relations refer to
equilibrium conditions, so we can denote the thermodynamic pressure as pe .

Incompressible fluids
For an incompressible fluid the pressure p is an independent, purely dynamical, variable.
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Basic notions of fluid mechanics Equations of motion for a continuum

Definition of pressure in a moving fluid II

In the following we will consider incompressible fluids only.
It is usually convenient to split to the stress tensor σij into an isotropic part, −pδij , and a
deviatoric part, dij , which is entirely due to fluid motion. Thus we write

σij = −pδij + dij .

The tensor dij accounts for tangential stresses and also normal stresses, whose components sum
to zero.
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Basic notions of fluid mechanics Equations of motion for a continuum

Constitutive relationship for Newtonian fluids I

A constitutive law links the stress tensor to the kinematic state of the fluid.

This law provides a third relationship, which, together with the equations of mass and
momentum conservation, closes the problem for the velocity and pressure fields.

The constitutive law for Newtonian fluids can be obtained by assuming the following:

1 The deviatoric part of the stress tensor, d, is a continuous function of the rate-of-strain
tensor e, defined as

in component form, eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
or, in vector form, e =

1

2

(
∇u + (∇u)T

)
.

2 If e = 0 (i.e. the flow is uniform) then d = 0. This means that σ = −pI, i.e. the stress
reduces to the stress in static conditions.

3 The fluid is homogeneous, i.e. σ does not depend explicitly on x.

4 The fluid is isotropic, i.e. there is no preferred direction.

5 The relationship between d and e is linear.

6 The fluid is incompressible.

These assumptions imply that

in component form, σij = −pδij + 2µeij , or, in vector form, σ = −pI + 2µe, (8)

where µ is the dynamic viscosity.
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Basic notions of fluid mechanics Equations of motion for a continuum

Constitutive relationship for Newtonian fluids II

Definitions

The dynamic viscosity µ has dimensions [µ] = ML−1T−1.

It is often convenient to define the kinematic viscosity as

ν =
µ

ρ
.

The kinematic viscosity has dimensions [ν] = L2T−1.

Inviscid fluids

A fluid is said to be inviscid or ideal if µ = 0. For an inviscid fluid the constitutive law (8)
becomes

in component form, σij = −pδij , or, in vector form, σ = −pI. (9)

Thus the motion of the fluid does not affect the stress. Note that there are no truly inviscid fluids
in nature. However, the inviscid approximation is good in certain cases, such as fast flows of a
low-viscosity fluid.
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Basic notions of fluid mechanics Equations of motion for a continuum

The Navier-Stokes equations

Substituting the constitutive law (8) into the equation for conservation of motion (7), we obtain

∂ui

∂t
+uj

∂ui

∂xj
−fi +

1

ρ

∂p

∂xi
−ν

∂2ui

∂xj∂xj
= 0, or, in vector form,

∂u

∂t
+(u·∇)u−f+

1

ρ
∇p−ν∇2u = 0,

(10)
where f = fi ei is the resultant external body force acting on the fluid. Recalling the definition of
material derivative (4) the above equation can also be written as

Dui

Dt
− fi +

1

ρ

∂p

∂xi
− ν

∂2ui

∂x2
j

= 0, or, in vector form,
Du

Dt
− f +

1

ρ
∇p − ν∇2u = 0.

This equation is called the Navier-Stokes equation, and it is of fundamental importance in fluid
mechanics. It is actually three equations, one for each spatial component. The equations govern
the motion of a Newtonian incompressible fluid and should to be solved together with the
continuity equation (6).
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Basic notions of fluid mechanics Scaling and dimensional analysis

Buckingham’s Π theorem I

In fluid dynamics problems one often wishes to find a physical quantity in terms of other variables
in the problem, that is

a = f (a1, . . . , ak ),

where a is the quantity of interest and ai (i = 1, 2, . . . , k) are other variables and parameters in
the problem.
The Buckingham Π theorem states that equation (30) is equivalent to

Π = F(Π1, . . . ,Πm),

where m ≤ k and the quantities Π, Π1, Π2, . . . , Πm are all dimensionless. The number of
variables that have been removed, k −m, equals the number of independent dimensions in the
variables ai .

In fluid dynamics problems, we often have k −m = 3, since all variables have dimensions
that are combinations of length, time and mass, leading to three independent dimensions.

Rescaling or nondimensionalising is a powerful tool in fluid mechanics, as, through
simplifying a problem, it enables us to obtain a great deal of insight.
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Basic notions of fluid mechanics Scaling and dimensional analysis

Dimensionless Navier-Stokes equations I

When dealing with theoretical modelling of physical phenomena, it is convenient to work with
dimensionless equations. The main reasons are:

the number of parameters in the problem decreases if one passes from a dimensional to a
dimensionless formulation;

if proper scalings are adopted, it is much easier to evaluate the relative importance of
different terms appearing in one equation.

Let us consider the Navier-Stokes equation and assume that the body force is gravity.
Equations (10) can then be written as

∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

1©

= g︸︷︷︸
2©

−
1

ρ
∇p︸ ︷︷ ︸

3©

+ ν∇2u︸ ︷︷ ︸
4©

= 0, (11)

where the vector g, representing the gravitational field, has magnitude g and is directed vertically
downwards. We recall the physical meaning of all terms:

1©: convective terms;

2©: gravity;

3©: pressure gradient;

4©: viscous term.
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Basic notions of fluid mechanics Scaling and dimensional analysis

Dimensionless Navier-Stokes equations II

We will now scale the Navier–Stokes equation. Suppose that L is a characteristic length scale of
the domain under consideration and U a characteristic velocity. We can introduce the following
dimensionless coordinates and variables

x∗ =
x

L
, u∗ =

u

U
, t∗ =

t

L/U
,

where superscript stars indicate dimensionless quantities.
In scaling the pressure there are two commonly used possibilities:

1 The pressure gradient, 3©, balances with the viscous forces, 4©, leading to

p∗ =
p

ρνU/L
.

This is the most relevant case for studying physiological flows, for reasons that will be made
clear in the following.

2 The pressure gradient, 3©, balances with the convective terms, 1©, giving

p∗ =
p

ρU2
.
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Basic notions of fluid mechanics Scaling and dimensional analysis

Dimensionless Navier-Stokes equations III

Low-Reynolds-number flows

Let us consider the first case p = (µU/L)p∗. Equation (11) becomes

Re

[
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

]
+

Re

Fr2
ẑ +∇∗p∗ −∇∗2u∗ = 0, (12)

where ẑ is the upward directed vertical unit vector.
In the above equation we have introduced two dimensionless parameters.

Re =
UL

ν
: Reynolds number. This represents the ratio between the magnitude of inertial

(convective) terms and viscous terms. It plays a fundamental role in fluid mechanics.

Fr =
U
√

gL
: Froude number. This represents the square root of the ratio between the

magnitude of inertial (convective) terms and gravitational terms. It plays a fundamental role
when gravity is important, e.g. in free surface flows.

If we now consider the limit Re → 0 the dimensionless Navier-Stokes equation (12) reduces to the
so called Stokes equation, i.e.

∇∗p∗ −∇∗2u∗ = 0.

This equation is much simpler to solve than the Navier-Stokes equation, primarily because it is
linear.
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Basic notions of fluid mechanics Scaling and dimensional analysis

Dimensionless Navier-Stokes equations IV

High-Reynolds-number flows

We now consider the case in which the pressure gradient balances the convective terms. The
dimensionless Navier-Stokes equation takes the form

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ +

1

Fr2
z +∇∗p∗ −

1

Re
∇∗2u∗ = 0. (13)

In the limit Re →∞ the viscous term in equation (13) tends to zero. Thus at large values of Re
the fluid behaves as an ideal or inviscid fluid.
However, this limit leads to a qualitative change in the Navier–Stokes equation (13). The viscous
term contains the highest order derivatives in equation (13), and therefore, if it is neglected, it is
not possible to impose the usual number of boundary conditions. To resolve this, we assume that
thin boundary layers form at the boundaries, and within these the viscous terms in the
Navier-Stokes equations have the same magnitude as the convective terms.
If we are only interested in the flow away from the boundaries, we may compute this by solving
equation (13) in the limit Re →∞ and applying no-penetration boundary conditions (no fluid
flow through the boundary, rather than the full no-slip conditions).
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The dynamic pressure

We now assume that the body force acting on the fluid is gravity, therefore we set in the
Navier-Stokes equation (10) f = g. When ρ is constant the pressure p in a point x of the fluid
can be written as

p = p0 + ρg · x + P, (14)

where p0 is a constant and p0 + ρg · x is the pressure that would exist in the fluid if it was at rest.
Finally, P is the part of the pressure which is associated to fluid motion and can be named
dynamic pressure. This is in fact the departure of pressure from the hydrostatic distribution.
Therefore, in the Navier-Stokes equations, the term ρg −∇p can be replaced with −∇P.
Thus we have:

∇ · u = 0,

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P − ν∇2u = 0. (15)

If the Navier-Stokes equations are written in terms of the dynamic pressure gravity does not
explicitly appear in the equations.
In the following whenever gravity will not be included in the Navier-Stokes this will be done with
the understanding that the pressure is the dynamic pressure (even if p will sometimes be used
instead of P).
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Lubrication theory I

This technique provides a good approximation to the real solution as long as the domain of the
fluid is long and thin. It is used because it results in a considerable simplification of the
Navier–Stokes equations. An example where lubrication theory has been successfully used to
analyse a problem is in blood flow in a capillary, specifically in the small gap between a red blood
cell and the wall of the capillary.

Example of a scenario where lubrication theory may be applied. A cell moves steadily with speed U along a

vessel with a narrow gap at the walls (Secomb, 2003).

Lubrication theory applies if one dimension of the space occupied by the fluid is much smaller
than the other(s).
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Lubrication theory II

Mathematical formulation
For simplicity let us assume that the flow is two dimensional (all derivatives with respect to the
third coordinate, say z, may be neglected) and that the height of the domain is h(x) and a typical
streamwise length is L.

The fluid velocity at the vessel walls is zero (no-slip condition) but the fluid velocity at the surface
of the cell equals the cell velocity (U). Therefore changes in the x-velocity u are on the order of
U, that is |∆u| ∼ U, and |∂u/∂y | ∼ |∆u/∆y | ∼ U/h0, where h0 is a characteristic value of h(x).

The change in fluid velocity as we move through a distance L in the x-direction is likely to be at
most U, and therefore |∂u/∂x | ∼ U/L. The continuity equation,

∂u

∂x
+
∂v

∂y
= 0,

implies that |∂v/∂y | ∼ U/L; hence |∆v | ∼ h0U/L.

Scaling
We nondimensionalise

x = Lx∗, y = h0y∗, h(x) = h0h∗(x∗), u = Uu∗, v = h0Uv∗/L, p = p0p∗,

where p0 is an appropriate scale for the pressure (to be chosen). Note that x∗, y∗, u∗, v∗ and p∗

are all order 1.
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Lubrication theory III

Assuming a steady solution, the nondimensional governing equations are

ε2Re

(
u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)
=−

h2
0p0

µUL

∂p∗

∂x∗
+ ε2 ∂

2u∗

∂x∗2
+
∂2u∗

∂y∗2
, (16)

ε3Re

(
u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗

)
=−

h2
0p0

εµUL

∂p∗

∂y∗
+ ε3 ∂

2v∗

∂x∗2
+ ε

∂2v∗

∂y∗2
, (17)

∂u∗

∂x∗
+
∂v∗

∂y∗
=0, (18)

where ε = h0/L� 1 and Re = UL/ν.
We may immediately cancel the viscous terms that have a repeated x∗-derivative since they are
much smaller than the viscous terms with a repeated y∗-derivative. Balancing the pressure
derivative and viscous terms in the x-component equation (16) leads to the scaling p0 = µUL/h2

0.
Multiplying equation (17) by ε and simplifying, equations (16) and (17) can be written as

ε2Re

(
u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)
=−

∂p∗

∂x∗
+
∂2u∗

∂y∗2
, (19)

0 =−
∂p∗

∂y∗
, (20)

where we have neglected terms of order ε2 and terms of order ε3Re relative to the
leading-order terms.
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Lubrication theory IV

Solution procedure

The quantity ε2Re is called the reduced Reynolds number. We assume it is not too large,
which places an upper bound on the possible flux.

We may immediately solve (20) to find that the pressure is a function of x∗ only, that is, the
pressure is constant over the height of the gap.

The governing equations are thus (19) and (18), where p∗ is a function of x∗ only and these
must be solved subject to no-slip boundary conditions for u∗ at the walls.
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Lubrication theory V

Series expansion for small reduced Reynolds number

In the case that the reduced Reynolds number is small, ε2Re � 1 we can use a series expansion
method to find the velocity, by setting

u∗ =u∗0 + ε2Re u∗1 +
(
ε2Re

)2
u∗2 + . . . ,

v∗ =v∗0 + ε2Re v∗1 +
(
ε2Re

)2
v∗2 + . . . ,

p∗ =p∗0 + ε2Re p∗1 +
(
ε2Re

)2
p∗2 + . . . .

noting that all the p∗i ’s are independent of y , and then solving for u∗0 (from equation (19)), v∗0
(from equation (18)), u∗1 (from equation (19)), v∗1 (from equation (18)), etc in that order. An
equation for the pressure can be obtained by integrating the continuity equation over the gap
height.

In many cases it is sufficiently accurate to find just the first terms u∗0 and v∗0 (or even just u∗0 ).

Generalisation
Note that we could generalise this approach to include:

dependence upon the third spatial dimension;

time-dependence of the solution;

gravity;

. . . .
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Lubrication theory VI

Example of solution

We consider the domain shown in the figure. For simplicity, we assume two-dimensional flow. We
wish to solve the flow in the gap 0 ≤ y ≤ h(x), with 0 ≤ x ≤ L.
The flow
is subject to the following boundary conditions:

no-slip at y = 0 and y = h(x);

given

flux per unit length F =
∫ h0

0 udy at x = 0;

given pressure p = 0 at x = L.

We assume that h0 = h(0) is a typical value of
the thickness of the domain in the y -direction and
assume that ε = h0/L� 1. We can, therefore, apply the lubrication theory.
We scale the variables as follows

x∗ =
x

L
, y∗ =

y

h0
, u∗ =

u

U
, v∗ =

v

εU
,

with U = F/h0.
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Lubrication theory VII

Assuming that ε2Re � 1, we need to solve the following dimensionless equations (see equations
(19), (20) and (18))

∂2u∗

∂y∗2
−
∂p∗

∂x∗
= 0, (21)

∂p∗

∂y∗
= 0, (22)

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (23)

subject to the boundary conditions

u∗ = v∗ = 0 (y∗ = 0), (24)

u∗ = v∗ = 0 [y∗ = h∗(x∗)], (25)∫ 1

0
u∗dy∗ = 1 (x∗ = 0), (26)

p∗ = 0 (x∗ = 1). (27)
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Lubrication theory VIII

Equation (22) imposes that p∗ cannot depend on y∗. As a consequence equation (21) can be
integrated with respect to y∗ and, also using the boundary conditions (24) and (25), we obtain

u∗(x∗, y∗) =
1

2

dp∗

dx∗
(
y∗2 − h∗y∗

)
. (28)

In the above expression the term dp∗/dx∗ is still an unknown function of x∗.
Using the boundary condition (26) and (28) we find that

dp∗

dx∗

∣∣∣∣
x∗=0

= −12. (29)

We now integrate the continuity equation (23) with respect to y∗∫ h∗

o

∂u∗

∂x∗
+
∂v∗

∂y∗
dy∗ =���v∗(h∗)−���v∗(0) +

∫ h∗

o

∂u∗

∂x∗
dy∗ = 0,

where we have used the no-slip boundary conditions (24) and (25).
Using Leibniz rule2 and, again, the no-slip boundary conditions (24) and (25) we obtain the
following second order equation for the pressure

d

dx∗

(
h∗3 dp∗

dx∗

)
= 0.
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Lubrication theory IX

From the above equation and using (29) we obtain

dp∗

dx∗
= −

12

h∗3
,

which we can plug into equation (28) to obtain the following expression for the velocity in the
x∗-direction

u∗(x∗, y∗) = −
6

h∗3

(
y∗2 − h∗y∗

)
.

The y∗-component of the velocity can be obtained from the continuity equation (23) and reads

v∗(x∗, y∗) = −6

(
−

y∗3

h∗4
+

y∗2

h∗3

)
dh∗

dx∗
.

Finally, the pressure distribution can be obtained by integrating (36) and using the boundary
condition (27).
We note that we managed to obtain an analytical expression for the velocity without having to
specify the shape of the domain h∗(x∗).

2

b(z)∫
a(z)

∂f (x, z)

∂z
dx =

∂

∂z

b(z)∫
a(z)

f (x, z)dx − f (b, z)
∂b(z)

∂z
+ f (a, z)

∂a(z)

∂z
.
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The Boussinesq approximation for thermally driven flows I

Justification of the Boussinesq approximation
Let us consider a fluid with a weakly variable density and viscosity, so that we can write

ρ = ρ0

(
1 +

ρ′

ρ0

)
, ν = ν0

(
1 +

ν′

ν0

)
, (30)

with ρ′/ρo � 1 and ν′/νo � 1.
We assume that fluid flow is generated by buoyant effects. We fist consider the continuity
equation (5), which we write here in index notation

∂ρ

∂t
+

∂

∂xi
(ρui ) = 0. (31)

Substituting (30) into (31) we obtain

∂ρ′

∂t
+
(
ρ0 + ρ′

) ∂ui

∂xi
+ ui

∂ρ′

∂xi
= 0. (32)

We now introduce nondimensional variables as follows

x∗i =
xi

L
, t∗ =

tU

L
, u∗i =

ui

U
, (33)
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The Boussinesq approximation for thermally driven flows II

where L is a typical length scale of the problem and U a proper scale for the velocity. Substituting
the dimensionless variables (33) into (32) we obtain

∂

∂t∗

(
ρ′

ρ0

)
+

(
1 +

ρ′

ρ0

)
∂u∗i
∂x∗i

+ u∗i
∂

∂x∗i

(
ρ′

ρ0

)
= 0,

which shows that, since ρ′/ρ0 � 1, at leading order the continuity equation is the same as for an
incompressible fluid

∂u∗i
∂x∗i

= 0.

Let us now consider the momentum equation (7), which we again write in index notation, and in
which we substitute the expression (30) for the density

ρ0

(
1 +

ρ′

ρ0

)(
∂ui

∂t
+ uj

∂ui

∂xj

)
+
∂p

∂xi
− ρ0ν0

(
1 +

ρ′

ρ0

)(
1 +

ν′

ν0

)
∂2ui

∂x2
j

+ ρ0

(
1 +

ρ′

ρ0

)
gẑi = 0,

(34)
where ẑ is the upward directed vertical unit vector. It is convenient to decompose the pressure as
po + p′, so that

∂p0

∂xi
+ ρ0gẑi = 0. (35)
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The Boussinesq approximation for thermally driven flows III

Substituting (35) into (34) we obtain

ρ0

(
1 +

ρ′

ρ0

)(
∂ui

∂t
+ uj

∂ui

∂xj

)
+
∂p′

∂xi
− ρ0ν0

(
1 +

ρ′

ρ0

)(
1 +

ν′

ν0

)
∂2ui

∂x2
j

+ ρ′gẑi = 0, (36)

We now scale the momentum equation using the following scales for the pressure: p′∗ =
p′

ρ0U2
.

With the above assumption the dimensionless version of equation (36) reads(
1 +

ρ′

ρ0

)(
∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)
+
∂p′∗

∂xi
−

1

Re

(
1 +

ρ′

ρ0

)(
1 +

ν′

ν0

)
∂2u∗i
∂x∗2

j

+
ρ′

ρ0

1

F 2
ẑi = 0, (37)

Since we assumed that flow is generated by buoyancy effects, the leading order terms in the
equation have to balance with the gravitational term. Thus we need to have

ρ′

ρ0

1

F 2
≈ 1 if Re � 1,

ρ′

ρ0

Re

F 2
≈ 1 if Re � 1.
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The Boussinesq approximation for thermally driven flows IV

If we now neglect in (37) terms of order ρ′/ρ0 and ν/ν0 with respect to terms of order 1 we obtain

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

+
∂p′∗

∂xi
−

1

Re

∂2u∗i
∂x∗2

j

+
ρ′

ρ0

1

F 2
ẑi = 0,

Writing the continuity and momentum equation back in dimensional form still neglecting small
terms, we obtain

∂uj

∂xj
= 0, (38a)(

∂ui

∂t
+ uj

∂ui

∂xj

)
+

1

ρ0

∂p

∂xi
− ν0

∂2ui

∂x2
j

+

(
1 +

ρ′

ρ0

)
gẑi = 0. (38b)

In other words, at leading order, the only term in which the perturbation of density appears is
gravity. This is what is called the Boussinesq approximation of the equations of motion.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 48 / 335



Basic notions of fluid mechanics The Boussinesq approximation for thermally driven flows

The Boussinesq approximation for thermally driven flows V

Heat transport equation

When density changes are due to temperature variations, for liquids we can write

ρ = ρ0 [1− α(T − T0)] , (39)

where α is the coefficient of thermal expansion.
In this case the equations of motion have to be coupled with the heat transport equation, which
reads

∂T

∂t
+ uj

∂T

∂xj
− D

∂2T

∂x2
j

= 0,

or, in vector form,
∂T

∂t
+ u · ∇T = D∇2T ,

where T denotes temperature and D is the thermal diffusion coefficient ([D] = L2T−1).
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Irrotational flows I

Potential function of the velocity

We define the vorticity as
ω = ∇× u. (40)

In the absence of viscous effects (and introduction of vorticity at the boundaries), it can be shown
that vorticity cannot be generated in a moving fluid.
As mentioned, for large values of the Reynolds number, the flow away from the boundaries
behaves as if it were inviscid. Therefore, if the vorticity is initially zero, it will remain so at all
times (provided there is no mechanism of introduction at the boundaries). In this case the flow is
said to be irrotational.
We assume

incompressible fluid, and

irrotational flow,

i.e.
∇ · u = 0, ∇× u = 0. (41)

Note that the conditions (41) are purely kinematic in nature (although they do, of course, affect
the dynamic behaviour of the fluid).
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Irrotational flows II

Let us consider a closed curve C in an irrotational flow. By Stokes’ theorem,∮
C

u · dx =

∫∫
S

(∇× u) · ndS =

∫∫
S
ω · ndS = 0,

and thus the circulation is zero.
Now consider any two points, say O and P, and any two paths, C1 and C2 from O to P through
the irrotational flow. Since travelling along C1 and then back along C2, is a closed curve through
the flow, we must have∮

C1

u · dx−
∮

C2

u · dx = 0 ⇒
∮

C1

u · dx =

∮
C2

u · dx.

