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Introduction to the fluid mechanics of the human eye What is biological fluid mechanics?

Introduction to biofluid dynamics

What is biological fluid mechanics?

Biological fluid mechanics (or biofluid mechanics) is the study of the motion of biological fluids in
any possible context (e.g. blood flow in arteries, animal flight, fish swimming, . . . )

In the present course we will focus on fluid motion in the human eye.

What is biological fluid mechanics useful for?

Pure physiology: understanding how animals, and in particular humans, work.

Pathophysiology: understanding why they might go wrong. In other words understanding
the origins and development of diseases.

Diagnosis: recognising diseases from possibly non-traumatic measurements.

Cure: providing support to surgery and to the design of prosthetic devices.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 7 / 197



Introduction to the fluid mechanics of the human eye What is biological fluid mechanics?

Peculiarities of physiological fluid flows

Thomas Young (1808):

The mechanical motions, which take place in animal body, are regulated by the same general
laws as the motion of inanimate bodies . . . and it is obvious that the enquiry, in what matter
and in what degree, the circulation of the blood depends on the muscular and elastic powers
of the heart and of the arteries, . . . , must become simply a question belonging to the most

refined departments of the theory of hydraulics.

There are some key features which characterise physiological flows.

Pulsatility. In most cases physiological flows are highly unsteady and are often pulsatile (e.g.
flow in the systemic arteries or in the respiratory system . . . ).

Complex geometries. Typically physiological flows take place in very complex geometries. In
order to study the problems by analytical means it is therefore necessary to idealise the
geometry in a suitable manner. It is a research challenge of recent years to perform
numerical simulations on real geometries.

Deformability. Not only the geometry of the flow domain might be complex but it also often
varies in time. This typically induces great complication in the mathematical analysis. Often
the problem to be solved is effectively a solid-fluid interaction.

Low Reynolds number flows. In many cases of physiological interest (but by no means
always) the Reynolds number of the flow is fairly low and this allows simplifying the
equations.
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Introduction to the fluid mechanics of the human eye Anatomy of the eye

Anatomy of the eye
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Introduction to the fluid mechanics of the human eye The anterior segment

The anterior and posterior chambers

The anterior chamber contains the aqueous humour, a fluid with approximately the same
mechanical characteristics as water
Aqueous humour is produced by the ciliary processes, flows in the posterior chamber, through the
pupil, in the anterior chamber and is drained out at through the trabecular meshwork and the
Schlemm’s canal into the venous system.

The aqueous flow has two main roles

It provides with nutrients the cornea and the lens which are avascular tissues.

A balance between aqueous production and drainage resistance regulates the intraocular
pressure (IOP).
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Introduction to the fluid mechanics of the human eye The anterior segment

The anterior chamber: drainage system
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Introduction to the fluid mechanics of the human eye The anterior segment

The lens

The lens is a transparent, biconvex
structure in the eye that, along
with the cornea, has the role of
refracting light rays and to allow
focus on the retina. It is
responsible for approximately 1/3
of the total eye refractive power.
The lens changes the focal
distance by changing its shape
(accommodation).

Structure: The lens is composed by three layers.

The capsule is a smooth, transparent basement membrane that completely surrounds the
lens. It is mainly composed of collagen and it is very elastic. Its thickness ranges within 2-28
µm.

The lens epithelium is located in the anterior portion of the lens, between the lens capsule
and the lens fibres.

The lens fibres form the bulk of the lens. They are long, thin, transparent and firmly packed
to each other. They form an onion-like structure.
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Introduction to the fluid mechanics of the human eye The anterior segment

The lens accommodation
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Introduction to the fluid mechanics of the human eye The posterior segment

The vitreous chamber

The vitreous chamber contains the vitreous
humour. The vitreous has the following
functions:

supporting the retina in contact with the
pigment epithelium;

filling-up the vitreous cavity;

acting as a diffusion barrier between the
anterior and posterior segments of the eye

establishing an unhindered path of light
from the lens to the retina.

The vitreous goes through considerable physiological changes during life

disintegration of the gel structure, liquefaction (synchysis);

approximately linear increase in the volume of liquid vitreous with age;

possible complete liquefaction;

posterior vitreous detachment (PVD) [film].