Thus the integral between O and P does not depend on the path of integration, but only on the
starting and ending points. This means we can define a function, Φ(x), which we call the
potential of the velocity field, such that

Φ(x) = Φ0 +

∫ P

O
u · dx, (42)

where Φ0 is the velocity potential at the point O. In a simply connected region the velocity
potential is unique up to the constant Φ0. Equation (42) implies that we can write

u = ∇Φ. (43)
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Irrotational flows III

The continuity equation for an incompressible fluid, i.e. ∇ · u = 0, together with (43) implies

∇2Φ = 0. (44)

This means the potential function Φ is harmonic, that is, it satisfies the Laplace equation. If we
solve the problem for the function Φ we can find the velocity u using equation (43).
The mathematical problem to find an irrotational flow is much easier than that for a rotational
flow, for the following main reasons:

equation (44) is linear, whereas the Navier–Stokes equations are nonlinear;

the problem is solved for a single scalar function (the potential) rather than multiple
functions (the velocity and pressure – four components altogether, which much be solved
simultaneously);

From Equation (44), the velocity distribution has the following properties.

Equation (44) is elliptic, so Φ is smooth, except possibly on the boundary.

The function Φ is single-valued (as long as the domain is simply connected).
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Bernoulli equation for irrotational flows I

If

the flow is incompressible,

the flow is irrotational, and

the body force field is conservative, i.e. ∇× f = 0,

then it may be shown that

H =
∂Φ

∂t
+
|u|2

2
+

p

ρ
+ Ψ = c, (45)

where Ψ is the potential of the body force field f, defined as f = −∇Ψ, and c is constant. This is
the Bernoulli theorem for irrotational flows.

Once the velocity field is known, we can use this theorem to find the pressure.
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Rheological models for non-Newtonian fluids I

Newtonian incompressible fluids

We recall that for an incompressible Newtonian fluid we can express the stress tensor σ as a
function of the rate of deformation tensor e as

σ = −pI + 2µe, (46)

where p is pressure, I is the identity tensor, µ is the dynamic viscosity of the fluid and e is defined
as the symmetric part of the velocity gradient tensor ∇u.

If we refer to a one-dimensional shear flow like that reported on the
left, with velocity components [u(y), 0, 0] in the directions x the
shear stress at any point is given by

σxy = τ = µ
du(y)

dy
= µγ̇,

where γ̇ is referred to as rate of shear strain.
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Rheological models for non-Newtonian fluids II

Newtonian incompressible fluids

τ

du/dy=γ
•

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for three Newtonian fluids with

different viscosity.
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Time-independent non-Newtonian fluids I

We now consider more complicated behaviours by referring first to the one-dimensional shear flow
and then presenting the three-dimensional formulation of the constitutive relationship.
A good reference for non-Newtoninan fluid flow is the book by Tanner (2000).

For inelastic, non-Newtonian fluids a possible model for shear behaviour is

γ̇ = f (τ).

The shear rate γ̇ at any point in the fluid is a function of the shear stress τ at that point. Fluid
behaving in this way are named non-Newtoninan viscous fluids or generalised Newtonian fluids.
They can be distinguished in the following categories:

Bingham-Green;

shear thinning or pseudo-plastic;

shear-thickening fluids or dilatant.
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Time-independent non-Newtonian fluids II

Bingham-Green fluids

One-dimensional formulation

In Bingham-Green fluids if the shear stress is below a certain threshold value τc no-flow occurs.
As the shear stress exceeds such a value the fluid behaves in analogy to a Newtonian fluid.
In one-dimensions we can thus write

τ = τc + µγ̇.

Three-dimensional generalisation

The above constitutive behaviour can be generalised to the three-dimensional case as follows

σ = −pI +

(
2µ+

τc√
−III

)
e, (47)

where III is the second invariant of the rate of deformation tensor, defined as

III =
1

2

[
(tre)2 −

(
tre2

)]
,

and, for an incompressible fluid can be written as

|III | =
1

2
e : e.
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Time-independent non-Newtonian fluids III

Bingham-Green fluids

τ

du/dy=γ
•

τc

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for a Bingham-Green fluid.
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Time-independent non-Newtonian fluids IV

Shear thinning/thickening fluids
One-dimensional formulation

The behaviour of many real fluid is approximately Newtonian in small intervals of the rate of
strain but with a viscosity that changes with γ̇.
This behaviour can often be expressed with good approximation with the following
one-dimensional law

τ = µn |γ̇|n sgn (γ̇) ,

where the quantity µn has the following dimensions: [µn] = ML−1T−2+n and, therefore, is not a
viscosity in general. However, it is possible to define an effective viscosity µeff , so that we have

τ = µeff (γ̇) γ̇.

Comparing the above two equations yields the following definition

µeff = µn |γ̇|n−1 .

If the effective viscosity µeff grows with γ̇ the fluid is said to be shear thickening;

if the effective viscosity µeff decreases with γ̇ the fluid is said to be shear thinning.

Three-dimensional generalisation

The above constitutive behaviour can be generalised to the three-dimensional case as follows:

σ = −pI +

(
2nµn
√
−III

1−n

)
e. (48)
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Time-independent non-Newtonian fluids V

Shear thinning/thickening fluids

τ

du/dy=γ
•

shear thinning fluid
shear thickening fluid

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for a shear thinning and a shear

thickening fluid.
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Time-independent non-Newtonian fluids VI

Herschel-Bulkley fluids

One-dimensional formulation

The behaviour of fluids carrying particles in suspension can often be expressed superimposing the
characteristics of a Bingham-Green fluid with those of a shear thinning/thickening fluid, in the
following form:

τ = [τc + µn |γ̇|n] sgn (γ̇) .

Three-dimensional generalisation

The above constitutive behaviour can be generalised to the three-dimensional case as follows:

σ = −pI +

(
τc√
III

+
2nµn
√
−III

1−n

)
e. (49)

This is known as a Herschel-Bulkley fluid.

Note that:

for τc = 0 (49) reduces to (47);

for n = 1 (49) reduces to (48);

for τc = 0 and n = 1 (49) reduces to (46).
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Time-independent non-Newtonian fluids VII

Herschel-Bulkley fluid

τ

du/dy=γ
•

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for a Herschel-Bulkley fluid.
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Viscoelastic materials I

In many cases materials display both an elastic and viscous behaviour.

In the theory of linear elasticity the stress τ in a sheared body is taken proportional to the
amount of shear γ;

in a Newtonian fluid shearing stress is proportional to the rate of shear γ̇.

Stress relaxation
We consider the behaviour of a material in a simple shearing
motion, assuming inertia can be neglected.
Suppose the sample is homogeneously deformed, with the amount
of shear γ(t) variable in time. Let τ(t) be the corresponding
shearing stress.
We consider the single-step shear history γ(t) = γ0H(t), with
H(t) being the Heaviside unit step function (H(t) = 0 for t < 0,
H = 1 for t ≥ 0).

Elastic solid: τ(t) = τ0H(t), with τ0 = const.

Newtonian fluid: since τ = µγ̇, it would be instantaneously
infinite at t = 0 and zero for t > 0. Then, since

γ(t) =
1

µ

∫ t

−∞
τdt = γ0, (t ≥ 0),

γ = 0, (t < 0),

τ is a delta-function with strength µγ0.
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Viscoelastic materials II

Observations on real materials show that the above idealised models are always inaccurate.
The stress τ decreases from its initial value to a limiting value τ∞. The decrease is rapid first and
then slows down. This process is called relaxation.

If the limiting value is not zero we say that the material is a solid;

If the limiting value is zero we say that the material is a fluid.

We can define a relaxation time λ. This time has to be compared with the period of observation
Tobs.

If λ/Tobs � 1 one can conclude that the material is a perfectly elastic solid or a viscous
fluid, depending on the value of τ∞;

if λ/Tobs � 1 one can conclude that the material is a solid;

if λ/Tobs ≈ O(1) we call the material viscoelastic.
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Viscoelastic materials III

Creep

We now consider a single-step stress history τ(t) = τ0H(t).

Elastic solid: γ(t) = γ0H(t), with γ0 = const.

Newtonian fluid: the shear grows at a constant rate, thus
γ(t) = τ0t/µ, with µ being the dynamic viscosity.

Again, the behaviour of real materials shows departures from
these idealised cases. The shear, after an initial possible jump,
continues to increase over time.

If the shear approaches a limiting value γ∞ the material is
said to be a solid;

if the shear grows linearly after a long time the material is
said to be a viscous fluid.
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Viscoelastic materials IV

Response functions
We introduce

stress relaxation function R(γ, t): the stress at a time t after the application of a shear step
of size γ;

creep function C(τ, t): the shear at a time t after the application of a stress step of size τ .

The functions R and C are supposed to be zero for t < 0.
If the material is isotropic R has to be an odd function of γ and C an odd function of τ .
Assuming that

R and C are smooth functions,

γ and τ are small,

we can write
R(γ, t) = G(t)γ +O(γ3), C(τ, t) = J(t)τ +O(τ3),

where we have defined

G(t) linear stress relaxation modulus;

J(t) linear creep compliance.
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Moreover we define

G(0+) = Gg , J(0+) = Jg , G(∞) = Ge J(∞) = Je .

Immediately after application of a step in stress/strain (t = 0+) we have

τ = Ggγ, γ = Jg τ,

therefore we have

Gg Jg = 1.
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Relaxation modulus G and creep compliance J for (a) solids and (b) fluids.
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Spring-dashpot models

It is useful to consider idealised models consisting of combinations
of springs and dashpots to interpret the behaviour of complex
viscoelastic materials.

Spring. The spring obeys the simple relationship τ = kγ. For
the spring we have

G(t) = kH(t), J(t) =
1

k
H(t).

Dashpot. This is a viscous element so that γ̇ = τ/µ. For the
dashpot the following relationships hold

G(t) = µδ(t), J(t) = t
H(t)

µ
.

Dashpots and springs can be combined with the following rules

when two elements are combined in series their compliances
are additive;

when two elements are combined in parallel their moduli are
additive.
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Examples

Maxwell element
A Maxwell element consists of a spring and a dashpot in series. The creep
compliance is therefore

J(t) =

(
1

k
+

t

µ

)
H(t).

Kelvin-Meyer element
A Kelvin-Meyer element consists of a spring and a dashpot in parallel. The
relaxation modulus is therefore

G(t) = kH(t) + µδ(t).
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Superposition of multiple steps
Knowledge of the single-step response functions G(t) and J(t) allows one to predict the response
to any input within the linear range, i.e. when stresses proportional to γ3 and strains proportional
to τ3 can be neglected.

We first note that the response is invariant to time translations, so that

γ(t) = γ0H(t − t0) ⇒ τ(t) = γ0G(t − t0).

We now consider a 2-step shear history

γ(t) = H(t − t1)∆γ1 + H(t − t2)∆γ2.

In general the corresponding stress can depend on t, t1,
t2, ∆γ1 and ∆γ2. We assume that it is a smooth function
of the step sizes and expand it as follows

τ(t) = G1(t, t1, t2)∆γ1 + G2(t, t1, t2)∆γ2 +O(∆γ3).

Since the above expression also has to hold for ∆γ1 = 0 and ∆γ2 = 0 it follows that
Gi = G(t − ti ), with i = 1, 2. Generalising ot N steps at the times tn we obtain

γ(t) =
N∑

n=1

H(t − tn)∆γn ⇒ τ(t) =
N∑

n=1

G(t − tn)∆γn.
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Passing to the limit in the above sums we obtain that the shear history can be written as

γ(t) =

∫ t

0
H(t − t′)dγ(t′),

and the stress in time as

τ(t) =

∫ t

−∞
G(t − t′)dγ(t′). (50)

This is called the stress relaxation integral.

Important notes

Since G(t) = 0 for t < 0 the upper limit in the integral can be arbitrarily chosen in the range
[t,∞).

Assuming γ(t) is differentiable, we have dγ(t) = γ̇(t)dt.

Following analogous steps we could consider the following stress history

τ(t) =

∫ t

0
H(t − t′)dτ(t′),

and obtain the creep integral as

γ(t) =

∫ t

−∞
J(t − t′)dτ(t′).
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Linear viscoelastic behaviour
A suitable three-dimensional extension of equation (50) is given by

σij + pδij = dij =

∫ t

−∞
2G(t − t′)eij (t′)dt′, (51)

where dij is the deviatoric part of the stress tensor and eij is the rate of strain tensor.

Note: for a Newtonian fluid we have G(t − t′) = µδ(t − t′) and therefore

σij + pδij = dij =

∫ t

−∞
2µδ(t − t′)eij (t′)dt′ = 2µeij (t),

which agrees with equation (46).
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Sinusoidal viscoelastic response
A commonly used procedure to test rheological properties of viscoelastic fluids consists of
applying to the material a time-sinusoidal strain of small amplitude, so that

γ = γ̂e iωt + c.c., γ̇ = iωγ̂e iωt + c.c. (52)

with γ̂ � π. Under the assumption of linear behaviour of the system, following from the
assumption γ̂ � π, the shear modulus can be written as

τ = τ̂e iωt + c.c.

Substituting (52) into (50) (and omitting the complex conjugates) we obtain

τ̂e iωt = iωγ̂

∫ t

−∞
G(t − t′)e iωt′dt′.

We define the complex modulus G∗ as τ̂ /γ̂. From the above equation, setting s = t − t′, we
obtain

G∗ = G ′ + iG ′′ = iω

∫ ∞
0

G(s)e−iωs ds. (53)

Separating in (53) the real and imaginary parts we find

G∗ = G ′ + iG ′′ =

∫ ∞
0

ωG(s) sin(ωs)ds + i

∫ ∞
0

ωG(s) cos(ωs)ds.

with
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G ′(ω) is the storage modulus;

G ′′(ω) is the loss modulus.

It is also possible to define the complex viscosity as

µ∗ =
τ̂

ˆ̇γ
= µ′ − iµ′′ =

G∗

iω
=

G ′′

ω
− i

G ′

ω
. (54)

Note that µ′ = G ′′/ω is the equivalent of the dynamic viscosity for a Newtonian fluid.

If we record with and an experiment γ(t) and τ(t) we
have a phase shift δ between the two signals. If G ′′ = 0
the phase shift is zero (δ = 0). In particular we have

tan δ =
G ′′

G ′
.
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Solution of sinusoidally oscillating linear flows of a viscoelastic fluid
The equation of motion is given by the Cauchy equation (7) and the continuity equation (6)

ρ

(
∂u

∂t
+ (u · ∇u)

)
= ∇ · σ, (55)

∇ · u = 0, (56)

Substituting (51) into (55) and neglecting quadratic terms in the velocity, we obtain

ρ
∂u

∂t
= −∇p +

∫ t

−∞
G
(
t − t′

)
∇2u dt′. (57)

Assuming a sinusoidally oscillating flow we can set u(x, t) = û(x)e iωt + c.c. and
p(x, t) = p̂(x)e iωt + c.c., and substituting into (57), also making use of (53) and (54), we obtain

ρiωû = −∇p̂ + µ∗∇2û, (58)

∇ · û = 0. (59)

In other words the problem to solve is the same as that for a Newtonian fluid under the same
conditions, provided the fluid viscosity µ is replaced with the complex viscosity µ∗.
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Flow in porous media I

A porous medium is a solid that has many interconnected holes (pores) within it. Flows in
porous media are described in great detail in the book by Bear (1988).
We do not consider the complicated details of the fluid flow in each individual pore, but rather we
are interested in phenomena that occur on lengthscales that are much larger than typical
inter-pore distances.

Applications:

flow in soil and fractured rocks;

flow in capillary beds;

flow in soft tissues (e.g. the brain tissue)

. . .

Assumptions and definitions

We assume that the porous medium consists of a rigid solid with many small pores
saturated with a fluid.

We assume that the porous medium is homogeneous and isotropic.

We define the porosity φ of the porous medium by considering a sample of the solid whose
lengthscale is large compared to the individual pore size but small compared to the
lengthscale of interest in the experiment. The porosity is defined to be the total volume of
the pores in the sample divided by the total volume of the sample.
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Flow in porous media II

The Darcy equation
On scales that are large compared to that of an individual pore, the flow of a Newtonian fluid in
the porous medium is governed by the Darcy equation:

q = −
k

µ
∇p. (60)

q is the volume flux per unit area in the medium. Sometimes q is referred to as apparent or
Darcy velocity. For a flat cross-section of the solid of area A with unit normal n (A contains
many pores), the flux through A is q · nA.
q has the dimensions of a velocity

[q] = LT−1.

Note: q is not an actual physical velocity; the average velocity within the pores is u = q/φ.

k is the permeability of the medium ([k] = L2). It quantifies how much “resistance” the
solid provides to fluids flowing through it (a larger resistance corresponds to a lower value of
k). k depends on

the porosity φ;
the geometry of the pores, in particular the tortuosity of the pores and the degree to which they
are interconnected.

It does not depend on the rheology of the fluid filling the pores.

µ is the dynamic viscosity of the fluid.

p is the fluid pressure.
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Flow in porous media III

Continuity equation

To find the fluid velocity and pressure we need a further equation, which is provided by mass
conservation. For an incompressible fluid flowing though an incompressible solid the continuity
equation becomes

∇ · q = 0.

Taking the divergence of Darcy’s equation (60), we obtain the Laplace equation for the pressure

∇2p = 0. (61)

This means that the velocity field of an incompressible fluid in a porous medium is a harmonic
function.
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Flow in porous media IV

Informal justification of the Darcy equation
We assume the pores of the porous medium are tubes of radius a oriented in random directions
(since the medium is isotropic).
A straight tube of radius a containing Poiseuille flow driven by a pressure gradient ∇p has flux

Q =
πa4

8µ
|∇p| . (62)

Thus in a pore of the medium that is oriented in the direction of the unit vector m, we estimate
the flux as

Q =
πa4

8µχ
∇p ·m. (63)

The factor χ ≥ 1 has been inserted to represent the extra resistance arising from the tortuosity
of the pore.

Observations

Pores aligned in the same direction as ∇p have the largest fluxes, whilst those perpendicular
to ∇p have zero flux.

Since the directions of the pores are distributed isotropically, the components of the fluxes
that are perpendicular to ∇p tend to cancel, and the average flux through many nearby
pores is parallel to ∇p.
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Flow in porous media V

The formula (63) suggests that the magnitude of the flux per unit area q is proportional to
the magnitude of ∇p.

The formula (63) shows that q is inversely proportional to the viscosity µ.

The above points justify the form of the Darcy equation.

Darcy equation can also be derived in a more formal way, adopting homogenisation
techniques (Mei and Vernescu, 2010).

The permeability k
The value of the permeability for a given porous medium must be determined empirically.
A formula that works quite well in the case of flow between pseudo-spherical grains (such as
grains of sand) is the Carman–Kozeny formula, which is

k ≈
φ3d2

180(1− φ)2
,

where d is the typical diameter of a grain.
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The cardiovascular system:
blood rheology
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Main functions of blood

In large animals, transport of material from different parts of the body involves fluid flowing along
and across the walls of systems of tubes. The most studied tube system in biomechanics is the
mammalian cardiovascular system. The fluid flowing in such a system is blood.

Blood

carries oxygen and nutrients to metabolically active tissues;

returns carbon dioxide to the lungs;

delivers metabolic end-products to the kidneys;

. . .

Blood does more than simply delivering substances to tissues. In particular:

provides a buffering reservoir to control the pH of bodily fluids;

serves as an important locus for the immune system;

transports heat, contributing to maintain a constant temperature throughout the body.

In the present section we will be concerned with blood rheology, i.e. the way in which tensions
are generated in the blood as a response to a given kinematic state.
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Blood composition

In order to understand the rheological behaviour of blood we need to know its composition.

There are approximately 5 l of blood in an average human being. Blood volume is regulated by
the kidneys.

Blood consists of a suspension of particles (formed elements) floating in a fluid medium
(plasma).

As shown in the figure below the formed elements constitute approximately 46% of the total
blood volume.

Blood composition (from Ethier and Simmons, 2007).
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Plasma I

Composition

Composition of plasma (from Caro et al., 1978).
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Plasma II

Viscosity

Dependence on temperature of plasma and water (from

Cokelet, 1972).

From the mechanical point of view the plasma
behaves as a Newtonian fluid.

Its dynamic viscosity is 1.2 · 10−3 Pa s at 37◦.
Thus the viscosity of plasma slightly exceeds
that of water.
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The osmotic pressure I

Osmotic pressure is a thermodynamically generated force on a solvent that requires

a solvent;

one (or more) solutes;

a semipermeable membrane, i.e. a barrier that allows solvent molecules to pass freely and
prevents the passage of solute molecules.

Let us consider a container with two chambers containing two solutions of one (or more)
solute(s). The chambers are separated by a membrane that is permeable to the solvent but not
to the solute.
Let us consider the flux of solvent Q12 form chamber 1 to chamber 2. This flux can be written as

Q12 = C [(p1 − π1)− (p2 − π2)],

where we define π as the osmotic pressure and C is a constant.
According to van’t Hoff’s law we can write

π = RT
N∑

j=1

cj ,

where

R: universal gas constant (8.314 J/mol K);

T : absolute temperature;
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The osmotic pressure II

cj : molar concentration of the species j in solution.

This law holds for sufficiently diluted solutions.
Note that the above equations imply that if π1 6= π2 (i.e. the solutions in the two chambers are at
different concentrations) the pressures on the two sides of the membrane are not the same at
equilibrium (p1 6= p2).
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The plasma osmotic pressure

The osmotic pressure in the plasma is mainly due to the presence of albumin. The plasma
osmotic pressure has important effects on the mechanics of circulation.

Variations of the osmotic pressure π in the plasma might induce a osmotic pressure variation
across red blood cell membranes. This leads to a flux of water across the cell membrane that
produces a modification of the shape of the cell as discussed later.

Variations of π in the plasma might induce variations of the volumetric concentration of red
blood cells. This, in turn, significantly affects the rheological properties of blood.
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Formed elements in blood I

The formed elements mainly consist of the following bodies.

Red cells (erythrocytes)

Red blood cells are the means of delivering oxygen to the body
tissues via the blood flow. They take up oxygen in the lungs or gills
and release it in the microcirculation. Red blood cells have no
nucleus.

White cells (leukocytes)

They play an important role in the immune response as they defend
the body against both infectious disease and foreign materials.
There are various different types of leukocytes.

Platelets
Platelets are small cytoplasmic bodies derived from cells in the bone
marrow, and that circulate in the blood and are involved in blood
clotting. Like red blood cells, platelets have no nucleus. If the
number of platelets is too low, excessive bleeding can occur,
however if the number of platelets is too high, blood clots can form.
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Formed elements in blood II

The following table shows the percentage of blood cells present in normal blood.

Formed elements in blood (from Caro et al., 1978).

It appears that there are few white blood cells and platelets compared to red blood cells. This
implies that the mechanical behaviour of the formed elements is dominated by red cells.

The volume fraction of red blood cells is extremely important for blood rheology and also for
physiological characteristics of blood. It is known as haematocrit H and is defined as

H =
volume of red blood cells

total blood volume
.
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Red blood cells I

Individual red blood cells are shaped like biconcave disks as shown in the picture below.

Sketch of the shape of a red blood cell.

The table gives some geometrical properties of red cells.

Diameter [µ] Thickness [µ] Volume [µ3]
Diameter

Thickness
7.8 1.84 88 4.2

The cytoplasm of red cells has a viscosity which is higher than that of plasma.

The cytoplasm contains a large amount of a protein called haemoglobin that is very efficient at
binding oxygen. For this reason the oxygen-carrying capacity of whole blood is ≈ 65 times larger
than that of plasma alone:

whole blood: ≈ 21 ml O2 per 100 ml of blood;

plasma: ≈ 0.3 ml O2 per 100 ml of plasma.

Red blood cells are highly deformable. This is important since, in the microcirculation, they have
to pass through very narrow openings.
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Red blood cells II

If the rate of shear is very small red blood cells tend to aggregate forming stacks known as
roleaux. The presence of roleaux in the blood affects significantly its viscosity.

(a) Roleaux, (b) normal red cells (from Ethier and Simmons (2007).
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Red blood cells III

The effect of the osmotic pressure
Red blood cells are normally in osmotic equilibrium with the plasma.

If they are immersed in solutions with smaller osmotic pressure erythrocytes swell, assuming
an approximately spherical shape (hypotonic red blood cells).
Red blood cells can blow (haemolysis), releasing haemoglobin into the plasma.

The opposite process can also occur. In that case red blood cells loose water (hypertonic
red blood cells).

Effect of the osmotic pressure on red blood cells.
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Mechanics of suspensions I

Settling velocity of a particle

Let us first consider the sedimentation of a single spherical particle in a Newtonian incompressible
fluid otherwise at rest.
The settling velocity us of a single particle in a suspension can be determined by equating the
weight of the particle W to the drag force D it experiences while settling. In general no analytical
expression is available for D.
An analytical solution is available for the case of low Reynolds number Re = us d/ν, with d
particle diameter and ν kinematic viscosity of the fluid. In this case we have

Stokes formula: D = 3πdµus .

Stokes formula is known to be valid for Re / 0.5.

Thus in this case we have

(ρs − ρ)gπ
d3

6
= 3πdµus ,

from which we get

us =
gd2

18ν

(
ρs

ρ
− 1

)
. (64)
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Mechanics of suspensions II

Example

Let us consider the settling of a red blood cell in the plasma. We have

ρs ≈ 1.05ρ, d ≈ 10−5 m, ν ≈ 1.2× 10−6 m2s−1,

and we obtain us ≈ 2.3× 10−6 m/s.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 96 / 335



The cardiovascular system Blood rheology

Mechanics of suspensions III

Transient motion

If the particle starts from rest, there will be a transient motion (u(t)) before reaching the settling
velocity (us ). If we assume that, even during such a transient motion, Stokes drag resistance is
dominant with respect to other forces, we may write the following equation of motion for the
particle:

ρsπ
d3

6
u̇ = (ρs − ρ)gπ

d3

6
− 3πdµu.

This equation can be solved to get

u(t) = us

(
1− e−t/T

)
,

with T characteristic time scale for the transient flow, defined as

T =
ρs d2

18ρν
.

Example

Let us consider the settling of a red blood cell in the plasma and evaluate T . Using ρs ≈ 1.05ρ,
d ≈ 10−5 m, ν ≈ 1.2× 10−6 m2s−1, we obtain T ≈ 5× 10−6 s, which is a very small time
compared to the time scale we are typically interested in studying blood flow.
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Mechanics of suspensions IV

Settling velocity of a suspension of particles

When a suspension of particles settles in a fluid at rest the velocity of sedimentation of each
particle will not be that predicted by equation (64). This is because particles interact to each
other.
A complete theory for the settling of a suspension of particles is not available yet.
The effect of the interactions is such to decrease the settling velocity.

Important note

In the case of a suspension of settling red blood cells the problem is even more complicated due
to the fact that particles tend to aggregate, forming roleaux. The settling velocity of roleaux is
larger than that of single cells.
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Mechanics of suspensions V

Viscosity of suspensions

If the particles are sufficiently small compared to the domain of the flow the mixture
fluid/particles can still be thought of as a continuum fluid.
The viscosity of the whole fluid is affected by the presence of particles. Analysing the behaviour
of a suspension of particles in a Newtonian fluid helps understanding what determines the overall
viscosity and if the mixture is still expected to behave in a Newtonian way.

Spherical rigid particles

Let us consider the simple shear flow as that is reported in the figure. The
flow may be induced in a gap by the motion of the upper solid surface while
the lower surface is kept fixed. It can be shown that the velocity distribution
is linear.
Suppose that particles are rigid, spherical and non-settling.

If the concentration c of particles is small (c / 0.3) the effective viscosity
of the whole mixture µeff is independent of the shear rate γ̇.

However, if c ' 0.1, µeff depends on the method of measurement, i.e. on
the flow field in the viscometer.

The mixture is Newtonian in the sense that µeff is independent of γ̇ with
a particular measurement technique.

The effective viscosity is always larger than the viscosity of the
suspending fluid because the deformations in the fluid are greater for the
same motion of boundaries and the average shear-rate increases.
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Mechanics of suspensions VI

Deformable particles

Let us now consider a suspension of deformable non-settling particles.

Also in this case the effective viscosity increases with increasing values of the concentration c.

The growth rate is typically smaller than in the case of rigid particles. This is because
particles can reshape to adapt to flow conditions and therefore the additional rate of strain
imposed on the suspending fluid is less.

As the shear rate increases particles tend to align with the flow. This
means the the shear stress does not increase linearly with the shear rate.

The suspension is not Newtonian but shear thinning.

Asymmetric particles
As spherical particles also asymmetric particles rotate when immersed in
a shearing fluid. However, the angular velocity is not constant, being
highest when the particle long axis is at right angle with the flow.

Therefore particles spend more time, on average, aligned with the flow.

The effect of this lining-up of the particles is to decrease the effective
viscosity of the suspension.

The effective viscosity of a suspension of randomly oriented asymmetric
particles exceeds that of a suspension of spheres in the same
concentration.
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Mechanics of suspensions VII

Theoretical formulae

In 1906 Albert Einstein obtained an analytical expression for the viscosity of a suspension of rigid
non-settling particles in a Newtonian fluid. The formula is valid for concentration c � 1 and
reads:

µr =
µeff

µ0
= 1 +

5

2
c,

where µr is the relative viscosity and µ0 the viscosity of the suspending fluid. The formula works
well for c / 0.1.

In 1932 G. I. Taylor extended Einstein’s formula to the case of liquid droplets in suspension,
which are forced to remain spherical due to surface tension. His formula reads:

µr =
µeff

µ0
= 1 + c

(
µ0 + 5/2µ

µ0 + µ

)
,

where µ is the viscosity of the liquid within the drop.
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Mechanics of suspensions VIII

Red blood cells

Red blood cells subject to low rate of strain (left) and high rate of strain (right).

Characteristic Low shear stress High shear stress
Roleaux behaviour Roleaux formation enhanced; Roleaux break up;

µeff is increased µeff is decreased
Individual red cell orientation Red cells are randomly oriented; Red cells are aligned with streamlines;

µeff is increased µeff is decreased
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Mechanics of suspensions IX

Red blood cells subject to low rate of strain (a) and high rate of strain (from Caro et al. (1978)).
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Mechanics of suspensions X

The presence of red cells in the blood affects significantly blood viscosity.

As the rate of strain γ̇ increases

roleaux tend to disappear;

blood cells deform and the to spend more time aligned with the flow.

For the above reasons we expect that the effective viscosity of blood might change with the rate
of strain, in particular decreasing. Therefore, we expect the blood to have a shear thinning
behaviour.
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Rheology of the whole blood

Effective viscosity of blood

Effective viscosity of normal blood as a function

of the rate of shear (from Whitmore, 1968).

Effective viscosity of blood as a function of the

rate of shear for different values of the

haematocrite (from Brooks et al., 1970).
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Conclusions

The whole blood does not have a Newtonian behaviour.

It has a shear thinning behaviour as the apparent viscosity decreases with the rate of shear.
This behaviour is due to the presence of particulate material and can be qualitatively
explained by the following observations:

red blood cells tend to orientate in the direction of motion as the shear rate increases;
roleaux are destroyed at large values of the shear rate.

For large values of the shear rate (γ̇ ' 100 s−1) blood behaves approximately as a
Newtonian fluid.
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The cardiovascular system:
the heart
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General description of the cardiovascular system I

Sketch of the cardiovascular system (from Ottesen

et al., 2004).

The human cardiovascular system is primarily a
transport system in which oxygen, carbon
dioxide and nutrients are carried by the blood to
and from different parts of the body.

It consists of two separate parts: the systemic
circulation and the pulmonary circulation.
These two parts are in series to each other.

The two circulations are connected by the heart.

From the left ventricle blood is pumped,
through the aortic valve into the systemic
circulation to the aorta (which is the largest
artery in the body).

The systemic arteries transport oxygen and
nutrients to the various muscles and organs.

In the capillaries oxygen and nutrients
diffuse from the vessels into the target
tissues.

In the muscles and organs oxygen is
exchanged with carbon dioxide and the
blood becomes deoxigenated.

From the capillaries blood flows into
venules and then into veins.
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General description of the cardiovascular system II

Sketch of the cardiovascular system (from Ottesen

et al., 2004).

Through a network of joining channels the
blood reaches the superior vena cava and
inferior vena cava and from there it enters
the right atrium of the heart.

From the right atrium, through the
tricuspid valve, blood enters the right
ventricle.

Heart contraction ejects blood from the
right ventricle through the pulmonary valve
into the pulmonary arteries.

The deoxygenated blood is carried to the
lungs, where carbon dioxide is exchanged
for oxygen in the alveoli.

Reoxigenated blood is carried back to the
left atrium through the pulmonary veins.

From there the blood re-enters the left
ventricle through the mitral valve.
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Pressure distribution in the cardiovascular system

The pressure (cleared from the hydrostatic pressure) in each portion of the circulation changes
significantly. It is highest in the ventricles during ejection and the progressively decreases towards
the atria.

The maximum pressure in the left ventricle is significantly higher than that in the right ventricle.

Pressure distribution in the human cardiovascular system (from Ottesen et al., 2004).

Maximum and minimum pressures in the aorta are approximately 120 mmHg and 80 mmHg
(≈ 16000− 10665 Pa).
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Blood volume distribution

Approximately 74% of blood volume is contained in the systemic circulation, 14% is in the
pulmonary circulation and 12% is in the heart.
In particular

Location Volume
Systemic arteries ≈ 20%
Systemic veins ≈ 54%
Pulmonary circulation ≈ 14%
Heart ≈ 12%

Volume distribution in the cardiovascular system relative to the total volume.

Cardiac output in man may increase from a resting level of about 5 l min−1 to 25 l min−1 in
strenuous exertion. In all cases the output of the two pumps (left and right ventricles) is the
same, being the two systems in series.

The response of the heart involves an increase in rate of contraction and output per beat (stroke
volume). This implies that cardiac muscle fibres are capable of varying both the duration and
amplitude of their contraction.
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Anatomy of the heart I

The heart is the pump of the circulatory system, i.e. it is the source of energy that makes the
blood flow.

Sketch of the heart (from Ottesen et al., 2004).

The heart may be thought of as a
couple of pumps in series. Each
of the cardiac pumps consists of a
low-pressure chamber (atrium),
which is filled by the venous
system, and a high-pressure
chamber (ventricle).

The two chambers are separated
by a non-return valve. From the
ventricle the blood exits to an
artery through another non-return
valve.
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Anatomy of the heart II

Sketch of a section of the atria.

Sketch of a section of the heart.

Atria
The two atria have comparable structure. They have thin,
relatively compliant walls and are separated by a common
wall, the interatrial septum.

Veins are in communication with the atria without valves.

The two atrioventricular valves have different structure:

the one on the right side (tricuspid valve) has three
cusps;

the one on the left side (mitral valve) has two cusps.

The valve cusps consist of flaps attached along one edge to a
fibrous ring in the heart wall and with free edges projecting
into the ventricles. They are very thin (≈ 0.1 mm). The free
edges are attached (’tethered’) to the ventricle walls through
fibrous bands (chordae tendinae) which prevent the valve
turning inside out when the pressure in the ventricle rises.

Heart valves open more than 30 million times a year!

The valves are made up of a meshwork of collagen and elastic
fibres, covered by endothelium (the cell layer which also
covers the walls of the heart chambers and blood-vessels).
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Anatomy of the heart III

Sketch of a section of the heart.

Pulmonary and aortic valves

The exit valves from the ventricles, the
pulmonary and aortic valves, are very
similar to each other and consist of
three cusps with free margins. These
cusps are not tethered but can
nonetheless support considerable
pressure differences between the
arteries and the ventricles (in the
aortic valve ≈ 100 mmHg).

The four valve orifices are
approximately aligned in a plane.
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Anatomy of the heart IV

The cardiac muscle structure

Muscle fibre (from Caro et al., 1978).

Muscle fibre orientation in wall of the

left ventricle (from Caro et al., 1978).

The myocardium, the cardiac muscle, is made up of elongated
muscle cells running in columns. Blood is supplied to the
myocardium by the coronary arteries which branch from the
aorta, just downstream of the aortic valve.
The wall structure of the left ventricle has been studied in
great detail.

The innermost layer (subendocardial) consists of fibres
running predominantly in the longitudinal direction (from
the fibrous region around the valves (base) to the end of
the approximately elliptical chamber (apex).

Moving outwards fibre orientation slightly changes. This
angulation increases in successively outer fibres.

Half-way through the wall thickness fibres run parallel to
the shorter axis of the chamber, i.e. circumferentially.

Further outwards the angle of orientation continues to
increase and at the outer surface of the ventricle wall
(epicardial) fibres run again predominantly in the
longitudinal direction.
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Anatomy of the heart V

The cardiac muscle structure

Arrangement of the muscle fibres in
wall of the left ventricle.

Fibres running in the longitudinal direction do
not necessarily terminate at the apex but they
can turn and spiral back towards the base.

This arrangement of muscle fibres gives the ventricle
wall a great strength in every direction, even if single
fibres can only withstand tension in the axial
direction.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 116 / 335



The cardiovascular system The heart

Anatomy of the heart VI

Drawing of the section of a heart (from Ottesen et al., 2004).
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The cardiac cycle I

Sequence of events in the left heart

during the cardiac cycle (from Caro

et al., 1978).

Electrical events - The ECG

The contraction cycle of the heart is governed by electrical
impulses. It is initiated in a localised area of the nervous tissue
in the wall of the right atrium, known as pacemaker or
sino-atrial node.

The cycles of depolarisation and repolarisation in the cardiac
muscle can be recorded as the electrocardiogram (ECG)

When depolarisation occurs in the pacemaker it spreads
quickly into the muscle of the right and left atrial walls
and causes atrial contraction. This produces a small
deflection in the ECG known as ’P’ wave.

The ’P’ wave is followed, after about 0.2 s, by a larger
deflection of the ECG, known as the ’QRS’ complex. This
corresponds to depolarisation of the ventricles and the
consequent ventricle contraction.

Finally, there is the ’T’ wave, which is generated during
repolarisation of the ventricles.
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The cardiac cycle II

Sequence of events in the left heart during the

cardiac cycle (from Caro et al., 1978).

Mechanical events

We consider the mechanical events taking place
during the cardiac cycle in the left heart.

In correspondence of the QRS complex in the
ECG, ventricles contract. As the transmission of
the electrical signal in the ventricular wall
muscles is very fast (≈ 5 m/s) the contraction of
the two ventricles is almost synchronous.

As contraction starts in the ventricle, the blood
pressure there grows rapidly. At this stage the
aortic valve is still closed because the pressure in
the aorta exceeds that in the ventricle.

As the pressure in the ventricle grows larger than
that in the atrium and, after a very short period
of backward flow into the atrium, the mitral
valve closes.
The valve closure is accompanied by a sound
which is audible at the chest. It is known
clinically as the first heart sound.
This sound marks the start of the systole, which
is the period of ventricular contraction.
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The cardiac cycle III

Sequence of events in the left heart during the

cardiac cycle (from Caro et al., 1978).

Mechanical events

The pressure in the ventricle keeps rising until it
exceeds that in the aorta. During this phase
there is no change of ventricular volume as there
is no flux through the valves and the blood is
effectively incompressible. This phase is known
as isovolumetric period.

When the pressure in the ventricle exceeds that
in the aorta the aortic valve opens. At this
moment the blood ejection into the systemic
circulation starts.

As the tension in the ventricle wall falls, the
ventricular pressure starts to decrease. The
pressure gradient between the ventricle and the
aorta is reversed and flow starts to decelerate.

After a short period of backflow into the
ventricle the aortic valve closes again. This
generates the second heart sound, which marks
the onset of the diastole.
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The cardiac cycle IV

Sequence of events in the left heart during the

cardiac cycle (from Caro et al., 1978).

Mechanical events

At this stage all valves are closed again and a
second isovolumetric period occurs during which
the ventricular muscle relaxes and the pressure in
the ventricle decrease.

At the same time the pressure in the atrium rises
again as the left atrium is filled from the
pulmonary venous system.

When the pressure in the atrium exceeds that of
the ventricle the mitral valve reopens. At this
stage flow occurs that refills the ventricle. This
process is initially passive, driven by a pressure
difference between the atrium and the ventricle.
Then, after the P wave in the ECG, it becomes
active as the atrium contracts (atrial systole).

Shortly after that the ventricle contracts again
(QRS wave) and the cycle starts again.
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The cardiac cycle V

Mechanical events in the left ventricle

Cardiac cycle of the left ventricle in the plane p (pressure in the ventricle) - V (volume of the ventricle).
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The cardiac cycle VI

Drawing of a heart section during systole (left) and diastole (right).
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Fluid dynamics of the right heart

Flow characteristics in the heart are very complex and not suitable for analytical treatment.

Here we describe the main features of flow in the right heart. Flow in the right heart has been far
less studied than flow in the left heart.

The pulsation which characterises the arterial flow is largely smoothed out in the micro
circulation. The average pressure is also significantly lower in veins than in arteries, but it is
still large enough to induce flow towards the right atrium. This implies that the driving force
inducing flow in veins is essentially steady.
However, unsteadiness arises from various peripheral effects, in particular:

contractions of the muscles (muscle pump) induce flow pulsation;
pressure variations in time are induced by breathing;
contractions of the atrium also induce pressure oscillations. These contractions generate pressure
waves which propagate backwards into veins.

For the above reasons flow entering the right atrium is unsteady and fluctuates during the
cardiac cycle.

Functioning of the valves in the right heart is quite similar to that of valves in the left
heart.
The mechanics of the right ventricle, however, is significantly different.

At the beginning of systole pressure rises more slowly in the right ventricle than in the left. However,
the pressure in the pulmonary artery (≈ 10 mmHg) is much lower than in the aorta (≈ 100 mmHg)
and the pulmonary valve opens before the aortic valve.
Both acceleration and deceleration of blood in the pulmonary arteries are lower than in the aorta,
thus the waveform there is smoother and ejection takes longer.
The peak Reynolds number in the pulmonary artery Re = Ud/ν (calculated with the peak systolic
velocity U , artery diameter d and blood viscosity ν) is lower than in the aorta. It ranges between
2500 and 7000.
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Fluid dynamics of the left heart

Pressure and flow in the pulmonary veins are fairly steady and, therefore, the pulmonary
veins essentially act as a reservoir inducing atrium filling during ventricular systole.