Vitreous replacement: After surgery (vitrectomy) the vitreous may be completely replaced with
tamponade fluids (e.g. silicon oils, aqueous humour, air, . . . ).
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Introduction to the fluid mechanics of the human eye The posterior segment

Optic nerve
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Introduction to the fluid mechanics of the human eye Visual tricks
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Introduction to the fluid mechanics of the human eye Visual tricks
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Introduction to the fluid mechanics of the human eye Specific references

Specific references

The textbook by Ethier and Simmons (2007) has a section on eye biomechanics.

Ethier et al. (2004) review biomechanics and biotransport processes in the eye.

Siggers and Ethier (2012) and Braun (2012) review the fluid mechanics of the eye.
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Basic notions of fluid mechanics

Basic notions of fluid mechanics
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Basic notions of fluid mechanics The Continuum Approach

The Continuum Approach

Fluids (liquids, gases, . . . ) are composed of particles (molecules). Each molecule is composed of
a central nucleus surrounded by a cloud of electrons. Some typical dimensions are given in the
following table

Diameter of
an atomic nucleus 2 · 10−15 m
a gas molecule 6 · 10−10 m

Spacing of gas molecules 3 · 10−9 m
Diameter of

a red blood cell 8 · 10−6 m
a capillary 4 − 10 · 10−6 m
an artery ≈ 10−2 m

In most applications of fluid mechanics, the typical spatial scale under consideration, L, is
much larger than the spacing between molecules, l . In this case we suppose the material to be
composed of elements whose size is small compared to L but large compared to l . We then
assume each fluid element occupies a point in space.

We assume each property, F , of the fluid (e.g. density, pressure, velocity, . . . ), to be a continuous
function of space x and time t

F = F (x, t).
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Basic notions of fluid mechanics The Continuum Approach

Forces on a continuum I

Two kind of forces can act on a continuum body

body forces;

surface forces.

Body forces
These forces are slowly varying in space. If we consider a small volume, δV , the force is
approximately constant over it. Therefore the force on the volume is

δF = f̃δV ,

where f is the force per unit volume. In most cases of interest for this course δF is proportional to
the mass of the element. Therefore we may write

δF = ρfδV ,

where ρ denotes the fluid density, i.e. mass per unit volume ([ρ] = ML−3), and f(x, t) is
independent of the density.
The vector field f is termed the body force field, and has the dimensions of acceleration or force
per unit mass

[f] = LT−2.

In general f and f̃ depend on space and time: f = f(x, t) and f̃ = f̃(x, t). If we want to compute
the total force F on a finite volume V we need to integrate f over V

F =

∫∫∫
V

f̃dV =

∫∫∫
V
ρfdV .
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Basic notions of fluid mechanics The Continuum Approach

Forces on a continuum II

Surface forces

The force is approximately constant over a small surface δS , and therefore the force on the
surface is

δΣ = tδS ,

where t is the force per unit area or tension, and has dimensions given by

[t] = ML−1T−2.

As well as depending on position x and time t, the vector t also depends on the orientation of the
surface. The orientation is uniquely specified by the unit vector n normal to the surface, meaning
that t = t(x, t, n).
To compute the force Σ on a surface S we must integrate

Σ =

∫∫
S

tdS .
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Basic notions of fluid mechanics The Continuum Approach

Cauchy’s principle and the stress tensor

Cauchy’s stress principle asserts that

“When a continuum body is acted on by forces, i.e. surface forces and body forces, there are
internal reactions throughout the body acting between the material points.”

Based on this principle, Cauchy demonstrated that the state of stress at a point in a continuum
body is completely defined by the nine components σij of a second-order tensor called the
Cauchy stress tensor.
The stress vector t(n) at any point P, acting on a plane of normal vector n, can be expressed in
terms of the stress tensor

in component form as ti (n) = σij nj , or in vector form as t(n) = σ · n,

where σij represents the ith component of the stress on the plane with normal ej .

Properties of the stress tensor
The stress tensor is symmetric, i.e. σij = σji .

The terms on the principal diagonal of the stress tensor matrix are termed the normal
stresses. The other six (not on the principal diagonal) are shear stresses.

In a fluid at rest we have

in component form as σij = −pδij , or in vector form as σ(n) = −pI,

where p(x, t) is the pressure and δij is the Kronecker delta. In this case the stress tensor is a
multiple of the identity.
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Basic notions of fluid mechanics Statics of fluids

Statics of fluids I

Equation of statics in integral form
Given a volume V with surface S , the equilibrium of forces acting on the body can be written as∫∫∫

V
ρfdV +

∫∫
S

tdS = 0.