The velocity of flow through the mitral valve rises rapidly in diastole and may exceed 1 m/s.

The corresponding peak Reynolds number is about 8000.

The velocity falls during diastole until a final acceleration due to left atrial contraction. Then
it falls very rapidly before the mitral valve closure.

The flow in the left ventricle and the mechanics of ejection from the ventricle will be
analysed in detail in the following making use of a numerical model.
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The mechanics of mitral valve closure Bellhouse (1972) I

Experimental works have shown that there is very little back flow through the mitral valve during
systole. In fact the mitral valve starts closing when flow is still directed to the ventricle and the
atrium is contracting.

We present a simple model of the closure of the mitral valve
originally proposed by Bellhouse (1972).
We consider the idealised two-dimensional geometry shown in
the figure. Let us denote with x the direction of the jet, with
x = 0 being the apex of the valve cusp and with x = −l the
attachment point of the apex on the ventricular wall. Moreover,
U is the velocity of the jet in the x direction. We assume that:

the valve is open, with the two cusps parallel to each other;

the velocity is constant within the jet thickness, does not
depend on x and is variable in time; thus U = U(t).

Thus we neglect the presence of the boundary layer that forms at the cusps wall. This boundary
layer has thickness δ ≈

√
νT , with T a characteristic time scale of the flow that can be estimated

as l/U, with l length of the valve cusp. Since ν = 3× 10−6 m2/s, l ≈ 1 cm and U ≈ 1 m/s, we
find T ≈ 10−2 s, and the order of magnitude of δ ≈ 0.17 mm and thus significantly smaller than
the thickness of the jet, which is ≈ 1 cm.
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The mechanics of mitral valve closure Bellhouse (1972) II

Evaluation of the average pressure on the atrial side

We aim at predicting when the valve starts to close. We assume that this happens when the
average pressure on the ventricular side of the cusp, pv , exceeds that on the atrial side, pa.
Under the assumptions listed above the Navier-Stokes equation in the jet reduces to

dU

dt
+

1

ρ

∂p

∂x
= 0,

with p the dynamic pressure. The above equation can be readily integrated to obtain

p = p0 − ρU̇x ,

where p0 denotes the pressure in section x = 0 and U̇ = dU/dt.
The average pressure pa on the atrial face of the cusp can be obtain as

pa =
1

l

∫ 0

−l

(
p0 − ρU̇x

)
dx = p0 +

1

2
ρl U̇.
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The mechanics of mitral valve closure Bellhouse (1972) III

Evaluation of the average pressure on the ventricular side
The pressure on the ventricular side is strongly influenced by the presence of the circulation
produced by vortex emission from the apex of the cusps.

The case of a strong vortex

We assume that the velocity along the cusp wall on the ventricular side is

u(x , t) = U(t)
(

1 +
x

l

)
. (65)

Thus the equation of motion on the ventricular side reads

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0. (66)

Substituting (65) into (66) we obtain

∂p

∂x
= −ρ

(
U̇ +

U2

l

)(
1 +

x

l

)
,

and integrating with respect to x

p = −
ρl

2

(
U̇ +

U2

l

)[( x

l

)2
+ 2

x

l

]
+ p0.
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The mechanics of mitral valve closure Bellhouse (1972) IV

The average pressure pv on the ventricular side of the cusp can be obtained as

pv =
1

l

∫ 0

−l

{
−
ρl

2

(
U̇ +

U2

l

)[( x

l

)2
+ 2

x

l

]
+ p0

}
dx = p0 +

1

3
ρl

(
U̇ +

U2

l

)
.

We can now compute the difference between the average pressures on the two sides of the cusp as

pv − pa =
1

3
ρ

(
U2 −

1

2
l U̇

)
. (67)

The case of a weak vortex

In order to understand the role of the vortex in the mechanics of the valve closure we now
consider the case of a very large ventricle. In this case we may assume that the pressure on the
ventricular side of the cusp is always equal to p0. With this assumption we can obtain

pv − pa = −
1

2
ρl U̇. (68)
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The mechanics of mitral valve closure Bellhouse (1972) V

Results
We consider the time law assumed by Bellhouse (1972) for the jet velocity:
U = U0(1− cos 2πft), with f frequency of the cardiac cycle (f =0.83 Hz and U0 = 0.6 m/s).
The results obtained from equations (67) and (68) are shown in the figure below.
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 0  0.2  0.4  0.6  0.8  1

t/tmax

Normalised time on the x-axis. Black curve: normalised velocity of the jet. Red curve: normalised (pv − pa) for

the case of a strong vortex. Blue curve: normalised (pv − pa) for the case of a weak vortex. The vertical black

lines indicate the times at which the red and blue curves change sign. l = 0.02 m.
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The mechanics of mitral valve closure Bellhouse (1972) VI

From the figure in the previous page it appears that in the case of “strong vortex” (red curve) the
average pressure the ventricular side of the cusp exceeds that on the atrial side from t ' 0.15 s,
and thus this is the time at which the valve starts closing. In the absence of vortex (blue curve)
the closure phase is significantly delayed (t ≈ 0.6).
The above predictions are in quite good agreement with experimental results obtained in–vitro by
Bellhouse (1972).
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The mechanics of the aortic valve

The aortic valve has three cusps attached to a circular ring of fibrous tissue at the base of the
ventricle. The valve can open to expose the full cross-section of the ascending aorta.

Immediately behind each cusp there is a rounded pouch in the aortic wall known as sinus of
Valsalva. From two of these sinuses branch the left and right coronary arteries.

Sketch of streamlines in the aortic root

at peak systole (upper plot) and

during valve closure (lower plot) (from

Caro et al., 1978).

As for the mitral valve, backflow into the ventricle after
aortic valve closure is very limited.

Measurements have shown the existence of a circulation in
the sinuses of Valsalva. It is not clear however, how much
this circulation contributes to valve functioning.

It is known from experimental and numerical work that a
vortex is generated behind each cusp during systole.

The entire mechanics of functioning of the aortic valve is
far from being understood even if there is increasing
numerical and experimental effort in this direction.
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Flow in the left ventricle I

The fluid dynamics in the human left ventricle can be synthesised as follows.

Flow entering the left ventricle versus

time.

The flow is primarily characterised by a strong compact jet
that enters the chamber through the mitral orifice during
the ventricular filling (diastolic phase).

The jet has two distinct pulses: the early-filling wave (E
wave), during ventricular relaxation, followed by the A
wave produced by the atrial contraction.

At the end of the diastole, the ventricle begins to contract
(systole), the mitral valve closes and the aortic valve
opens.

The diastolic entering jet has an almost irrotational core,
surrounded by a shear layer.

This shear layer rolls up soon and arranges into a
ring-shaped vortex structure that enters the cavity.

As the orifice is displaced with respect to the axis of the
cavity the jet is directed towards one wall.

Flow visualisations on a plane cutting the ventricle, show
the development of a persisting recirculation structure.
This forms due to the asymmetry of the flow.

Sketch of the physical problem (from

Pedrizzetti and Domenichini, 2005).
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Flow in the left ventricle II

The recirculation cells are thought to act as a reservoir that stores kinetic energy and
facilitates blood ejection during systole.

This suggests that flow asymmetry plays a role in reducing energy dissipation in the ventricle,
thus also reducing the work that the myocardial muscle has to do during the ejection phase.

Pedrizzetti and Domenichini (2005) developed a numerical model to verify the above arguments.

Working assumptions made by Pedrizzetti and Domenichini (2005)

The model is based on the direct numerical solution (DNS) on
the Navier Stokes equations.

The left ventricle is modelled as a half prolate spheroid with
moving walls. The geometry is then parametrised by the time
dependent functions

D(t) equatorial diameter;
H(t) major semiaxis.

These functions specify the ventricle volume V (t).

The valves are assumed to be circular and are either fully open
or closed depending on the sign of dV (t)/dt.

A given velocity profile is given on the equatorial plane in the
filling phase (dV (t)/dt > 0).

Geometry considered.

The parameter ε defines the displacement of the inflow jet with respect to the central axis.

The parameter σ defines the radius of the inflow jet.
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Flow in the left ventricle III

The exit profile (through the aorta) is also specified but has little influence on the solution.

Controlling dimensionless parameters

The flow is governed by the following dimensionless parameters:

β = D2
0/(νT ) Stokes number,

St = D0/(U0T ) Strouhal number,

ε/D0,

σ/D0,

where ν = 3× 10−6 m2/s is the viscosity of blood (modelled as a
Newtonian fluid), T is the heart beat period, D0 is a reference
length scale representative of the diameter of the mitral valve
and U0 is the peak inflow velocity.

Pedrizzetti and Domenichini (2005) made a study on the healthy
early-born child of ≈ 1 Kg of weight. This choice limits the
numerical requirements. In this case, D0 = 9.2 mm and T = 480
ms. The dimensionless numbers assume the following values:

β = 54,

St = 0.07,

ε/D0 = 0.125.

σ/D0 = 0.65 during the E wave and 0.45 during the A wave.

Geometry considered.

Time variation of H/D0 and D/D0.
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Flow in the left ventricle IV

Numerical results
The plots on the right are relative to the
end of the filling phase (diastole).

The jet head, initially a vortex ring, is
partly dissipated on the side closer to
the wall.

On the opposite side the vortex
occupies the centre of the cavity.

Essentially the asymmetry of the
position of the inlet flow with respect
to the central axis (ε) induces the
formation of a large ventral vortex
which dominates the entire flow field.

The circulating flow at the end of
diastole naturally invites the flow
towards the opening of the aortic valve.

This suggests that the natural
asymmetry of flow arrangement
facilitates the ejection phase.

(a) Velocity vectors and contour lines of vorticity on the

vertical symmetry plane. In the vorticity contour lines black

is clockwise rotation, grey counter-clockwise rotation. (b)

Iso surface of the scalar indicator λ2, whose negative

extremes correspond to the trace of coherent vortexes.
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Flow in the left ventricle V

Numerical results

The importance of the eccentricity of the jet
can be tested by displacing artificially its
position.

If the value of ε/D0 is very small (a) the
vortex ring survives and, on a vertical
cross-section, an approximately
symmetrical vortex pair is still clearly
visible at the end of the filling phase.

This flow arrangement induces a weak
backflow towards the aortic valve.

If the value of ε/D0 is larger than normal
(b) the jet is strongly redirected towards
the lateral wall, and the vortex head on
that side closely interacts with the wall
boundary layer. This effect is expected to
increase energy dissipation.

In this case backflow toward the aorta
also appears to be weaker than in the
physiological case.

Velocity vectors and contour lines of vorticity on the

vertical symmetry plane at the end of diastole. (a)

ε/D0 = 0.02, (b) ε/D0 = 0.25.
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Flow in the left ventricle VI

Calculation of the energy dissipation during diastole

The time evolution of the total
dimensionless power dissipated by viscous
effects can be computed as

P(t∗) =
T 3

ρD5
0

∫
V (t∗)

σ : edV ,

with t∗ = t/T dimensionless time, σ stress
tensor and e rate of deformation tensor.
The function P(t∗) is shown for different
values of ε/D0 in the figure.

During the initial stage of the diastolic
filling (t/T / 0.35) all curves are very
close to each other. There is only a
slightly higher dissipation for
ε/D0 = 0.25 due to early interaction of
the vortex ring with the wall.

Dimensionless power dissipated by viscous effects P as

a function of t/T , for different values of ε/D0.

In the interval (0.35 / t/T / 0.5), before ejection starts, differences are more evident.

The physiological case ε/D0 = 0.125 shows low values of energy dissipation.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 138 / 335



The cardiovascular system The heart

Flow in the left ventricle VII

Calculation of the energy dissipation during diastole

The total energy dissipation during filling
and until the peak of ejection, which occurs
at time t∗sys = tsys/T = 0.57, can be
computed as

I(t∗) =

∫ t∗sys

0
P(t∗)dt∗.

The figure shows that the lowest value of
energy dissipation corresponds to
physiological conditions. Dimensionless energy dissipation I for different values

of ε/D0.

Conclusions

The flow pattern in the left ventricle in physiological conditions is such as to minimise energy
dissipation.

This reduces the work of the heart muscle at every cardiac cycle.
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Some films I

All films are courtesy of Gianni Pedrizzetti (University of Trieste) and Federico Domenichini
(University of Florence).

Swirling flow in the heart (ultrasound scan)

Beating heart (live)

Longitudinal cross-section (ultrasound scan)

Transverse cross-section (ultrasound scan)

Reconstruction of the wall movement - longitudinal cross-section

Reconstruction of the wall movement - transverse cross-section

Axisymmetric numerical simulation

Three-dimensional numerical simulation (ε = 0.02)

Three-dimensional numerical simulation (ε = 0.125)

Three-dimensional numerical simulation - λ2 (ε = 0)

Three-dimensional numerical simulation - λ2 (ε = 0.125)

Three-dimensional numerical simulation, full cycle (ε = 0.125)

Three-dimensional numerical simulation, full cycle - λ2 (ε = 0.125)

Motion of the left ventricle wall in a healthy heart

Motion of the left ventricle wall in a infarcted heart

Numerical simulation of the flow in a healthy left ventricle
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Some films II

Numerical simulation of the flow in a infarcted left ventricle

Numerical simulation of the flow in a healthy left ventricle - λ2

Numerical simulation of the flow in a infarcted left ventricle - λ2

PIV measurements in the left ventricle

PIV measurements in the left ventricle of an infarcted heart

Vortex shedding during the opening of a single leaflet valve

Vortex shedding during the opening of a double leaflet valve (leaflets with very different
length)

Vortex shedding during the opening of a double leaflet valve (leaflets with similar length):
suppression of shedding from the longer leaflet
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The cardiovascular system:
the systemic arteries
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Anatomical introduction I

Figure: Main arterial vessels in the human
body.

In this chapter we study flow characteristics in the
systemic arteries, focusing our attention on large
vessels. We therefore do not consider here neither
pulmonary arteries nor the microcirculation.

More specifically, from the fluid dynamic point of
view, we may distinguish in the systemic arterial
system, vessels in which

flow is dominated by inertia, i.e. Re = Ud/ν is
quite large (with U characteristic velocity, d
vessel diameter and ν blood kinematic viscosity);

flow in which inertia is negligible and viscous
effects dominate, i.e. Re � 1.

We will focus our attention to the first case, in which
viscous effects are not very important.
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Anatomical introduction II

Structure of the arterial walls

Histological section of an arterial wall (from Ethier and

Simmons, 2007).

The artery wall is a three-layered structure.

Tunica intima. The innermost layer is
called tunica intima and in a healthy artery
is just a few micrometres thick. It consists
of endothelial cells and their basal lamina.
Endothelial cells act as a barrier between
blood and the artery wall.

Tunica media. The middle layer is known
as tunica media and is separated from the
intima by a thin elastic surface, called
internal elastic lamina. From the
biomechanics point of view the media is the
most important layer as it determines the
elastic properties of the arterial wall. It
mainly contains:

smooth muscle cells;

elastin;

collagen;

proteoglycans.
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Anatomical introduction III

Structure of the arterial walls

Histological section of an arterial wall (from Ethier and

Simmons, 2007).

In the tunica media smooth muscle cells are
oriented circumferentially and have strong
influence on arterial stiffness.

Collagen is also oriented largely circumferentially
with a slight helical pattern.

The relative proportion of elastin to collagen
changes with position in the vascular tree and
decreases moving away from the heart.
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Anatomical introduction IV

Structure of the arterial walls

Histological section of an arterial wall (from Ethier and

Simmons, 2007).

Tunica adventitia. This layer is separated
by the media by the outer elastic lamina.
The adventitia is a loose connective tissue
that contains

collagen;
nerves;
fibroblasts;
some elastic fibres.

In some arteries it also contains a vascular
network, known as vasa vasorum, which
provides nutrition to the outer regions of
the artery wall.
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Anatomical introduction V

The branching network

Diagrammatic representation of the major

branches in the dog (from Caro et al., 1978).

Cast of the dog aorta (from Caro et al., 1978).

The aorta originates from the left ventricle. The very first
part, for a length of a few centimetres, after the Valsalva
sinuses, is almost straight and ascending (ascending
aorta).
A complicated three-dimensionally curved reach follows
(aortic arch), characterised by a ≈180◦ angle. In
correspondence of the aortic arch the brachiocephalic, left
common carotid, and left subclavian arteries branch off
the aorta, carrying blood to the head and upper limbs.
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Anatomical introduction VI

The branching network

Diagrammatic representation of the major

branches in the dog (from Caro et al., 1978).

The aorta then follows a fairly straight and long course
down to the abdomen (descending aorta). Along this
reach several arteries branch off the aorta.

Low down in the abdomen the aorta terminates by dividing
into the iliac arteries which supply the inferior limbs.

Along its length the aorta tapers. The decrease of the
aorta diameter can be described quite accurately with the
following law

A = A0 exp

(
−

Bx

R0

)
,

where A is the vessel cross-section area, A0 and R0 are the
area and radius at the upstream site, x is the distance
from that upstream site and B is the taper factor. Typical
values for B range between 0.02 and 0.05.
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Anatomical introduction VII

Tapering of the aorta

Change in diameter and cross-section area of the canine aorta (from Caro et al., 1978).
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Anatomical introduction VIII

Total cross-sectional area of the arterial bed

Diagram showing that the cross-section area of the vascular bed

grows peripherally (from Caro et al., 1978).

Individual arteries typically taper,
however, the total cross-sectional area
of the arterial bed increases with
distance from the heart.

If we define the branching ratio as
(A2 + A3)/A1, with subscripts 2 and 3
indicating the two daughter vessels
and 1 the parent one we find strong
variations within the human body, with
values ranging between 0.79 to 1.29.
We will see that this ratio influences
the reflection properties of waves
reaching a bifurcation point.
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Anatomical introduction IX

The branching network

Geometric characteristics of the main vessels in the human body (from Ethier and Simmons, 2007).
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The transmural pressure I

The pressure in the systemic arteries fluctuates in time due to the pumping action of the heart.

Simultaneous record of pressure and

diameter of the aorta during a cardiac cycle

(from Caro et al., 1978).

A typical example is reported on the left.

The pressure is clinically measured using a device named
sphygmomanometer.
Some conventions are customary in measuring arterial
blood pressure.

Pressure is measured in mm Hg. Even if this is not
the SI unit for the pressure we will make use of it.

Blood pressure is always referred to the atmospheric
pressure. It is normally considered that out of the
arterial wall, i.e. in all tissues of the body, the
pressure is equal to the atmospheric one.

The transmural pressure p (relative to the atmospheric pressure patm) is defined as

p − patm = pi − po ,

with pi pressure inside the vessel and po pressure outside of it. If po = patm as assumed above we
simply have

p = pi .

The transmural pressure is of great importance in the study of stress in arterial walls.
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The transmural pressure II

Mean arterial and venous pressure in the

human body (from Caro et al., 1978).

Gravity influences significantly the transmural pressure. In
fact we can distinguish two different contributions to the
transmural pressure:

hydrostatic pressure −γz, with z vertically directed
coordinate with origin at the level of the right atrium
(where the pressure is approximately equal to the
atmospheric one);

dynamic pressure P (sometimes referred to as excess
pressure), which is due the pumping action of the
heart.

We can thus write
p = P − γz,

The hydrostatic contribution can be negative (for instance
if we raise our hand above the heart level). The dynamic
contribution is obviously always positive.

In arteries the transmural pressure p is always positive
(arteries cannot collapse).

In veins the transmural pressure p can be negative
because P is quite small. Veins can therefore
collapse.
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Relationship between transmural pressure and cross-sectional area I

Tension on the wall

The transmural pressure p can be easily related
to the tension T on the wall if we assume:

circular cross-section;

infinitely long tube (we neglect side effects);

constant diameter.

homogeneous, isotropic and thin wall.

In this case we get

T =
pR

t
,

where R is the radius of the section and t the
wall thickness. This is known as law of Laplace.
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Relationship between transmural pressure and cross-sectional area II

Pressure-radius relationship in real arteries

Pressure-radius relationship for the carotid artery of the

rat. Each curve refers to a different condition of the

vascular smooth muscle (VSM). (◦) fully relaxed VSM,

(∗) normal VSM, (�) maximally contracted VSM

(from Ethier and Simmons, 2007).

The arterial wall demonstrates a highly
non-linear stress-strain behaviour.

In the figure on the left results from a static
inflation test on an excised artery are shown. For
a linearly elastic, thin-walled vessel undergoing
small deformations a linear pressure-radius
relationship is expected.

The figure shows that real arteries experience
significant stiffening as the lumenal pressure
grows.

This reflects the strain-stiffening behaviour of
the collagen and elastin contained in the arterial
wall.
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Relationship between transmural pressure and cross-sectional area III

Pressure-area relationship for negative and positive transmural
pressure

Behaviour of an elastic tube for changing values of the transmural pressure.
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Wave propagation in arteries I

Blood dynamics in vessels is not controlled by the transmural pressure but by spatial variations of
the dynamic (or excess) pressure P. It is indeed the gradient of the dynamics pressure which
drives the flow (see discussion at page 35).

Therefore, P is often simply referred to as blood pressure. A scheme of the distribution of P in
the systemic circulation is shown below.

Dynamic pressure and its mean level in the arterial

circulation (from Caro et al., 1978).

The time-averaged pressure decreases moving
away from the heart due to viscous dissipation.
Pressure drop mainly occurs in small vessels.

The pressure unsteadiness progressively
decreases as the vessel size decreases.

Here we are mainly concerned with what
happens in large arteries, where the pressure and
the flow still fluctuate in time.

Note the growth of the amplitude of
fluctuations along the aorta. This is inherently
related to the characteristics of wave propagation
that will be dealt with in the following.
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Wave propagation in arteries II

Pressure wave

We first examine the pressure wave.