For a fluid at rest, since t = −pn, we can write∫∫∫
V
ρfdV +

∫∫
S
−pndS = 0, (1)

and applying Gauss’ theorem ∫∫∫
V

(ρf −∇p) dV = 0.

It can be shown that there are no resultant moments acting on the volume, and therefore
equation (1) provides necessary and sufficient conditions for equilibrium.

Equation of statics in differential form
Since the volume V is arbitrary, the integrand must be zero everywhere

ρf −∇p = 0. (2)
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Basic notions of fluid mechanics Statics of fluids

Statics of fluids II

Incompressible fluids in a gravitational field

For many problems of practical relevance we can assume

ρ =constant;

f = (0, 0,−g), with respect to a system of coordinates (x1, x2, x3) with x1 and x2 horizontal
and x3 pointing vertically upward, and with g being the acceleration of gravity (g ≈ 9.81 m
s−2).

In this case equation (2) can be easily solved, leading to the following result, known as Stevin’s
law

h = x3 +
p

γ
= const.,

where γ = ρg is the specific weight (force per unit volume) of the fluid ([γ] = ML−2T−2).

This implies that the pressure increases linearly as we move vertically downwards, and the rate
of increase is equal to the specific weight of the fluid.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids I

Kinematics is the study of fluid motion.
Two main approaches are adopted in fluid mechanics

Eulerian reference frame (spatial approach);

Lagrangian reference frame (material approach).

Eulerian or spatial approach
We define a system of coordinates fixed in space, x = (x1, x2, x3). This means that any vector x
denotes a particular point in space (note that this point will, in general, be occupied by different
fluid particles at different times).

When a fluid property (say F ) is described as FS (x, t), it tells us how F varies in time at a fixed
point in space. We can also define ∂FS (x, t)/∂t, which is the rate of change in time of F in x. In
most cases this approach is very convenient.

Important note on derivatives:
Consider the velocity field, i.e. we take F = u. If we take the partial derivative of u with respect
to time, i.e. ∂u(x, t)/∂t, we do not get the acceleration of the fluid! This is because the point x
is, in general, occupied by different fluid particles at different times. The quantity ∂u(x, t)/∂t is
the rate of change of the velocity at a single point rather than the rate of change of the velocity
of fluid particles (which we usually term the acceleration). We will return to this point shortly.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids II

Lagrangian or material approach
We define X = (X1,X2,X3) as a system of coordinates fixed with material particles. This means
that any value of X is always associated with a particular fluid particle.

Any fluid property F can then be described as FM (X, t). This tells us how the value of F
associated with a material fluid particle varies in time. We can define ∂FM (X, t)/∂t, which is the
rate of change in time of F associated with the particle X.

As the meaning of this time derivative is different from that taken with the Eulerian approach,
different notations are often adopted

∂FS (x, t)

∂t
=
∂F

∂t
,

∂FM (X, t)

∂t
=

DF

Dt
.

In some cases the Lagrangian approach is more convenient (e.g. it is often used for studying fluid
mixing).

Important note on derivatives:
In this case the partial derivative of u with respect to t does give the acceleration a

∂u(X, t)

∂t
=

Du

Dt
= a.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids III

Material derivative with respect to spatial coordinates
We can establish a relationship between the Eulerian and Lagrangian approaches if we know the
function

x = x(X, t), (3)

which is well defined since a point in space cannot be occupied by two particles. The above
equation represents the position x of a material particle, identified by X, in time. This is called
particle trajectory.
Since a particle cannot occupy two different points in space, equation (3) is invertible. Therefore
we can write

X = X(x, t).

Using (3) we can write
FS (x, t) = FS [x(X, t)] = FM (X, t).

Let us now consider a material derivative of any fluid property F

DF

Dt
=

∂FM (X, t)

∂t

∣∣∣∣
X

=
∂FS (x(X, t), t)

∂t

∣∣∣∣
X

=

(
∂FS

∂t

)
x

+

(
∂FS

∂xi

)
t

(
∂xi

∂t

)
X

=
∂FS

∂t
+ui

∂FS

∂xi
. (4)

We can use this formula to compute the material derivative of F at each point in space and
time.
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Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids IV

In particular, we can define the particle acceleration in terms of spatial coordinates as

a =
Du

∂t
=
∂u

∂t
+ (u ·∇)u or ai =

∂ui

∂t
+ uj

∂ui

∂xj
.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 29 / 197



Basic notions of fluid mechanics Kinematics of fluid

Basic notions of kinematics of fluids V

Flow field

Steady flow
If the spatial velocity does not depend on time in the Eulerian reference frame, the flow field
is said to be steady

u = u(x).

Uniform flow
If the spatial velocity does not depend on space the flow is said to be uniform

u = u(t).

Streamlines
We define a streamline as a line which is everywhere tangent to the velocity vectors.
Streamlines are defined by the solution of the equation

dx× u(x, t) = 0,

at a fixed time t. Alternatively
dx1

u1
=

dx2

u2
=

dx3

u3
.

In steady flows streamlines and particle trajectories are coincident.
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Basic notions of fluid mechanics Equations of motion for a continuum

Principle of conservation of mass

“The mass of a material body1 within a continuum remains constant in time.”

The above principle can be expressed mathematically in differential form as

∂ρ

∂t
+∇ · (ρu) = 0. (5)

Incompressible fluids

An incompressible fluid is one whose density ρ(x, t) is constant.

To a good approximation, many liquids are incompressible.

The assumption of incompressibility is good for most internal fluid flows in mathematical
biology.

For an incompressible fluid, the principle of mass conservation is equivalent to

∇ · u = 0. (6)

1A material body is a body that is always composed of the same fluid particles.
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Basic notions of fluid mechanics Equations of motion for a continuum

Principle of conservation of momentum

“The time derivative of the momentum of a material body of continuum equals the resultant
of all the external forces acting on it.”

In differential form this can be expressed as

ρ

(
∂

∂t
u + (u · ∇u)− f

)
= ∇ · σ, (7)

where σ is the stress tensor.

“The time derivative of the angular momentum of a material body of continuum equals the
resultant of all external moments acting on it.”

Using this principle it can be shown that the stress tensor σ is symmetric.
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Basic notions of fluid mechanics Equations of motion for a continuum

Definition of pressure in a moving fluid I

We have seen that, in a fluid at rest, the stress tensor takes the simple form

σij = −pδij ,

where the scalar p is the static pressure.
In the case of a moving fluid, the situation is more complicated. In particular:

the tangential stresses are not necessarily equal to zero;

the normal stresses can depend on the orientation of the surface they act on.

Therefore the notion that the normal stress is the pressure, which acts equally in all directions is
lost. We can define the pressure in a moving fluid as

p = −
1

3
σii , or, p = −

1

3
tr(σ).

Important note

Compressible fluids
From classical thermodynamics it is known that we can define the pressure of the fluid as a
parameter of state, making use of an equation of state. Thermodynamical relations refer to
equilibrium conditions, so we can denote the thermodynamic pressure as pe .

Incompressible fluids
For an incompressible fluid the pressure p is an independent, purely dynamical, variable.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 33 / 197



Basic notions of fluid mechanics Equations of motion for a continuum

Definition of pressure in a moving fluid II

In the following we will consider incompressible fluids only.
It is usually convenient to split to the stress tensor σij into an isotropic part, −pδij , and a
deviatoric part, dij , which is entirely due to fluid motion. Thus we write

σij = −pδij + dij .

The tensor dij accounts for tangential stresses and also normal stresses, whose components sum
to zero.
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Basic notions of fluid mechanics Equations of motion for a continuum

Constitutive relationship for Newtonian fluids I

A constitutive law links the stress tensor to the kinematic state of the fluid.

This law provides a third relationship, which, together with the equations of mass and
momentum conservation, closes the problem for the velocity and pressure fields.

The constitutive law for Newtonian fluids can be obtained by assuming the following:

1 The deviatoric part of the stress tensor, d, is a continuous function of the rate-of-strain
tensor e, defined as

in component form, eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
or, in vector form, e =

1

2

(
∇u + (∇u)T

)
.

2 If e = 0 (i.e. the flow is uniform) then d = 0. This means that σ = −pI, i.e. the stress
reduces to the stress in static conditions.

3 The fluid is homogeneous, i.e. σ does not depend explicitly on x.

4 The fluid is isotropic, i.e. there is no preferred direction.

5 The relationship between d and e is linear.

6 The fluid is incompressible.

These assumptions imply that

in component form, σij = −pδij + 2µeij , or, in vector form, σ = −pI + 2µe, (8)

where µ is the dynamic viscosity.
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Basic notions of fluid mechanics Equations of motion for a continuum

Constitutive relationship for Newtonian fluids II

Definitions

The dynamic viscosity µ has dimensions [µ] = ML−1T−1.