Pressure versus time in (a) the left ventricle and the aorta and (b) at different sites along the aorta (from Caro

et al., 1978).
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Wave propagation in arteries III

Pressure wave form

We now analyse in detail the different wave forms at different sites along the aorta.

Pressure versus time at different sites in along the aorta

(from Caro et al., 1978).

The wave changes form.

It steepens and increases its amplitude.
Thus the systolic pressure increases with
distance from the heart.

The amplification process continues (in the
dog) up to the third generation of branches
(with a diameter of approximately 1-2 mm).

Thereafter, both the oscillation and the
mean pressure decrease.

The mean pressure steadily decreases with distance from the heart even if this is hard to see
from the above figure.
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Wave propagation in arteries IV

Changes of the cross-sectional area

As the pressure wave passes through a cross-section the cross-sectional area also changes due to
the compliance of the vessel wall.

Simultaneous records of pressure and diameter of the aorta during a cardiac cycle (from Caro et al., 1978).
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Wave propagation in arteries V

Flow wave

As the pressure and its gradient fluctuate in time the flow also does. Therefore the flow in large
arteries is unsteady.

Simultaneous records of pressure and flow in the ascending aorta (from Caro et al., 1978).

Forward motion in the ascending aorta starts after the aortic valve opens;

the velocity rises very rapidly to a peak;

then it falls off more slowly;

there is a short phase of backward flow before the complete closure of the aortic valve.

Pressure and flow waveforms are similar in the systolic phase and are clearly different during
diastole.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 161 / 335



The cardiovascular system The systemic arteries

Wave propagation in arteries VI

Pressure and flow waves

Records of pressure and velocity at different sites of the arterial system (from Caro et al., 1978).
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Wave propagation in arteries VII

Pressure and flow waves

Simultaneous records of pressure and velocity at different sites in the human arterial system (from Ethier and

Simmons, 2007).
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The Windkessel model I

Formulation of the problem

The simplest possible model of the arterial flow is based on a 0-dimensional schematisation of the
system. The arterial system is described as a compliant reservoir in which a blood flux Qh enters
from the heart and from which a blood flux Q exits to the venous system.
In 0-dimensional models there is not spatial description of the arterial network. This implies that
wave propagation can not be described. The model was originally proposed by Otto Frank in
1899 and it is known as windkessel model (in German windkessel means air chamber).

a

Scheme of the windkessel model.

If the arterial system consisted of a single long, straight
tube the volume flux Q through it (= Qa) could be
expressed, according to Poiseuille law (62), as

Q =
Pa − Pv

R
,

with Pa pressure in the arterial system (just downstream
of the heart) and Pv pressure in veins, and with R a
constant resistance ([R] =L−4 T−1 M).

In the windkessel model this approach is adopted, and since Pv ≈ 0, we may write

Pa ≈ RQ. (69)
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The Windkessel model II

The arterial system is considered compliant and its volume V is related to the arterial pressure by
the following relationship

Pa = V /C , (70)

where C is a constant compliance ([C ] = L4T 2M−1).
In 0-dimensional models there is no equation of motion and only the conservation of mass is
imposed. In this case the continuity equation can be written as

dV

dt
= Qh − Q, (71)

where Qh denotes the flux ejected by the heart into the arterial system and Q is the flux from the
arterial system to veins. Note that Q does not need be equal to Qh because of the compliance of
the arterial system (which implies that V (t) depends on time). Substituting (69) and (70) into
(71) we obtain

dV

dt
= Qh −

V

RC
. (72)
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The Windkessel model III

Solution
Equation (72) is easily solved once Qh is known.

Diastolic phase

During diastole Qh = 0 and we get

V (t) = c exp

(
−

t

RC

)
⇒ Pa(t) =

c

C
exp

(
−

t

RC

)
,

with c constant. This predicts an exponential decay in time of the arterial pressure. Such
behaviour is quite closely satisfied in practise.

Systolic phase

The general solution of equation (72) is

V (t) =

[∫
Qh(t) exp

(
t

RC

)
dt + c

]
exp

(
−

t

RC

)
.

Note, however that during systole Q = V /RC is very small (� Qh) and, at leading order,
equation (72) implies

dV (t)

dt
∝ Qh ⇒

dPa(t)

dt
∝ Qh.

Experimental observations show, however, that it is Pa to be approximately proportional to
Qh.
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The Windkessel model IV

In conclusion, the Windkessel model reproduces fairly well the pressure decay during diastole
but is unable to correctly model the systolic phase.
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Analytical solutions of the flow in a straight pipe I

We now consider various analytical solutions of unidirectional pipe flows relevant for the flow in
arteries.

Axisymmetric Poiseuille flow

Let us now consider a steady, fully developed flow in a
straight pipe with circular cross-section of radius R. Let
the pipe axis be in the z direction and let the flow be
axisymmetric. In cylindrical coordinates (z, r , ϕ) the
velocity vector takes the form u = [u(r), 0, 0], with u
velocity component in the z direction. The flow is
generated by a constant pressure gradient in the z
direction, which we denote by dp/dz = −χ, with χ > 0.

The Navier-Stokes equation in the r direction reads

d2u

dr2
+

1

r

du

dr
= −

χ

µ
, ⇒

1

r

d

dr

(
r

du

dr

)
= −

χ

µ
. (73)

The above equation has to be solved subjected to the no-slip boundary condition at r = R and a
regularity condition in r = 0.
We then have

r
du

dr
= −

χ

2µ
r2 + c1, ⇒ u = −

χ

4µ
r2 + c1 log r + c2.
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Analytical solutions of the flow in a straight pipe II

Regularity at r = 0 imposes c1 = 0. Moreover, enforcing the no-slip boundary condition yields

c2 =
χ

4µ
R2. The solution is

u =
χ

4µ

(
R2 − r2

)
. (74)

This is known as Poiseuille flow. The velocity profile is a paraboloid. The volume flux Q is given
by

Q =

∫ R

0

∫ 2π

0
urdϕdr =

χπ

8µ
R4. (75)

Written in cylindrical coordinates (z, r , ϕ) the stress tensor σ for this flow field takes the form

σ =


0 µ

du

dr
0

µ
du

dr
0 0

0 0 0

− pI.

Then, noting that the unit vector normal to the wall is n = (0, 1, 0)T , we easily compute the
tangential stress τ on the wall, which reads

τ = −
χR

2
.
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Analytical solutions of the flow in a straight pipe III

Transient flow in a pipe
We now consider the transient flow generated in a pipe by a sudden imposition on a constant
pressure gradient ∂p/∂z = −χ at the time t = 0. We assume that the fluid is at rest for t < 0.
Thus we now need to solve

∂u

∂t
−
χ

ρ
− ν

(
∂2u

∂r2
+

1

r

∂u

∂r

)
= 0, (76)

subject to the conditions

u = 0 (r = R),

regularity (r = 0),

u = 0 (t < 0)

For long times the solution should tend to the steady Poiseuille solution, which satisfies
equation (73).
To compute the solution, taking advantage of the linearity of the governing equation, we
decompose it into a the Poiseuille flow profile us and a transient profiles ut that decays at long
times:

u(r , t) = us (r) + ut (r , t), (77)

where
us =

χ

4µ

(
R2 − r2

)
.
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Analytical solutions of the flow in a straight pipe IV

Substituting (77) into (76) we find the following homogeneous equation for ut

∂ut

∂t
− ν

(
∂2ut

∂r2
+

1

r

∂ut

∂r

)
= 0. (78)

We seek a separate variable solution in the form

ut (r , t) =
∞∑

n=1

cnφn(r)ψn(t), (79)

where cn are constant coefficients. Substituting into (78) we obtain

∞∑
n=1

cnφn(r)ψn(t)

[
1

ψn(t)

dψn(t)

dt
−

ν

φn(r)

(
d2φn(r)

dr2
+

1

r

dφn(r)

dr

)]
= 0.

Since the first term within the square brackets is only a function of time and the second only of
space, for the above equation to be satisfied for each values of t and r it must be

1

ψn

dψn

dt
=

ν

φn

(
d2φn

dr2
+

1

r

dφn

dr

)
= −νb2

n,
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Analytical solutions of the flow in a straight pipe V

where on the right hand side of the second equality b2
n are positive constants, ν has been

introduced for convenience of the following calculations and the minus sing is needed for ut to be
a decaying function in time.
We thus need to solve the two following ordinary differential equations

dψn

dt
+ νb2

nψn = 0, (80)

d2φn

dr2
+

1

r

dφn

dr
+ b2

nφn = 0. (81)

Equation (80) is easily solved and the solution reads

ψn(t) = exp(−νb2
nt), (82)

which shows that the transient component of the velocity decays exponentially in time. Note
that we do not include in the above expression the constant of integration as is would be
absorbed in the us component of the velocity.
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Equation (81) can be conducted to the Bessel equation, discussed in Appendix 8.
Substituting into equation (142) bnr to x we obtain the solution

φn(r) = J0(bnr). (83)

We note that we have discarded the solution Yo (bnr) since it does not satisfied the regularity
condition at the origin.
In order to impose the boundary condition at the wall (r = R) we need to impose

φn(R) = J0(bnR) = 0.

In other words bnR = αn has to be a root of the Bessel function J0. These roots are easily
determined numerically and the first 6 are reported below

α1 = 2.4048 α2 = 5.5201 α3 = 8.6537
α4 = 11.7915 α5 = 14.9309 α6 = 18.0711

Substituting (82) and (83) into (79) we obtain

ut (r , t) =
∞∑

n=1

cnJ0

(αnr

R

)
exp

(
−
α2

nνt

R2

)
.

An estimate of the time T required for the transient flow is given by T ≈ R2/[min(α2
n)ν].
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Example

Let us consider a large artery, so that R = 0.01 m. Assuming, ν = 3× 10−6 m2/s,
min(αn) = α1 = 2.4048.
In this case we obtain T ≈ 5.8 s, which is much larger that the time scale of the cardiac beat.

Let us consider a small artery, so that R = 5× 10−4 m. In this case we obtain T ≈ 0.01 s,
which is small compared to the time scale of the cardiac beat.
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We finally need to compute the coefficients cn by imposing the initial condition, i.e.

∞∑
n=1

cnJ0

(αnr

R

)
= −

χ

4µ

(
R2 − r2

)
. (84)

To this end we make use of the orthogonality properties of Bessel functions, i.e. equation (143).
Substituting x with r/R in (143) we obtain∫ R

0
rJn

(αi

R
r
)

Jn

(αj

R
r
)

dr =

{
R2

2
J2

n+1(αi ) if (i = j),
0 if (i 6= j).

Multiplying (84) by rJo (αm
R

r) on both sides and integrating with respect to r from 0 to R we
obtain

cm = −
χ

2µR2J2
1 (αm)

∫ R

0

(
R2 − r2

)
rJ0

(αm

R
r
)

dr = −
2R2χ

µα3
mJ1(αm)

.

Thus the solution for u reads

u =
χ

4µ

R2 − r2 − 8R2
∞∑

n=1

1

α3
n

J0

(αnr

R

)
J1(αn)

exp

(
−
α2

nνt

R2

) . (85)
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The solution (85) is reported in dimensionless form in the figure above at various times. Poiseuille solution is

also reported, in red.
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Womersley flow
We now consider the so called Womersley flow, i.e. the flow induced in a straight pipe by an
oscillatory pressure gradient.
We assume

χ(t) = χ̂e iωt + c.c.

where χ̂ is a constant.
We thus need to solve the following problem

∂u

∂t
−

1

ρ

(
χ̂e iωt + c.c.

)
− ν

(
∂2u

∂r2
+

1

r

∂u

∂r

)
= 0, (86)

subject to the conditions

u = 0 (r = R),

regularity (r = 0).

We seek a solution in the form
u(r , t) = û(r)e iωt + c.c. (87)

Substituting (87) into (86) and deviding throughout by e iωt we obtain the following ODE

iωû −
χ̂

ρ
− ν

(
d2û

dr2
+

1

r

dû

dr

)
= 0.
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Introducing the new variable s =
√
−iω/νr the above equation can be written as

s2 d2û

ds2
+ s

dû

ds
+ s2û + s2 iχ̂

ωρ
= 0. (88)

This is a linear non–homogeneous ODE, thus we can write the solution as

û = ûh + ûp ,

where uh is the solution of the associated homogeneous problem and up is a particular solution.
The associated homogeneous equation is Bessel equation (142) (with α = 0), therefore

ûh = c1J0(s) + c2Y0(s).

Upon substitution into (88) it is easily verified that the particular solution is

ûp = −
iχ̂

ωρ
.

Hence, moving back to the variable r , we have

û(r) = c1J0

(√
−iω

ν
r

)
+ c2Y0

(√
−iω

ν
r

)
−

iχ̂

ωρ
,
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In order for the solution to be bounded in r = 0 it must be c2 = 0. The other constant, c1, is
determined imposing the no slip condition at the wall. We define the Womersley number as

α =

√
ω

ν
R,

and find

c1 =
iχ̂

ρω

1

Jo
(√
−iα

) .
Therefore, the final expression for the solution is

u =
iχ̂

ρω

(
Jo
(√
−iαr/R

)
Jo
(√
−iα

) − 1

)
e iωt + c.c.

In dimensionless form the above expression reads

u∗ = i

(
Jo
(√
−iαr∗

)
Jo
(√
−iα

) − 1

)
e it∗ + c.c., (89)

where u∗ = u/[χ̂/(ρω)], R∗ = r/R, t∗ = ωt.
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The solution (89) is shown for different values of α.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 180 / 335



The cardiovascular system The systemic arteries

Characteristics of the flow in a curved pipe I

Arteries are seldom straight. In particular a lot of attention has been devoted to study flow
characteristics in the aortic arch. We now briefly describe the characteristics of a flow in a curved
pipe.

We assume that the flow is driven by a constant pressure gradient χ in the longitudinal
direction.

The flow is steady.

We assume for simplicity that the mean radius of curvature of the pipe R is constant.

In order for a fluid particle to travel along a curved trajectory with radius of curvature R
with a constant velocity u it must be acted on by a lateral force to give it a transverse
acceleration equal to u2/R.

This lateral force has to provided by a transverse pressure gradient.

The pressure gradient acting on all particles on a cross–section of the flow (a plane
orthogonal to the axis of the pipe) is approximately constant.

The velocity of fluid particles on the cross–section is not constant, owing to the no slip
condition at the pipe wall.

Therefore, particles in the centre of the cross-section will be drifted towards the outer wall of
the pipe and, similarly, particles close to the wall will be drifted towards the inner wall.

The result of this is the formation of two counter rotating vortices, known as Dean vortices.
Their formation was first explained theoretically by Dean (1928).

The streamlines on a cross–section associated with Dean vortices are shown in the figure in
the next page.
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Sketch explaining the formation of Dean vortices in a curved pipe.
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Introduction

In one-dimensional (1D) models the arterial circulation is described as a network of compliant
one-dimensional vessels. Along such vessels flux and pressure waves propagate, induced by the
cardiac pulse.

One-dimensional models are very powerful tools to study wave propagation in large arteries.

Examples

Propagation of a pressure wave through a bifurcation

Propagation of a pressure wave through a network of 55 arteries

Films courtesy of Jordi Alastruey-Arimon from Imperial College London (UK).
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General assumptions

We derive the 1D equations governing the flow in a compliant vessel.

We consider a system of cylindrical coordinates (z, r , ϕ), with corresponding velocity components
(u, v ,w) and unit vectors ez , er and eϕ. The main direction of flow is along ez .

The derivation of the equations presented below is based on the following assumptions.

Quasi unidirectional flow. Due to the shape of the domain the flow is predominantly in the
direction of the vessel axis. If R0 is the characteristic radius of the vessel and L its
characteristic length, we have R0/L = ε� 1.

Axial symmetry. We assume that all quantities describing the flow are independent of the
azimuthal coordinate ϕ and that the tube has a circular cross-section. The ϕ component of
the velocity (w) is also equal to zero.

Fixed axis of the cylinder. The axis of the cylinder is fixed and straight.

Radial displacements of the wall material points. The wall configuration is characterised by
the following equation

r = R(z, t) = R0(z) + η(z, t) (90)

where r = R0 is a reference configuration of the tube. We assume that each material point
of the wall just moves in the radial direction er , thus the displacement of a point of the wall
can be expressed as η = ηer .
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Definitions

We introduce the following definitions:

A(z, t) =

2π∫
0

R(z,t)∫
0

rdrdϕ cross-section area, (91)

Q(z, t) =

2π∫
0

R(z,t)∫
0

urdrdϕ volume flux (discharge), (92)

U(z, t) =
1

A

2π∫
0

R(z,t)∫
0

urdrdϕ = Q/A cross-sectionally averaged velocity, (93)

α =
1

AU2

2π∫
0

R(z,t)∫
0

u2rdrdϕ Coriolis coefficient,

where R(z, t) is the radius of the tube, which might depend on z and t.
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Three-dimensional formulation
In order to derive the one-dimensional governing equations we integrate the three-dimensional
equations over the cross-section.

The problem of the flow of a Newtonian fluid in a compliant vessel is governed by the
Navier-Stokes equations with suitable boundary conditions.

∇ · u = 0,

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P − ν∇2u = 0.

u =
∂η

∂t
, on Γw (94)

where Γw{(z, r , ϕ) : r = R(t, z), ϕ ∈ [0, 2π), z ∈ (0, L)} and

∂η

∂t
=
∂η

∂t
er .

In the above equations P is the dynamic pressure, defined be equation (14).
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The axisymmetric continuity equation and the z-component of the Navier-Stokes equation in
cylindrical coordinates read (see section 7)

∂u

∂z
+

1

r

∂

∂r
(rv) = 0, (95)

∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
= −

1

ρ

∂P

∂z
+ 2ν

∂2u

∂z2
+
ν

r

∂

∂r

[
r

(
∂v

∂z
+
∂u

∂r

)]
. (96)

Note that this expression for the viscous term can be obtained by summing to ∇2u the derivative
with respect to z of the continuity equation.
As the flow is quasi unidirectional the Navier-Stokes equation in the radial direction just states
that the pressure is approximately constant on planes orthogonal to z. In the following we will
assume that P is constant on each cross-section.
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Leibniz rule

The following rule will be widely employed for the integration of the above equations:

b(z)∫
a(z)

∂f (x , z)

∂z
dx =

∂

∂z

b(z)∫
a(z)

f (x , z)dx − f (b, z)
∂b(z)

∂z
+ f (a, z)

∂a(z)

∂z
.
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Continuity equation
We integrate first the continuity equation.

2π∫
0

R(z,t)∫
0

∂u

∂z
rdrdϕ+

2π∫
0

R(z,t)∫
0

∂(rv)

∂r
drdϕ =

= 2π
∂

∂z

R(z,t)∫
0

urdr − 2π�����
(ur)|r=R

∂R

∂z
+ 2π(vr)|r=R − 2π����(vr)|r=0 = 0.

Using (92) and (94) the above equation can be rewritten as

∂Q

∂z
+ 2πR

∂η

∂t
= 0. (97)

Recalling (90) we have
A = π(R0 + η)2,

from which
∂A

∂t
= 2π(R0 + η)

∂η

∂t
= 2πR

∂η

∂t
.
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Substituting the above expression into (97) we obtain

∂Q

∂z
+
∂A

∂t
= 0. (98)
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Navier-Stokes equation
We now take the average of the Navier-Stokes equation (96). It is first convenient to add to the
convective terms the continuity equation (95) multiplied by u. We thus get

∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
+ u

∂u

∂z
+

u

r

∂

∂r
(rv) = −

1

ρ

∂P

∂z
+ 2ν

∂2u

∂z2
+
ν

r

∂

∂r

[
r

(
∂v

∂z
+
∂u

∂r

)]
.

The convective term can now be written as

2u
∂u

∂z
+ v

∂u

∂r
+

u

r

∂

∂r
(rv) = 2u

∂u

∂z
+ v

∂u

∂r
+

uv

r
+ u

∂v

∂r
=
∂u2

∂z
+
∂uv

∂r
+

uv

r
,

and we get

∂u

∂t︸︷︷︸
1©

+
∂u2

∂z︸︷︷︸
2©

+
∂uv

∂r︸︷︷︸
3©

+
uv

r︸︷︷︸
4©

= −
1

ρ

∂P

∂z︸ ︷︷ ︸
5©

+ 2ν
∂2u

∂z2︸ ︷︷ ︸
6©

+
ν

r

∂

∂r

[
r

(
∂v

∂z
+
∂u

∂r

)]
︸ ︷︷ ︸

7©

.

We now take the average of each term separately.

1© :

2π∫
0

R(z,t)∫
0

∂u

∂t
rdrdϕ = 2π

∂

∂t

R(z,t)∫
0

urdr − 2π�����
(ur)|r=R

∂R

∂t
=
∂Q

∂t
=
∂AU

∂t
. (99)
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2© :

2π∫
0

R(z,t)∫
0

∂u2

∂z
rdrdϕ = 2π

∂

∂z

R(z,t)∫
0

u2rdr − 2π�����
(u2r)|r=R

∂R

∂z
=
∂αU2A

∂z
. (100)

3© :

2π∫
0

R(z,t)∫
0

∂uv

∂r
rdrdϕ = 2π

 R(z,t)∫
0

∂uvr

∂r
dr −

R(z,t)∫
0

uvdr

 =

= 2π����(uvr)|r=R − 2π����(uvr)|r=0 − 2π

R(z,t)∫
0

uvdr . (101)

4© :

2π∫
0

R(z,t)∫
0

uvdrdϕ = 2π

R(z,t)∫
0

uvdr = − 3©. (102)
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5© : −
1

ρ

2π∫
0

R(z,t)∫
0

∂P

∂z
rdrdϕ = −

2π

ρ

∂

∂z

R(z,t)∫
0

Prdr +
2π

ρ
(Pr)|r=R

∂R

∂z
=

= −
1

ρ

∂PA

∂z
+

2π

ρ
PR

∂R

∂z
=

= −
P

ρ

∂A

∂z
−

A

ρ

∂P

∂z
+

P

ρ

∂(πR2)

∂z
= −

A

ρ

∂P

∂z
. (103)

6© : 2ν

2π∫
0

R(z,t)∫
0

∂2u

∂z2
rdrdϕ = 4πν

∂

∂z

R(z,t)∫
0

∂u

∂z
rdr − 4πνR

(
∂u

∂z

)
|r=R

∂R

∂z
. (104)

7© : ν

2π∫
0

R(z,t)∫
0

∂

∂r

(
r
∂v

∂z
+ r

∂u

∂r

)
drdϕ = 2πνR

(
∂v

∂z
+
∂u

∂r

)
|r=R . (105)

6©+ 7© : 4πν
∂

∂z

R(z,t)∫
0

∂u

∂z
rdr + 2πνR

(
−2

∂u

∂z

∂R

∂z
+
∂v

∂z
+
∂u

∂r

)
|r=R . (106)
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In order to understand the meaning of the terms computed at r = R in (106) we evaluate the z
component of the viscous stress at the wall. The unit normal to the wall n = (nz , nr , 0) can be
written as

n = (−∂R/∂z, 1, 0) /|n|.

Since ∂R/∂z = O(R0/L)� 1 we have that |n| = 1 +O(ε2) with ε = R0/L. Neglecting order ε2

or smaller terms, the viscous stress at the wall is given by the vector

tv = d · n =

(
−
∂R

∂z
dzz + dzr ,−

∂R

∂z
dzr + drr , 0

)
,

with d the deviatoric part of the stress tensor (see (25)). Thus the component τ in the z
direction is given by

τ = tv · ez = −
∂R

∂z
dzz + dzr .

In our cylindrical coordinate system we have

dzz = 2µ
∂u

∂z
, dzr = µ

(
∂v

∂z
+
∂u

∂r

)
.

Thus we obtain

τ = −2µ
∂R

∂z

∂u

∂z
+ µ

(
∂v

∂z
+
∂u

∂r

)
,
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which has to be computed in r = R. Note that 2πRτ/ρ is the term computed at the wall
appearing in (106), and 2πRτ is the total viscous stress acting on the boundary of the
cross-section.
Note that u = O(U0) and v = O(εU0), thus

2
∂R

∂z

∂u

∂z
≈
∂v

∂z
= O(R0U0/L2) = O(ε2U0/R0),

∂u

∂r
= O(U0/R0).

Therefore:

τ = µ
∂u

∂r
+O(ε2).

Let us now consider the integral term appearing in (106). It is a cross-sectionally averaged normal
viscous stress due to longitudinal variations of u.

4πν
∂

∂z

R(z,t)∫
0

∂u

∂z
rdr ≈ νε2U0.

This term is also typically very small and is normally disregarded in one-dimensional models.
The one-dimensional momentum equation can therefore be written, using (99), (100), (101),
(102), (103), (104), (105), (91), (92) and (93) as

∂Q

∂t
+

∂

∂z

(
αQ2

A

)
+

A

ρ

∂P

∂z
−
τB

ρ
= 0, (107)
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where B = 2πR is named wet perimeter.
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Velocity distribution in the cross-section

The determination of α and τ in (107) requires the knowledge of the velocity distribution on the
cross-section u(r).

Poiseuille profile
A possible choice for the profile u(r) is the parabolic profile predicted by Poiseuille law.

u(r) = 2U

(
1−

r2

R2

)
.

Such profile corresponds to the steady solution in the circular tube with constant diameter.
In this case it is immediate to verify that α = 4/3.

Power law
A profile which is often used for blood flow in arteries is a power law of the following form

u(r) = γ−1(γ + 2)U
[
1−

( r

R

)γ]
,

with γ typically equal to 9 (note that the above relationship reduces to the parabolic profile
for γ = 2).
In this case we have α = 1.1.

Note that the choice α = 1 implies that the velocity profile is considered flat on the cross-section.
This assumption, which is invariably made in turbulent flows is not really justified in the laminar
case.

Finally, once the expression for u(r) is known, it is immediate to compute the term τB/ρ in (107).
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Tube law

The system given by equations (98) and (107) has three unknowns: Q, A and P. A further
equations is therefore required to solve the problem.

Such equation has to account for the wall properties by establishing a relationship between
pressure and vessel cross-sectional area.

A complete mechanical model for the structure of the vessel wall would provide a differential
equation linking the wall displacement and its spatial and temporal derivatives to the force
applied by the fluid.

Here we adopt a simplified approach which is based on the following assumptions:

the inertia of the wall is negligible;

the wall is elastic;

the tube is cylindrical.
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The one-dimensional model XVII

Under the above assumptions the wall mechanics is described by the following simple equation

P = β0

√
A−
√

A0

A0
, (108)

with

β0 =

√
πh0E

1− ζ2
,

where E is the Young modulus, ζ the Poisson coefficient (equal to 1/2 for an incompressible
solid), h0 the wall thickness and A0 = πR2

0 .
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One-dimensional linear inviscid model I

The analysis that follows is based on Pedley (2000).

Simplifying assumptions

We now consider the following simplifying assumptions.

Inviscid fluid. Thus we neglect the viscous term τB/ρ in (107).

α = 1.

Infinitely long straight elastic tube with uniform undisturbed cross-section A0.

Fluid initially at rest.

Small disturbances.

Tube law of the form P = P̃(A), e.g. (108).

The governing equations (98) and (107) can be written in term of A, P and U as

∂A

∂t
+
∂UA

∂z
= 0, (109)

∂U

∂t
+ U

∂U

∂z
+

1

ρ

∂P

∂z
= 0. (110)
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One-dimensional linear inviscid model II

Linearisation

We consider small disturbances of the pressure and cross-sectional area for which U is small (in a
sense specified later). Therefore, we set

A = A0 + A′, P = P0 + P′, (111)

where |A′| � A0 and |P′| � P0. Recalling that the tube law establishes a relationship of the
form P = P̃(A), we can write

P = P̃(A0) +
dP̃

dA

∣∣∣∣∣
A0

A′, (112)

from which we obtain

P′ =
dP̃

dA

∣∣∣∣∣
A0

A′. (113)

Substituting (111) and (113) into (109) and (110) and neglecting nonlinear terms in the small
quantities we obtain

∂A′

∂t
+ A0

∂U

∂z
= 0, (114)

∂U

∂t
+

1

ρ

dP̃

dA

∣∣∣∣∣
A0

∂A′

∂z
= 0. (115)
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One-dimensional linear inviscid model III

Subtracting the derivative of (115) with respect to t multiplied by A0 from the derivative of
(114) with respect to z we obtain

∂2A′

∂t2
= c2(A0)

∂2A′

∂z2
, (116)

where

c2(A) =
A

ρ

dP̃

dA
.

Equation (116) is the well known D’Alambert equation or wave equation. Note that c has the
dimensions of a velocity ([c] = LT−1).
Using (113) equation (116) can also be written in terms of the pressure disturbance P′ as

∂2P′

∂t2
= c2(A0)

∂2P′

∂z2
. (117)

Equations (116) and (117) describe the propagation of small-amplitude waves in both directions
along the tube with celerity c0 = c(A0). The general solution of (117) is

P′(z, t) = f+

(
t −

z

c0

)
+ f−

(
t +

z

c0

)
.
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One-dimensional linear inviscid model IV

From equation (108) one immediately derives the following expression for the wave celerity

c0 =

√
Eh0

ρ(1− ζ2)d0
, (118)

with d0 unperturbed vessel diameter. This is known as Moens-Korteveg wave speed.
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One-dimensional linear inviscid model V

Example
Data for the ascending aorta:

vessel diameter d0 = 1.5× 10−2 m;

wall thickness h0 = 0.065× 10−2 m;

blood density ρ = 10−3 Kg/m3;

Young’s modulus of the vessel E = 4.8× 105 N/m2;

Poisson’s coefficient of the vessel ζ = 0.5;

Measured wave-speed = 5 m/s.

From equation (118) we obtain c0 = 5.3 m/s.
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One-dimensional linear inviscid model VI

Comments on the validity of the linearised model

The derivation of equation (116) was based on the following assumptions:

that the pressure wave amplitude be small compared to the mean value;

that the fluid velocity be small (in some sense).

In humans the mean blood pressure in large arteries (relative to the atmospheric pressure) is
about 100 mmHg and varies from ≈ 80 to ≈ 120 mmHg. Therefore, the wave amplitude to mean
value ratio is about 0.2, which is reasonably small for the first assumption to be valid.

Let us now consider the second assumption, in order to specify what we mean with “small
velocity”. If we assume that the solution of the linear wave problem is U = f (t − z/c) and we
substitute this expression into the non-linear term in equation (110) we find that the latter is
negligible with respect to ∂U/∂t if U/c � 1. Since in the ascending aorta c ≈ 5 m/s and
max(U) ≈ 1 m/s, it follows that nonlinearity is expected to be weak and the second assumption
listed above also approximately holds.
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One-dimensional linear inviscid model VII

In conclusion, we can make the following remarks.

In terms of wave speed the agreement between measured data and theoretical predictions is
quite good.

However, the model predicts that the wave propagate without changing its shape, which is
not observed in experiments. In particular the model is unable to predict wave steepening.

The model predicts a constant wave speed whereas measurements suggest that the wave
speed increases with pressure.

The model predicts a velocity wave with the same shape and speed as the pressure wave. In
fact if we assume a pressure wave of the form

P′ = Pf

(
t −

z

c0

)
,

with P � P̃(A0), from the linearised version of (110) we obtain

U =
P

ρc0
f

(
t −

z

c0

)
.
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One-dimensional linear inviscid model VIII

Dependence of the wave speed on the average pressure in the canine aorta (from Pedley, 1980).
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One-dimensional linear inviscid model IX

Wave reflection

We now consider a single bifurcation from a parent tube 1 to two daughter tubes 2 and 3 as
shown below.

Sketch of an arterial bifurcation.

The undisturbed cross-sections are A1, A2 and A3, and the
associated linear wave speeds are c01, c02 and c03,
respectively.
Let z be the longitudinal coordinate in each tube, with
z = 0 at the bifurcation point.
An incident wave I approaches the bifurcation in tube 1
from z = −∞.
We suppose that the incident pressure wave in tube 1 is

P′I = P I f

(
t −

z

c01

)
,

where P I an amplitude parameter and f is a periodic function the maximum value of which is 1.
The corresponding velocity and flux waves are given by

UI =
P I

ρc01
f

(
t −

z

c01

)
, QI = UI A1 =

A1P I

ρc01
f

(
t −

z

c01

)
= Y1P I f

(
t −

z

c01

)
,

In the above equation we have defined Y1 = A1/(ρc01). Y is called characteristic admittance of
the tube.
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One-dimensional linear inviscid model X

At the bifurcation point the incident wave produces a reflected wave R in the parent tube and
two transmitted waves T2 and T3 in the daughters.
We define such pressure waves as

P′R = PR g

(
t +

z

c01

)
, P′Ti = PTi hi

(
t −

z

c0i

)
(i = 2, 3),

and the corresponding flow rate waves are

QR = −Y1PR g

(
t +

z

c01

)
, QTi = Yi PTi hi

(
t −

z

c0i

)
(i = 2, 3).

We now impose the following nodal point conditions (in z = 0):

continuity of pressure (required by Newton’s law to avoid large local accelerations)

P′1 = P′2 = P′3;

continuity of flow (required by conservation of mass)

Q1 = Q2 + Q3.
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One-dimensional linear inviscid model XI

Since the above conditions must hold in z = 0 for all times it follows that the functions g(t) and
hj (t) are equal to the incident function f (t). Moreover, the following relationships link the wave
amplitudes

P I + PR = PT 2 = PT 3, YI

(
P I − PR

)
=

3∑
i=2

Yi PTi .

It follows that

PR

P I

=

Y1 −
3∑

i=2
Yi

Y1 +
3∑

i=2
Yi

,
PTi

P I

=
2Y1

Y1 +
3∑

i=2
Yi

,

which allow us to determine the amplitudes of reflected and transmitted waves. We define

β =
PR

P I

.

The pressure and flow waves in the parent vessel are given by the following expressions

P′1 = P I

[
f

(
t −

z

c01

)
+ βf

(
t +

z

c01

)]
, Q1 = Y1P I

[
f

(
t −

z

c01

)
− βf

(
t +

z

c01

)]
.

(119)
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One-dimensional linear inviscid model XII

β > 0 or Y1 >
3∑

i=2
Yi , closed-end reflection.

In this case the overall pressure amplitude has a maximum value equal to P I (1 + β) at z = 0.
The amplitude of pressure oscillations decreases with distance upstream, to a minimum value
at z = πc01/(2ω), i.e. one-quarter wavelength proximal to the bifurcation.
The amplitude of the corresponding flow-rate wave increases with distance upstream.

β < 0 or Y1 <
3∑

i=2
Yi , open-end reflection.

In this case the pressure amplitude is minimum at z = 0 and the flow rate is maximum there.

β = 0 or Y1 =
3∑

i=2
Yi , no reflection.

This case corresponds to a perfect match between upstream and downstream branches, so
that there is no reflection. Note that the condition β = 0 involves both the area of the
branches and also the wave celerity in the branches.

Example
Suppose that f (t) is sinusoidal f (t) = cos(ωt). Equation (119), after simple manipulation, gives:

P′1
P I

= (1− β) cosω

(
t −

z

c01

)
+ 2β cos t cos

ωz

c01
.

This represents a propagating wave of amplitude (1− β)P I and a standing wave of amplitude
|2βP I cos(ωz/c01)|.
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One-dimensional linear inviscid model XIII

Implications for flow in the aorta
We know that that the pressure in the aorta increases moving away from the heart. This could be
explained with the presence of a reflection coefficient β > 0 at the iliac bifurcation (where the
aorta divides to supply the two legs).

This is possible if the length of the aorta (from the aortic valve to the iliac bifurcation) is less
than one-quarter wavelength.

A simple calculation shows:

c0 ≈ 5 m/s, ω/2π ≈ 1.25 Hz ⇒ L/4 ≈ 1 m.

This is typically slightly larger than the length of the aorta.

Moreover, it is required that
Y1 > Y2 + Y3.

Assuming that wave speed does not vary discontinuously at a bifurcation (c01 ≈ c02 ≈ c03), this
implies

A1 > A2 + A3. (120)

Measurements show that most bifurcations in the human arterial system are well-matched
(A2 + A3 ≈ A1) but the iliac bifurcation does satisfy (120). Normally, this bifurcation, the ratio
between the area of the parent vessel and the daughter vessels is equal to 0.85-0.90.
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Perfusion of organs: the liver
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Perfusion of organs: the liver Anatomy and physiology of the liver

The liver: shape, location and main functions I

The adult human liver weighs between 1.4
and 1.6 Kg.

It measures approximately about 20 cm
horizontally (across) and 17 cm vertically
and is 12 cm thick.

It is a brownish-red organ and it is the
largest internal organ within the human
body.

The liver lies almost completely under the
protection of the rib-cage, projecting below it
and coming into contact with the anterior
abdominal wall only below the right costal
margin and the xiphisternum.

The liver consists of two main parts: a larger
right lobe, a smaller left lobe and two minor
lobes. The upper border of the right lobe is at
the level of the top of the 5th rib and the upper
border of the left lobe is just below the 5th rib.
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The liver: shape, location and main functions II

Photograph of a slice of a normal liver.
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Main functions of the liver

The liver is estimated to have over 500 functions. The most important ones are summarised
below.

Synthesise proteins, including albumin (to help maintain the volume of blood) and blood
clotting factors.

Synthesise, store, and process (metabolise) fats, including fatty acids (used for energy) and
cholesterol.

Metabolise and store carbohydrates, which are used as the source for the sugar (glucose) in
blood that red blood cells and the brain use.

Form and secrete bile that contains bile acids to aid in the intestinal absorption of fats and
the fat-soluble vitamins A, D, E, and K.

Eliminate, by metabolising and/or secreting, the potentially harmful biochemical products
produced by the body.
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Liver circulation I

The main vessels which constitute the vascular system of the liver are:

the portal vein;

the hepatic artery;

and the hepatic veins.
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Liver circulation II

The portal vein
The portal vein drains blood from the digestive system and its associated glands. Its main
tributaries are the splenic vein and superior mesenteric vein. It divides into a right and a left
branch before entering the liver distributing to the liver parenchyma the nutrients absorbed in the
small intestine.

The hepatic artery
The hepatic artery is the blood vessel that supplies oxygenated blood to the liver and it arises
from the celiac trunk, a branch of the aorta.

The hepatic veins
The hepatic veins are the blood vessels that drain blood from the liver. They drain the blood into
the inferior vena cava.

The circulatory system of the liver is different from that of other organs. The most important
difference is the fact that the majority of the liver blood supply is venous blood: 75% of the
blood entering the liver is venous blood from the portal vein, while the remaining 25% of the
blood supply to the liver is arterial blood from the hepatic artery.
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The liver lobule I

The afferent branches ramify into vessels of
ever decreasing calibre. These branches of
the portal vein and hepatic artery are
present, together with bile ducts, within the
so called portal tracts.

The basic morphofunctional units of the
liver are the hepatic lobules. The lobule
has approximately a hexagonal shape. The
diameter of each lobule is about 1 mm.

At the centre of each lobule is a
centrilobular vein while the portal tracts
are at the angles of the hexagon.

Blood flows from the vessels of the portal
tracts towards the centrilobular veins within
a network of converging tortuous sinusoids.
These are thin walled, fenestrated capillaries
situated between liver cell trabelulae.
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The liver lobule II

Three-dimensional sketch of a liber lobule.
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The liver lobule III

Histological image of the lobular liver structure.
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The liver lobule IV

Histological image of the a liver lobule.
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The liver lobule V

PT: portal tract;
HV: hepatic venule (centrilobular vein).

Histological image of the a liver lobule.
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The liver lobule VI

Histological image of a portal tract.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 224 / 335



Perfusion of organs: the liver Anatomy and physiology of the liver

The liver lobule VII

Schematics of a portal tract.

Bile drains from canaliculi
through canals and ductules
into progressively larger bile
ducts.

The portal vein brings blood
rich in nutrients from the
gut.

The hepatic artery brings
oxygenated blood to the
liver, which is especially
needed by the cells of the
bile ducts.
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The liver lobule VIII

Schematically six different regions characterised by a different enzyme activity (decreasing from 1
to 6) have been identified.
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The liver lobule IX

Sinusoids at the electronic microscope.
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The liver lobule X

Circulation in the sinusoids

Note that the size of each sinusoid is comparable to the size of red blood cells.
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Motivations for studying the mechanics of liver perfusion

Small-for-size livers

Small-for-size livers can be created after either a small-graft liver transplant or after a partial
liver resection.

The transplanted liver gradually grows to become normal size, but during the process
damage can occur due to the high rate of perfusion.

This results in hypertension in the hepatic portal vein.

A shunt may be inserted between the portal and hepatic veins to allow some blood to bypass
the liver.

Knowledge of the relationship between the pressure drop across the liver and the blood flow
is a prerequisite for a proper shunt design.

Oxygen distribution and hepatocyte activity

The arrangement of several portal tracts around one central vein may have an important role
to improve the oxygen supply to hepatocytes.

Hepatocytes behave differently in different regions of the lobule and a model of the blood
perfusion of the liver lobule might help understanding the heterogeneity of hepatocyte
activity.

Drug absorption and clearance

One of the main functions of the liver is to metabolise substances in the blood.

Understanding of the spatial drug concentration after administration would help to predict
clearance times and determine how much drug is absorbed in different regions of the liver.
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Electrical analog approach

Van Der Plaats et al. (2004)

Aims of the work
Understanding liver circulation characteristics in physiological conditions.
Investigating the effect of micro-vascular changes due to injury.
Predicting the effects of temperature, viscosity and perfusion characteristics on the
(micro)circulation of the liver to understand optimal characteristics for liver hypothermic
machine perfusion.

Characteristics of the model
The authors performed a simulation the
liver circulation in the whole liver based
on an electrical analogue model
(employing de Pater and van den Berg
(1964) model).

They modelled blood flow into various
successive generations of vessels, from the
hepatic artery and portal vein to the
sinusoids and then to the hepatic veins.
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Results of Van Der Plaats et al. (2004)

Pressure distribution along the branching network

The model allows to predict the pressure drop as a function of the flow.

Most of the pressure drop occurs at the level of the arterioles and venules and in the
sinusoids.

After some parameter fitting results compare reasonably well with experimental data.
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Mathematical model of the flow in the liver lobule

Bonfiglio et al. (2010).

Working assumptions
The authors study blood flow in the classic lobule of the liver.
The lobules are treated as identical regular hexagonal prisms arranged in a lattice.
The portal tracts and centrilobular veins are cylindrical with diameters Dp and Dc ,
respectively.
The axes of the portal tracts lie along the edges of the prisms, and the centrilobular veins lie
along the central axes of the prisms.
The sinusoidal space is treated as a porous medium.
Portal tracts and centrilobular veins are treated as point sources and sinks, respectively.
The axial length of the lobules is long compared with the length of an edge of the hexagon.
End effects are neglected and the flow is treated as two-dimensional.
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Basic solutions for two-dimensional flows in porous media I

Flow in porous media is governed by the Laplace equation for the pressure (61).

The Laplace equation is linear. This implies that the principle of superimposition of effects holds.
In other works if we find many different solutions of the equations their linear combination is still
a solution.