It is often convenient to define the kinematic viscosity as

ν =
µ

ρ
.

The kinematic viscosity has dimensions [ν] = L2T−1.

Inviscid fluids

A fluid is said to be inviscid or ideal if µ = 0. For an inviscid fluid the constitutive law (8)
becomes

in component form, σij = −pδij , or, in vector form, σ = −pI. (9)

Thus the motion of the fluid does not affect the stress. Note that there are no truly inviscid fluids
in nature. However, the inviscid approximation is good in certain cases, such as fast flows of a
low-viscosity fluid.
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Basic notions of fluid mechanics Equations of motion for a continuum

The Navier-Stokes equations

Substituting the constitutive law (8) into the equation for conservation of motion (7), we obtain

∂ui

∂t
+uj

∂ui

∂xj
−fi +

1

ρ

∂p

∂xi
−ν

∂2ui

∂xj∂xj
= 0, or, in vector form,

∂u

∂t
+(u·∇)u−f+

1

ρ
∇p−ν∇2u = 0,

(10)
where f = fi ei is the resultant external body force acting on the fluid. Recalling the definition of
material derivative (4) the above equation can also be written as

Dui

Dt
− fi +

1

ρ

∂p

∂xi
− ν

∂2ui

∂x2
j

= 0, or, in vector form,
Du

Dt
− f +

1

ρ
∇p − ν∇2u = 0.

This equation is called the Navier-Stokes equation, and it is of fundamental importance in fluid
mechanics. It is actually three equations, one for each spatial component. The equations govern
the motion of a Newtonian incompressible fluid and should to be solved together with the
continuity equation (6).
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Basic notions of fluid mechanics Scaling and dimensional analysis

Buckingham’s Π theorem I

In fluid dynamics problems one often wishes to find a physical quantity in terms of other variables
in the problem, that is

a = f (a1, . . . , ak ),

where a is the quantity of interest and ai (i = 1, 2, . . . , k) are other variables and parameters in
the problem.
The Buckingham Π theorem states that equation (38) is equivalent to

Π = F(Π1, . . . ,Πm),

where m ≤ k and the quantities Π, Π1, Π2, . . . , Πm are all dimensionless. The number of
variables that have been removed, k −m, equals the number of independent dimensions in the
variables ai .

In fluid dynamics problems, we often have k −m = 3, since all variables have dimensions
that are combinations of length, time and mass, leading to three independent dimensions.

Rescaling or nondimensionalising is a powerful tool in fluid mechanics, as, through
simplifying a problem, it enables us to obtain a great deal of insight.
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Basic notions of fluid mechanics Scaling and dimensional analysis

Dimensionless Navier-Stokes equations I

When dealing with theoretical modelling of physical phenomena, it is convenient to work with
dimensionless equations. The main reasons are:

the number of parameters in the problem decreases if one passes from a dimensional to a
dimensionless formulation;

if proper scalings are adopted, it is much easier to evaluate the relative importance of
different terms appearing in one equation.

Let us consider the Navier-Stokes equation and assume that the body force is gravity.
Equations (10) can then be written as

∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

1©

= g︸︷︷︸
2©

−
1

ρ
∇p︸ ︷︷ ︸

3©

+ ν∇2u︸ ︷︷ ︸
4©

= 0, (11)

where the vector g, representing the gravitational field, has magnitude g and is directed vertically
downwards. We recall the physical meaning of all terms:

1©: convective terms;

2©: gravity;

3©: pressure gradient;

4©: viscous term.
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Basic notions of fluid mechanics Scaling and dimensional analysis

Dimensionless Navier-Stokes equations II

We will now scale the Navier–Stokes equation. Suppose that L is a characteristic length scale of
the domain under consideration and U a characteristic velocity. We can introduce the following
dimensionless coordinates and variables

x∗ =
x

L
, u∗ =

u

U
, t∗ =

t

L/U
,

where superscript stars indicate dimensionless quantities.
In scaling the pressure there are two commonly used possibilities:

1 The pressure gradient, 3©, balances with the viscous forces, 4©, leading to

p∗ =
p

ρνU/L
.

This is the most relevant case for studying physiological flows, for reasons that will be made
clear in the following.