Two-dimensional point sources and sinks
Let us consider a two-dimensional point source/sink of strength Q, located in O. Q represents
the volume flux per unit length entering/exiting from the source/sink. If Q > 0 the point is a
source, if Q < 0 the point is a sink.
For symmetry reasons the velocity is everywhere radial (with respect to a coordinate system
centred in O). Moreover, the flux through any circle l centred in O has to be equal to Q∫ 2π

0
rqr dϑ = 2πrqr = Q,

having set q = (qr , qϑ), with q denoting the apparent velocity (see page 78), expressed in polar
coordinates and qϑ = 0 for symmetry.
From the above expression we have

qr =
Q

2πr
, qϑ = 0,

where r is the distance from the source point.
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Basic solutions for two-dimensional flows in porous media II

We can then obtain an expression for the pressure p from Darcy law (60)

p = −
Qµ

2πk
log r + c,

where c is a constant. Note that this pressure distribution satisfies the Laplace equation (61).
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Setup of the mathematical model I

We can now assume that

portal tracts are modelled as point sources;

centrilobular veins are modelled as point sinks.

Since we know the solution for the flow induced by a point source and sink, we can now sum up
different solutions to obtain the desired flow.

In conclusion the mathematical problem can be formulated as follows:

∇2p =


−
µQ+

k
∆ at the hexagon angles (portal tracts),

−
µQ−

k
∆ at the hexagon centre (centrilobular vein),

0 everywhere else,

(121)

∇p · n = 0 along the hexagon sides, (122)

where Q+ and Q− denote the intensity of the sources and sinks, respectively and we assume
Q+ > 0 and Q− < 0. Moreover, in the above expressions ∆ is the Dirac function and n denotes
the unit vector normal to the hexagon side.
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Setup of the mathematical model II

Conclusions about the model setup
The following points need careful consideration:

determination of the relative strength of the sources and the sink;

verification of the boundary conditions at the hexagon sides;

if boundary conditions are not satisfied a way to enforce them has to be found.

Note: A possible technique to enforce the no-flux conditions through the hexagon sides is to add
additional sources and sinks and look for some symmetry of the system.

In a lattice of hexagons there are twice as many sources (angles of the hexagons) than
sinks (centres of the hexagons). In order for the mass to be conserved the intensity of a sink
has to be twice that of a source.

For the no-flux boundary conditions at the hexagon sides to be satisfied the we can add an
infinite number of hexagons which tessellate the whole space.
The solution for the pressure p in a single point (x , y) within the hexagon can then be
expressed as

p(x , y) = lim
N−→∞

− 2N−∑
i=1

Q+µ

2πk
log

(√
(x − x+

i )2 + (y − y+
i )2

)

−
N−∑
j=1

Q−µ

2πk
log

(√
(x − x−j )2 + (y − y−j )2

) ,
(123)
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Setup of the mathematical model III

where N− denotes the number of sinks (and N+ = 2N−), (x+
i , y

+
i ) denotes the position of

the i-th source and, (x−j , y
−
j ) the position of the j-th sink.
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Setup of the mathematical model IV

Scaling
It is covenient to work in terms of dimensionless variables as follows

x∗ =
x

L
, q∗ =

q

U
, p∗ =

p
µUL

k

,

where x denotes lengths, L is the length of the side of the lobule and U is a characteristic blood
velocity in the sinusoids. The above pressure scale is suggested by the Darcy law.
Moreover, we assume that the flux per unit length Q+ coming out of portal tracts can be written
as

Q+ = πUd ,

where d is the diamater of a portal tract.

In terms of the above dimensionless variables equation (123) and Darcy law take the form

p∗(x∗, y∗) = lim
N−→∞

− 2N−∑
i=1

d

2L
log

(√
(x∗ − x

∗+
i )2 + (y∗ − y

∗+
i )2

)

+
N−∑
j=1

d

L
log

(√
(x∗ − x∗−j )2 + (y∗ − y∗−j )2

) ,
q∗ = −∇∗p∗.
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Setup of the mathematical model V

Dimensional values

Length of the side of a lobule L: 500 µm (Burt et al., 2006).

Diameter of portal tracts d : 50 µm (Burt et al., 2006).

Characteristic velocity in the sinusoidal space U (for the rat): 4× 10−3 m/s (Koo et al.,
1975).
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Perfusion of organs: the liver Models of the liver circulation

Results I

Pressure field.
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Perfusion of organs: the liver Models of the liver circulation

Results II
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Ocular fluid mechanics Introduction

Ocular Biomechanics:
Introduction
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Ocular fluid mechanics Introduction

Anatomy of the eye
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Ocular fluid mechanics Introduction

The anterior and posterior chambers

The anterior chamber contains the aqueous humour, a fluid with approximately the same
mechanical characteristics as water
Aqueous humour is produced by the ciliary processes, flows in the posterior chamber, through the
pupil, in the anterior chamber and is drained out at through the trabecular meshwork and the
Schlemm’s canal into the venous system.

The aqueous flow has two main roles

It provides with nutrients the cornea and the lens which are avascular tissues.

A balance between aqueous production and drainage resistance regulates the intraocular
pressure (IOP).
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Ocular fluid mechanics Introduction

The anterior chamber: drainage system
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Ocular fluid mechanics Introduction

The lens

The lens is a transparent, biconvex
structure in the eye that, along
with the cornea, has the role of
refracting light rays and to allow
focus on the retina. It is
responsible for approximately 1/3
of the total eye refractive power.
The lens changes the focal
distance by changing its shape
(accommodation).

Structure: The lens is composed by three layers.

The capsule is a smooth, transparent basement membrane that completely surrounds the
lens. It is mainly composed of collagen and it is very elastic. Its thickness ranges within 2-28
µm.

The lens epithelium is located in the anterior portion of the lens, between the lens capsule
and the lens fibers.

The lens fibers form the bulk of the lens. They are long, thin, transparent and firmly packed
to each other. They form an onion-like structure.
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The lens accommodation
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Ocular fluid mechanics Introduction

The vitreous chamber

The vitreous chamber contains the vitreous
humour. The vitreous has the following
functions:

supporting the retina in contact with the
pigment epithelium;

filling-up the vitreous cavity;

acting as a diffusion barrier between the
anterior and posterior segments of the eye

establishing an unhindered path of light
from the lens to the retina.

The vitreous goes through considerable physiological changes during life

disintegration of the gel structure, liquefaction (synchysis);

approximately linear increase in the volume of liquid vitreous with age;

possible complete liquefaction;

posterior vitreous detachment (PVD) [film].

Vitreous replacement: After surgery (vitrectomy) the vitreous may be completely replaced with
tamponade fluids (e.g. silicon oils, aqueous humour, air, . . . ).
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Optic nerve
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Ocular fluid mechanics Introduction

Specific references

The textbook by Ethier and Simmons (2007) has a section on eye biomechanics.

Ethier et al. (2004) review biomechanics and biotransport processes in the eye.

Siggers and Ethier (2012) and Braun (2012) review the fluid mechanics of the eye.
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Ocular fluid mechanics Flow in the anterior chamber

Ocular biomechanics:
Flow in the anterior chamber
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Ocular fluid mechanics Flow in the anterior chamber

Flow of aqueous humour: Why is there flow? I

The aqueous flow has two main roles:

Provides the cornea and the lens (avascular tissues) with nutrients

Maintains balance between aqueous production and drainage. Outflow resistance regulates
the intraocular pressure (IOP).

Nutrition of the cornea and lens is mainly achieved through flow of the aqueous humour.
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Ocular fluid mechanics Flow in the anterior chamber

Flow of aqueous humour: Why is there flow? II

There is bulk flow from ciliary processes through the pupil (radially inward) and then radially
outward to the trabecular meshwork and Schlemm’s canal and out of the eye.

In addition, there is a temperature gradient across the anterior chamber:

at the back of the anterior chamber the temperature is close to the core body temperature (∼ 37◦);

the outside of the cornea is exposed to ambient conditions (perhaps ∼ 20◦);

even though the temperature on the inside wall is close to 37◦, there is a significant difference
between the temperature at the front and that at the back.

Therefore buoyancy effects give rise to an additional flow.

The latter flow is particularly relevant when there is particulate matter in the anterior
chamber.
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Ocular fluid mechanics Flow in the anterior chamber

Motivation for studying flow of aqueous humour I

Red blood cells
Red blood cells are not normally found in the anterior chamber.

Occur when there is rupture of blood vessels in the eye.

Two forms:
fresh cells (less than 4 months old) can deform substantially and squeeze through the drainage
system of the eye;
ghost cells (older than 4 months) are stiffer and cannot exit the eye. This may cause an increase in
intraocular pressure as drainage pathways become blocked. Their density is significantly higher than
that of water (∼ 1500 kg/m3). May cause sediment at the bottom of the anterior chamber
(hyphema).
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Ocular fluid mechanics Flow in the anterior chamber

Motivation for studying flow of aqueous humour II

White blood cells
White blood cells may also be present, typically indicating an inflammatory state of the
ciliary body.

The cells aggregate, forming the so-called keratic precipitates, shown below.
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Ocular fluid mechanics Flow in the anterior chamber

Motivation for studying flow of aqueous humour III

Glaucoma

Glaucoma results in slow progressive damage to the optic nerve and subsequent loss of
vision.

Risk factors include:

elevated eye pressure;
increased age;
previous ocular injury.

The only treatable risk factor is elevated eye pressure.

Characteristics
Rate of production of aqueous humour remains
constant.
The resistance to drainage increases (although the
causes of this are not well understood).
Result is increase in intraocular pressure.

Two types:
open-angle glaucoma: more common, when drainage
becomes blocked.
closed-angle glaucoma: when flow from the posterior
to the anterior chambers is blocked. Closed angle glaucoma (Wolfe Eye Clinic)
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Ocular fluid mechanics Flow in the anterior chamber

Thermal flow between infinitely long parallel plates I

As a simple introductory example to understand the flow induced by thermal effects in the
anterior chamber of the eye we consider the problem depicted in the figure below. A
two-dimensional steady flow is generated in the space between two infinitely long parallel plates,
kept at different temperatures (T0 and T1, respectively). The two plates are at a distance h
between one another. We assume that gravity acts in the positive x-direction.

We study the motion of the fluid adopting Boussinesq approximation (see page 45). Owing to the
infinite dimension of the domain in the x-direction we seek solutions such that

u = [u(y), 0],
∂T

∂x
= 0.

Under the above assumptions the equations of motion and the corresponding boundary conditions
read

−
1

ρ0

∂p

∂x
+ ν

∂2u

∂y2
+ g [1− α(T − T0)] = 0, (124a)
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Ocular fluid mechanics Flow in the anterior chamber

Thermal flow between infinitely long parallel plates II

∂p

∂y
= 0, (124b)

∂2T

∂y2
= 0, (124c)

u = 0 (y = 0, h), (124d)

T = T0 (y = 0), (124e)

T = T1 (y = h). (124f)

Note that the continuity equation is automatically satisfied.
From equation (124c) with boundary conditions (124e) and (124f) we obtain

T = T0 + ηy , η =
T1 − T0

h
.

From equation (124b) we infer that p does not depend on y . We can therefore integrate (124a)
with respect to y and, imposing the boundary conditions (124d), we obtain

u =
1

2ν

(
1

ρ0

∂p

∂x
− g

)
y(y − h) +

gαη

6ν
y
(
y2 − h2

)
. (125)

Since we have assumed ∂u/∂x = 0, (125) implies that ∂2p/∂x2 = 0 and therefore
∂p/∂x = const.
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Ocular fluid mechanics Flow in the anterior chamber

Thermal flow between infinitely long parallel plates III

In order to determine ∂p/∂x we note that, for symmetry reasons, the net flux in the x-direction
must vanish. Hence, we impose ∫ h

0
udy = 0,

and finally obtain

p = ρ0g
[
1−

α

2
(T1 − T0)

]
x + c,

u =
gα

6νh
(T1 − T0) y

(
y −

h

2

)
(y − h),

where c is an arbitrary constant. As expected for symmetry reasons, the velocity vanishes at
y = 0, y = h/2 and y = h.
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Ocular fluid mechanics Flow in the anterior chamber

Thermal flow between infinitely long parallel plates IV

This solution is plotted in terms of normalised variables in the following figure

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

N
o
rm

a
lis

e
d
 u

y/h

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 262 / 335



Ocular fluid mechanics Flow in the anterior chamber

Analytical model of aqueous humour flow I

The generation of thermally riven flows in the anterior chamber has been studied by various
authors:

Canning et al. (2002), Fitt and Gonzalez (2006): analytical models.

Heys et al. (2001), Heys and Barocas (2002) fully numerical model.

. . .

In the following we briefly present the models by Canning et al. (2002) and Fitt and Gonzalez
(2006).

Geometry

Sketch of the geometry. Note that gravity acts along the positive x-axis.
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Ocular fluid mechanics Flow in the anterior chamber

Analytical model of aqueous humour flow II

Governing equations
We use Boussinesq approximation to model density changes due to thermal effects. Thus,
according to equation (39), we write

ρ = ρ0 (1− α (T − T0)) .

We recall that, according to Boussinesq’s approximation (see 45), since density and viscosity
changes are small we can replace ρ with ρ0 in all terms of the Navier-Stokes equation, except the
gravitational one, and assume that the kinematic viscosity is constant (ν0).
We thus need to solve the following system of equations

ρ0

(
∂u

∂t
+ (u · ∇u)

)
= −∇p + ρ0ν0∇2u + ρ0 (1− α (T − T0)) g,

∇ · u = 0,

∂T

∂t
+ u · ∇T = D∇2T ,

subjected to the boundary conditions

u = v = w = 0, T = T1 (z = 0),

u = v = w = 0, T = T0 (z = h),

with u, v and w the x , y and z components of the velocity, respectively.
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Ocular fluid mechanics Flow in the anterior chamber

Analytical model of aqueous humour flow III

Simplification using lubrication theory

We define ε = h0/a (anterior–posterior chamber depth divided by radius).

Typically ε2 ≈ 0.06, motivating the limit of small ε.

We use the lubrication theory to simplify the equations, as described at page 36. In
particular we neglect terms of order ε2, ε2Re and ε2RePr with respect to terms of order 1,
where we have defined:

Reynolds number Re =
Ua

ν0
,

Prandtl number Pr =
ν0

D
,

and U is a characteristic scale of the velocity.
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Ocular fluid mechanics Flow in the anterior chamber

Analytical model of aqueous humour flow IV

The reduced system of equations

The simplified equations read:

x-momentum: −
1

ρ0

∂p

∂x
+ ν0

∂2u

∂z2
+ g (1− α (T − T0)) = 0,

y-momentum: −
1

ρ0

∂p

∂y
+ ν

∂2v

∂z2
= 0,

z-momentum:
∂p

∂z
= 0,

Continuity
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

Diffusion
∂2T

∂z2
= 0.
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Ocular fluid mechanics Flow in the anterior chamber

Analytical model of aqueous humour flow V

This system of equations can be solved analytically (for any domain
shape h), following a procedure very similar to that described at
page 41. The following solution is obtained

u = −
(T1 − T0)gαz

12νh
(2z − h) (z − h)

v = 0

w = −
(T1 − T0)gαz2

24νh2

∂h

∂x

(
z2 − h2

)
p = p0 + (x + a) gρ0

(
1−

α(T1 − T0)

2

)

The flow is two-dimensional, as it takes place on planes
defined by the equation y = const.

The maximum velocity, computed with realistic values of all
parameters, is estimated to be 1.98× 10−4(T1 − T0) m/s/K,
which is consistent with experimental observations.

The solution allows us to compute many other physically
meaningful quantities, e.g. the wall shear stress on the surface.
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Ocular fluid mechanics Flow in the anterior chamber

Numerical simulations I

Fully numerical solutions have also been proposed in the literature, e.g. Heys et al. (2001); Heys
and Barocas (2002).

Modelling assumptions:
Fully numerical approach.

The aqueous is modelled as a Newtonian
fluid.

Axisymmetric flow (Heys et al., 2001), fully
thee-dimensional flow (Heys and Barocas,
2002).

Linear elastic behaviour of the iris.

Sketch of the domain (from Heys et al., 2001).

Velocity and temperature fields (from Heys and

Barocas, 2002).
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Ocular fluid mechanics Flow in the anterior chamber

Numerical simulations II

Three-dimensional particle paths (from Heys and Barocas, 2002).
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Numerical simulations III

Three-dimensional particle paths and residence times (from Heys and Barocas, 2002).
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Ocular Biomechanics:
Fluid dynamics of the vitreous chamber
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Vitreous characteristics and functions

Vitreous composition

The main constituents are

Water (99%);

hyaluronic acid (HA);

collagen fibrils.

Its structure consists of long, thick, non-branching collagen fibrils suspended in hyaluronic acid.

Normal vitreous characteristics

The healthy vitreous in youth is a gel-like material with visco-elastic mechanical properties,
which have been measured by several authors (Lee et al., 1992; Nickerson et al., 2008;
Swindle et al., 2008).

In the outermost part of the vitreous, named vitreous cortex, the concentration of collagen
fibrils and HA is higher.

The vitreous cortex is in contact with the Internal Limiting Membrane (ILM) of the retina.

Physiological roles of the vitreous

Support function for the retina and filling-up function for the vitreous body cavity;

diffusion barrier between the anterior and posterior segment of the eye;

establishment of an unhindered path of light.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Vitreous ageing

With advancing age the vitreous typically undergoes significant changes in structure.

Disintegration of the gel structure which leads to vitreous
liquefaction (synchisys). This leads to an approximately
linear increase in the volume of liquid vitreous with time.
Liquefaction can be as much extended as to interest the
whole vitreous chamber.

Shrinking of the vitreous gel (syneresis) leading to the
detachment of the gel vitreous from the retina in certain
regions of the vitreous chamber. This process typically occurs
in the posterior segment of the eye and is called posterior
vitreous detachment (PVD). It is a pathophysiologic
condition of the vitreous.

Vitreous replacement
After surgery (vitrectomy) the vitreous may be completely
replaced with tamponade fluids:

silicon oils water;

aqueous humour;

perfluoropropane gas;

. . .
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Partial vitreous liquefaction
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Motivations of the work

Why research on vitreous motion?

Possible connections between the mechanism of retinal detachment and
the shear stress on the retina;
flow characteristics.

Especially in the case of liquefied vitreous eye rotations may produce effective fluid mixing.
In this case advection may be more important that diffusion for mass transport within the
vitreous chamber.
Understanding diffusion/dispersion processes in the vitreous chamber is important to predict
the behaviour of drugs directly injected into the vitreous.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Retinal detachment

Posterior vitreous detachment and vitreous
degeneration:

more common in myopic eyes;

preceded by changes in vitreous
macromolecular structure and in
vitreoretinal interface → possibly
mechanical reasons.

If the retina detaches from the underlying
layers → loss of vision;

Rhegmatogeneous retinal detachment: fluid
enters through a retinal break into the
subretinal space and peels off the retina.

Risk factors:
myopia;
posterior vitreous detachment (PVD);
lattice degeneration;
...
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Scleral buckling

Scleral buckling is the application of a rubber band around the eyeball at the site of a retinal tear
in order to promote re-attachment of the retina.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Intravitreal drug delivery

It is difficult to transport drugs to the retina from ’the outside’ due to the tight blood-retinal
barrier → use of intravitreal drug injections.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Saccadic eye rotations

Saccades are eye movements that rapidly redirect the eyes from one target to another
The main characteristics of a saccadic eye movement are (Becker, 1989):

an extremely intense angular acceleration (up to 30000 deg/s2);

a comparatively less intense deceleration which is nevertheless able to induce a very fast
arrest of the rotation

an angular peak velocity increasing with the saccade amplitude up to a saturation value
ranging between 400 - 600 deg/s.

The maximum amplitude of a saccade is about 50◦ though
most eye rotations have amplitudes smaller than 20◦.
Saccade duration and amplitude are related and the
duration is at most of the order of a tenth of a second.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Unidirectional motion of a viscoelastic fluid I

We start by considering a very simple unidirectional flow. Even if the flow in the eye is obviously
not unidirectional this analysis allows us to discuss some important characteristics of the flow in
the vitreous chamber.
We consider the flow of a homogeneous and viscoelastic fluid within a gap between two parallel
walls, located at y = 0 and y = d .

The unidirectional flow under consideration is governed by the following equation

ρ
∂u

∂t
+

∫ t

−∞
G(t − t′)

∂2u

∂y2
dt′ = 0, (126)

where the only velocity component, u, is the x-direction, and only depends on y and t.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Unidirectional motion of a viscoelastic fluid II

Eigenvalue problem
We first investigate the relaxation behaviour of the system, starting from a prescribed non-zero
velocity field at t = 0 and assuming the plates remain stationary for t > 0. In particular we look
for natural frequencies of the system that could be resonantly excited by oscillations of one plate.
We seek solutions of the form

u(y , t) = uλ(y)eλt + c.c. (127)

with λ ∈ C, being an eigenvalue. Substituting (127) into (126), and considering stationary
plates, we obtain

ρλuλ − µ∗
d2uλ

dy2
= 0, (128a)

uλ = 0 (y = 0), (128b)

uλ = 0 (y = d), (128c)

with

µ∗ =

∫ ∞
0

G(s)e−λs ds.

being the complex viscosity µ∗ (see equation (54)). For simplicity we assume that µ∗ = µ′ − iµ′′

is a constant.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Unidirectional motion of a viscoelastic fluid III

We seek a solution in the form

uλ =
∞∑

m=1

am sin
(

mπ
y

d

)
,

which satisfies the boundary conditions (128b) and (128c). Substituting into (128a) we find for
the m-th mode the following eigenrelationship

λ = −
m2π2µ∗

ρd2
.

The real part of λ is always negative and represents a decay in time of the oscillations.

If λ is complex the system admits natural frequencies of oscillation.

The imaginary part of λ represent the natural frequency of the system. It obviously depend
on m, and different modes (different values of m) are associated with different natural
frequencies.
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Unidirectional motion of a viscoelastic fluid IV

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

n
o
rm

a
lis

e
d
 v

e
lo

c
it
y
 u

λ

y/d

m=1
m=2
m=3
m=3

Plot of the first four eigenfunctions.
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Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Unidirectional motion of a viscoelastic fluid V

Forced problem
We now consider the case in which the wall at y = 0 oscillates in the x-direction according to the
following law

uw = U cos(ωt) =
U

2
exp(iωt) + c.c.,

where uw is the wall velocity, U the maximum wall velocity and c.c. denotes the complex
conjugate.
Writing the x-component of the velocity u as u(y , t) = û(y)e iωt the Navier–Stokes equation in
the x-direction and the appropriate boundary conditions read

µ∗
d2û

dy2
− ρiωû = 0, (129a)

û =
U

2
, (y = 0), (129b)

û = 0, (y = d). (129c)

The general solution of equation (129a) is

û = c1 exp
(√

Γy
)

+ c2 exp
(
−
√

Γy
)
,

with Γ = ρiω/µ∗, and the constants c1 and c2 can be obtained by imposing the boundary
conditions (129b) and (129c).
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Unidirectional motion of a viscoelastic fluid VI

Velocity profiles - fixed ω and variable µ∗
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(d)

d = 0.01 m, U = 0.1 m/s, ω = 0.3 rad/s. (a) µ∗ = 0.001 Pa·s, (b) µ∗ = 0.001 + 0.001i Pa·s, (c)

µ∗ = 0.001 + 0.003i Pa·s (resonance of mode m = 1), (d) µ∗ = 0.001 + 0.005i Pa·s.
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Unidirectional motion of a viscoelastic fluid VII

Velocity profiles - fixed µ∗ and variable ω
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Unidirectional motion of a viscoelastic fluid VIII

Velocity profiles - excitation of different modes
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Motion of a viscous fluid in a periodically rotating sphere

We now consider a more realistic problem. In particular we make the following assumptions
(Repetto et al., 2005).

Spherical domain
As a first approximation we consider that the vitreous chamber has spherical shape, with
radius R. The role of departure from sphericity will be discussed in the following.
We the domain is axisymmetric we will seek axisymmetric solutions.

Purely viscous fluid
We first consider the case of a purely viscous, Newtonian fluid. Therefore, we should not
expect the possible occurrence of resonance phenomena.
This assumption makes sense in the following cases:

vitreous liquefaction;
substitution of the vitreous with viscous tamponade fluids, such as silicon oils.

Small-amplitude harmonic eye rotations
We assume that the sphere performs harmonic torsional oscillations with amplitude ε and
frequency ω.
The assumption of small amplitude rotations allows us to linearise the equations.

The mathematical details of the following analysis are not reported since they are quite technical.
The student is assumed to just follow the reasoning and understand the results.
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Theoretical model I

Governing equations

∂

∂t
u + (u · ∇)u +

1

ρ
∇p − ν∇2u = 0,

∇ · u = 0,

u = v = 0, w = ε sinϑ sin t (r = R),

where the equations are written in terms of spherical polar coordinates (r , ϑ, ϕ), with r being the
radial, ϑ the zenithal and ϕ the azimuthal coordinates. The velocity vector is written as
u = (u, v ,w)T is the velocity vector. Moreover, ε is the amplitude of oscillations.

Solution
At leading order in an expansion in terms of the small parameter ε, it can be shown that
p = u = v = 0 and the only component of the velocity which is non zero is w = w(r , ϑ). The
solution for w is given by

w = −
iεωR3

(
sin

ar

R
−

kr

R
cos

ar

R

)
2r2 (sin a− a cos a)

e iωt sinϑ+ c.c., a = e−iπ/4α, (130)

where we have defined the Womersley number as

α =
√
ωR2/ν.
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Theoretical model II

Velocity profiles on the plane orthogonal to the axis of rotation at different times.

Limit of small α: rigid body rotation;

Limit of large α: formation of an oscillatory boundary layer at the wall.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 290 / 335



Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Experimental apparatus I

Perspex cylindrical
container.

Spherical cavity with
radius R0 = 40 mm.

Glycerol (highly viscous
Newtonian fluid).
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Experimental apparatus II

The eye model is mounted on the shaft of a computer controlled motor.
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Experimental apparatus III
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Experimental measurements I

PIV (Particle Image Velocimetry) measurements are taken on the equatorial plane orthogonal to
the axis of rotation.

Typical PIV setup
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Experimental measurements II

Typical PIV image
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Experimental measurements III

In the PIV technique

the image is subdivided in small interrogation windows (IW);

cross-correlation of the image in each IW at two successive time instants yields the most
likely average displacement s within the IW;

in each IW the velocity vector is obtained as

u =
s

∆t
,

with ∆t time step between the two images.
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Experimental measurements IV

Typical PIV flow field
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Comparison between experimental and theoretical results

Radial profiles of normalised real and imaginary parts of the velocity (see equation (130)).
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The case of a viscoelastic fluid

We now consider the case of a viscoelastic fluid within a spherical domain (Meskauskas et al.,
2011).

As we deal with an sinusoidally oscillating linear flow we can obtain the solution for the
motion of a viscoelastic fluid simply by replacing the real viscosity with the complex viscosity.

Rheological properties of the vitreous (complex viscosity) can be obtained from the works of
Lee et al. (1992), Nickerson et al. (2008) and Swindle et al. (2008).
Note that is this case the complex viscosity µ∗ depends on the frequency of oscillations. This
dependency is taken either from experimental data (where available) or is based on the use
simple rheological models, such as those described at page 69.

In this case, due to the presence of an elastic component of vitreous behaviour, the system
could admit natural frequencies that can be excited resonantly by eye rotations.
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Relaxation behaviour I

In analogy with what was shown at page 281, we seek solution with the following structure

u(x, t) = uλ(x)eλt + c.c., p(x, t) = pλ(x)eλt + c.c.,

where uλ, pλ do not depend on time and, in general the eigenvalue λ ∈ C.
Substituting into the governing equations we obtain the eigenvalue problem:

ρλuλ = −∇pλ + µ∗∇2uλ, ∇ · uλ = 0,

which has to be solved imposing stationary no-slip conditions at the wall and regularity
conditions at the origin.
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Relaxation behaviour II

Solution

For all existing measurements of the rheological properties of the vitreous we find complex
eigenvalues, which implies the existence of natural frequencies of the system.

Such frequencies, for the least decaying modes, are within the range of physiological eye
rotations (ω = 10− 30 rad/s).

Natural frequencies could be resonantly excited by eye rotations.
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Spatial structure of two different eigenfunctions.
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Periodic forcing I

We now consider the case in which the sphere performs small-amplitude harmonic torsional
oscillations, with amplitude ε and frequency ω.
As in the case of Newtonian fluids the velocity is purely azimuthal.

Velocity profiles
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Azimuthal velocity profiles, (a) ω = 10, (b) ω = 19.1494, (c) ω = 28, and (d) ω = 45.
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Periodic forcing II

Shear stress at the wall
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Some conclusions

If the eye rotates at certain frequencies resonant excitation is possible.

Resonance leads to large values of the stress on the retina.

Does resonant excitation really occur in-vivo?
Need for in-vivo measurements of vitreous velocity (Ultrasound scan of vitreous motion).
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Are ex-vivo measurements of vitreous rheological properties reliable?

The possible occurrence of resonance has implications for the choice of tamponade fluids to
be used after vitrectomy.
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The effect of the shape of the vitreous chamber

In reality the vitreous chamber is not exactly
spherical, mainly because:

the antero-posterior axis is shorted than the
others;

the lens produces an anterior indentation.

The non-sphericity of the domain may have an
important role on the fluid dynamics in the
vitreous chamber.
We consider this problem starting with a very
simple two-dimensional irrotational model. We
will then show results from three-dimensional
calculations (but will not show the corresponding
mathematics, which is quite technical).
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Formulation of the problem I

We consider a two-dimensional irrotational flow within a weakly deformed, rotating circle.
Recalling the theory of irrotational flows presented at page 50, we can define a velocity potential
Φ∗ as

u∗ = ∇Φ∗,

where u∗ denotes velocity and superscript stars indicate dimensional variables that will be made
dimensionless in the following. We work in terms of polar coordinates fixed in space (r∗, φ), so
that

u∗ = (u∗r , u
∗
φ) =

(
∂Φ∗

∂r
,

1

r∗
∂Φ∗

∂φ

)
. (131)

Fluid incompressibility implies that the velocity potential must be a harmonic function, i.e.

∇2Φ∗ =
1

r∗
∂

∂r∗

(
r∗
∂Φ∗

∂r∗

)
+

1

r∗2

∂2Φ∗

∂φ2
= 0.

We assume that the boundary of the domain be described by the following equation

F∗ = r∗ − R∗(φ, t∗) = R∗[φ− α(t∗)] = 0, (132)

where α(t∗) denotes the angle of rotation of the domain with respect to a reference position.
The boundary conditions impose vanishing flux through the wall. This implies

DF∗

Dt∗
=
∂F∗

∂t∗
+ u∗ · ∇∗F∗ = 0, (F∗ = 0).
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Formulation of the problem II

Introducing (131) into the above equation and using (132) we get

−
∂R∗

∂t∗
+
∂Φ∗

∂r∗
−

1

r∗2

∂Φ∗

∂φ

∂R∗

∂φ
= 0 [r∗ = R∗(φ− α(t∗)].

Once the velocity potential is known, one can compute the pressure through the Bernoulli
equation (45).
Therefore, the governing equations can be written as

∂

∂r∗

(
r∗
∂Φ∗

∂r∗

)
+

1

r∗
∂2Φ∗

∂φ2
= 0, (133a)

−
∂R∗

∂t∗
+
∂Φ∗

∂r∗
−

1

r∗2

∂Φ∗

∂φ

∂R∗

∂φ
= 0 [r∗ = R∗(φ− α(t∗)] (133b)

p∗ = −ρ
∂Φ∗

∂t∗
−

1

2
ρ

[(
∂Φ∗

∂r∗

)2

+
1

r∗2

(
∂Φ∗

∂φ

)2
]
. (133c)

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 307 / 335



Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Change of coordinates I

We now perform the following change of coordinates, so that the equation of the domain
becomes time independent

(r∗, φ, t∗)→ (r∗, ϕ, t∗),

with ϕ = φ− α(t∗). This implies

∂

∂r∗
→

∂

∂r∗
,

∂

∂φ
→

∂ϕ

∂φ

∂

∂ϕ
=

∂

∂ϕ
,

∂

∂t∗
→

∂

∂t∗
+
∂ϕ

∂t∗
∂

∂ϕ
=

∂

∂t
− α̇∗

∂

∂ϕ
,

with α̇∗ = dα/dt∗, so that equations (133a), (133b) and (133c) become

∂

∂r∗

(
r∗
∂Φ∗

∂r∗

)
+

1

r∗
∂2Φ∗

∂ϕ2
= 0, (134a)

α̇∗
∂R∗

∂ϕ
+
∂Φ∗

∂r∗
−

1

r∗2

∂Φ∗

∂φ

∂R∗

∂φ
[r∗ = R∗(ϕ)], (134b)

p∗ = ρα̇∗
∂Φ∗

∂ϕ
− ρ

∂Φ∗

∂t∗
−

1

2
ρ

[(
∂Φ∗

∂r∗

)2

+
1

r∗2

(
∂Φ∗

∂ϕ

)2
]
. (134c)
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Scaling

We scale all variables as follows

(r ,R) =
(r∗,R∗)

R
, Φ =

Φ∗

ΩpR2
, p =

p∗

ρΩ2
pR4

, t = Ωpt∗, (135)

where

R: radius of the circle with the same area as the actual domain;

Ωp : peak angular velocity of the saccadic movement.

The governing equations can be written in dimensionless form as

∂

∂r

(
r
∂Φ

∂r

)
+

1

r

∂2Φ

∂ϕ2
= 0, (136a)

α̇
∂R

∂ϕ
+
∂Φ

∂r
−

1

r2

∂Φ

∂ϕ

∂R

∂ϕ
[r = R(ϕ)], (136b)

p = α̇
∂Φ

∂ϕ
−
∂Φ

∂t
−

1

2

[(
∂Φ

∂r

)2

+
1

r2

(
∂Φ

∂ϕ

)2
]
, (136c)

where α̇ = dα/dt.
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Expansion

We describe the domain as a weakly deformed circle writing

R(ϕ) = 1 + δR1(ϕ),

where δ � 1 represents the maximum departure of the domain from the unit circle.

The function R1(ϕ) can be expanded in Fourier series as follows

R1 =
∞∑

m=1

am cos(mϕ) + bm sin(mϕ). (137)

Note that with the above expansion we can in principle describe any shape of the domain.
Moreover, we assume that the function R1 is symmetrical with respect to ϕ, and this implies
bm = 0 ∀m.

Owing to the assumption δ � 1 we can expand Φ and p in powers of δ as follows

Φ = Φ0 + δΦ1 +O(δ2), (138a)

p = p0 + δp1 +O(δ2). (138b)
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Solution I

Leading order problem O(δ0)
At leading order we find the trivial solution

Φ0 = 0, p0 = const.

No motion is generated in a fluid within a rotating circle if the no slip condition at the wall is not
imposed.

Order δ problem
At order δ the governing equations (136a)-(136c) reduce to

∇2Φ1 = 0, (139a)

∂Φ1

∂r
= −α̇

∂R1

∂ϕ
(r = 1), (139b)

p1 = −
∂Φ1

∂t
+ α̇

∂Φ1

∂ϕ
. (139c)

Equation (137) and the boundary condition (139b) suggest to expand the function Φ1 as follows

Φ1 =
∞∑

m=0

Φ1m sin(mϕ).
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Solution II

Substituting the above expansion into the equations (139a) and (139b), we obtain the following
ODE

r
d2Φ1m

dr2
+

dΦ1m

dr
−

m2

r
Φ1m = 0, (140a)

dΦmn

dr
= mamα̇ (r = 1), (140b)

regularity (r = 0). (140c)

The general solution of equation (140a) is

Φ1m = c1r−m + c2rm.

The regularity condition at the origin (140c) implies c1 = 0. Imposing condition (140b) we obtain

Φ1m = α̇anr−m. (141)

Finally, from the linearised Bernoulli equation (139c) we find the pressure, which takes the form

p1 =
∞∑

m=1

[
α̈ sin(mϕ) + α̇2m cos(mϕ)

]
amrm.
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Results I

We show here results from an analogous but three-dimensional model based on the same
approach as described in the previous slides (Repetto, 2006).
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Results II
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Results III
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Some conclusions

This simple model suggests that, especially in the case of low viscosity fluids, the shape of
the vitreous chamber plays a significant role in vitreous motion.

The flow field is complex and significantly three-dimensional.

A circulation is likely to form in the anterior part on the vitreous chamber, close to the lens.
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Vitreous motion in myopic eyes

The approach adopted in the previous section to treat the non-sphericity of the domain can also
be employed to study the motion of a viscoelastic fluid in a quasi-spherical domain.
We describe here the particular case of myopic eyes (Meskauskas et al., 2012).
In comparison to emmetropic eyes, myopic eyes are

larger in all directions;

particularly so in the antero-posterior direction.

Myopic eyes bear higher risks of posterior vitreous detachment and vitreous degeneration and,
consequently, an increased the risk of rhegmatogeneous retinal detachment.

The shape of the eye ball has been related to the degree of myopia (measured in dioptres D) by
Atchison et al. (2005), who approximated the vitreous chamber with an ellipsoid.
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(a) horizontal and (b) vertical cross sections of the domain for different degrees of myopia.

Rodolfo Repetto (University of Genoa) Biofluid dynamics Academic year 2019/2020 317 / 335



Ocular fluid mechanics Fluid dynamics of the vitreous chamber

Mathematical problem

Equation of the boundary
We again describe the domain as a weakly deformed sphere, writing

R(ϑ, ϕ) = R(1 + δR1(ϑ, ϕ)),

where

R denotes the radius of the sphere with the same volume as the vitreous chamber;

δ is a small parameter (δ � 1);

the maximum absolute value of R1 is 1.

Expansion
We expand the velocity and pressure fields in terms of δ as follows

u = u0 + δu1 +O
(
δ2
)
, p = p0 + δp1 +O

(
δ2
)
.

Leading order problem O(δ0)

At leading order we find the solution in a sphere, discussed at page 305.

Order δ problem
The solution at order δ can be found in the form of a series expansion, similarly to what was done
in the case of the irrotational model (see page 299).
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Solution I

Stress distribution on the retina

Spatial distribution of (a, c) the maximum dimensionless tangential stress and (b, d) normal stress. (a) and (b):

emmetropic eye; (c) and (d): myopic eye with refractive error 20 D.
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Solution II

Maximum stress on the retina as a function of the refractive error
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Some conclusions

The vitreous and the retina in myopic eyes are continuously subjected to significantly higher
shear stresses than emmetropic eyes.

This provides a feasible explanation for why in myopic eyes vitreous liquefaction, posterior
vitreous detachment and retinal detachment are more frequent than in emmetropic eyes.
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Appendix A: the equations of motion in different coordinates systems Cylindrical coordinates

Cylindrical coordinates

Let us consider cylindrical coordinates (z, r , ϕ), with corresponding velocity components
(uz , ur , uϕ).

Continuity equation

∂uz

∂z
+

1

r

∂

∂r
(rur ) +

1

r

∂uϕ

∂ϕ
= 0

Navier-Stokes equations

∂uz

∂t
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∂uz

∂z
+ ur

∂uz

∂r
+

uϕ

r

∂uz

∂ϕ
+

1

ρ

∂p

∂z
− ν

[
∂2uz

∂z2
+

1

r

∂

∂r

(
r
∂uz

∂r

)
+

1

r2

∂2uz

∂ϕ2

]
= 0.

∂ur

∂t
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∂ur

∂z
+ ur

∂ur

∂r
+

uϕ

r

∂ur

∂ϕ
−

u2
ϕ

r
+

1

ρ

∂p

∂r
+
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∂2ur
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+

1

r

∂

∂r

(
r
∂ur

∂r

)
+

1

r2

∂2ur

∂ϕ2
−

ur

r2
−

2

r2

∂uϕ

∂ϕ

]
= 0.

∂uϕ

∂t
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∂z
+ ur

∂uϕ

∂r
+

uϕ

r

∂uϕ

∂ϕ
+

ur uϕ

r
+

1

ρr

∂p

∂ϕ
+

− ν
[
∂2uϕ

∂z2
+

1

r

∂
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(
r
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∂r
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+

1
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uϕ
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]
= 0.
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Appendix A: the equations of motion in different coordinates systems Spherical polar coordinates

Spherical polar coordinates I

Let us consider spherical polar coordinates (r , ϑ, ϕ) (radial, zenithal and azimuthal), with
corresponding velocity components (ur , uϑ, uϕ).

Continuity equation

1

r2

∂

∂r

(
r2ur

)
+

1

r sinϑ

∂

∂ϑ
(sinϑuϑ) +

1

r sinϑ

∂uϕ

∂ϕ
= 0.

Navier-Stokes equations

∂ur

∂t
+ ur

∂ur

∂r
+

uϑ

r

∂ur

∂ϑ
+

uϕ

r sinϑ
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∂ϕ
−

u2
ϑ

r
−

u2
ϕ

r
+

1

ρ

∂p

∂r
+

− ν
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1

r2

∂

∂r

(
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∂r

)
+

1
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∂
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∂ϑ
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+

1

r2 sin2 ϑ
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∂ϕ2
+

−
2ur

r2
−

2

r2 sinϑ

∂(uϑ sinϑ)

∂ϑ
−

2

r2 sinϑ

∂uϕ)

∂ϕ

]
= 0.
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Appendix A: the equations of motion in different coordinates systems Spherical polar coordinates

Spherical polar coordinates II

∂uϑ

∂t
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∂uϑ

∂r
+
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∂ϑ
+
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+
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Appendix B: Bessel functions Bessel functions

Bessel functions I

Bessel equation

Bessel functions are the solutions of the following ODE, known as Bessel equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0, (142)

where α is a constant that can be either real or complex.
Bessel’s equation is linear and of second order, therefore, there must exist two linearly independent
solutions. It is custumary to introduce the Bessel functions of the first and second kind.
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Appendix B: Bessel functions Bessel functions

Bessel functions II

Bessel functions of the first kind : Jα
Bessel functions of the first kind are denoted by Jα, are solutions (142).

Jα has a finite value in x = 0 for integer or positive α;

Jα diverges as x → 0 for negative non-integer α.
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 0.4
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 0  2  4  6  8  10  12  14

x

J0(x)
J1(x)
J2(x)

Taylor expansion

The function Jα can be defined by its Taylor
expansion about x = 0, obtaining follow

Jα(x) =
∞∑

m=0

(−1)m

m! Γ(m + α+ 1)

( x

2

)2m+α
,

where Γ is the gamma function that, for positive
integer numbers, is defined as

Γ(n) = (n − 1)!
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Appendix B: Bessel functions Bessel functions

Bessel functions III

Bessel functions of the second kind : Yα
Bessel functions of the second kind are denoted by Yα, are solutions (142). They are divergent
for x → 0.
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x

Y0(x)
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Y2(x)

For non-integer α, Yα(x) is related to
Jα(x) by

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
.

In the case of integer α, say α = n, the
function is defined by taking the limit as a
non-integer α tends to n

Yn(x) = lim
α→n

Yα(x).
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Appendix B: Bessel functions Bessel functions

Bessel functions IV

Orthogonality conditions

Let αi and αj be defined so that

Jn(αi ) = Jn(αj ) = 0.

The following orthogonality condition holds∫ 1

0
xJn(αi x)Jn(αj x)dx =

{
1
2

J2
n+1(αi ) if (i = j),

0 if (i 6= j).
(143)
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