2 The pressure gradient, 3©, balances with the convective terms, 1©, giving

p∗ =
p

ρU2
.
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Dimensionless Navier-Stokes equations III

Low-Reynolds-number flows

Let us consider the first case p = (µU/L)p∗. Equation (11) becomes

Re

[
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

]
+

Re

Fr2
ẑ +∇∗p∗ −∇∗2u∗ = 0, (12)

where ẑ is the upward directed vertical unit vector.
In the above equation we have introduced two dimensionless parameters.

Re =
UL

ν
: Reynolds number. This represents the ratio between the magnitude of inertial

(convective) terms and viscous terms. It plays a fundamental role in fluid mechanics.

Fr =
U
√

gL
: Froude number. This represents the square root of the ratio between the

magnitude of inertial (convective) terms and gravitational terms. It plays a fundamental role
when gravity is important, e.g. in free surface flows.

If we now consider the limit Re → 0 the dimensionless Navier-Stokes equation (12) reduces to the
so called Stokes equation, i.e.

∇∗p∗ −∇∗2u∗ = 0.

This equation is much simpler to solve than the Navier-Stokes equation, primarily because it is
linear.
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Dimensionless Navier-Stokes equations IV

High-Reynolds-number flows

We now consider the case in which the pressure gradient balances the convective terms. The
dimensionless Navier-Stokes equation takes the form

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ +

1

Fr2
z +∇∗p∗ −

1

Re
∇∗2u∗ = 0. (13)

In the limit Re →∞ the viscous term in equation (13) tends to zero. Thus at large values of Re
the fluid behaves as an ideal or inviscid fluid.
However, this limit leads to a qualitative change in the Navier–Stokes equation (13). The viscous
term contains the highest order derivatives in equation (13), and therefore, if it is neglected, it is
not possible to impose the usual number of boundary conditions. To resolve this, we assume that
thin boundary layers form at the boundaries, and within these the viscous terms in the
Navier-Stokes equations have the same magnitude as the convective terms.
If we are only interested in the flow away from the boundaries, we may compute this by solving
equation (13) in the limit Re →∞ and applying no-penetration boundary conditions (no fluid
flow through the boundary, rather than the full no-slip conditions).
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The dynamic pressure

We now assume that the body force acting on the fluid is gravity, therefore we set in the
Navier-Stokes equation (10) f = g. When ρ is constant the pressure p in a point x of the fluid
can be written as

p = p0 + ρg · x + P, (14)

where p0 is a constant and p0 + ρg · x is the pressure that would exist in the fluid if it was at rest.
Finally, P is the part of the pressure which is associated to fluid motion and can be named
dynamic pressure. This is in fact the departure of pressure from the hydrostatic distribution.
Therefore, in the Navier-Stokes equations, the term ρg −∇p can be replaced with −∇P.
Thus we have:

∇ · u = 0,

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P − ν∇2u = 0. (15)

If the Navier-Stokes equations are written in terms of the dynamic pressure gravity does not
explicitly appear in the equations.
In the following whenever gravity will not be included in the Navier-Stokes this will be done with
the understanding that the pressure is the dynamic pressure (even if p will sometimes be used
instead of P).
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Lubrication theory I

This technique provides a good approximation to the real solution as long as the domain of the
fluid is long and thin. It is used because it results in a considerable simplification of the
Navier–Stokes equations. An example where lubrication theory has been successfully used to
analyse a problem is in blood flow in a capillary, specifically in the small gap between a red blood
cell and the wall of the capillary.

Example of a scenario where lubrication theory may be applied. A cell moves steadily with speed U along a

vessel with a narrow gap at the walls (Secomb, 2003).

Lubrication theory applies if one dimension of the space occupied by the fluid is much smaller
than the other(s).
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Lubrication theory II

Mathematical formulation
For simplicity let us assume that the flow is two dimensional (all derivatives with respect to the
third coordinate, say z, may be neglected) and that the height of the domain is h(x) and a typical
streamwise length is L.

The fluid velocity at the vessel walls is zero (no-slip condition) but the fluid velocity at the surface
of the cell equals the cell velocity (U). Therefore changes in the x-velocity u are on the order of
U, that is |∆u| ∼ U, and |∂u/∂y | ∼ |∆u/∆y | ∼ U/h0, where h0 is a characteristic value of h(x).

The change in fluid velocity as we move through a distance L in the x-direction is likely to be at
most U, and therefore |∂u/∂x | ∼ U/L. The continuity equation,

∂u

∂x
+
∂v

∂y
= 0,

implies that |∂v/∂y | ∼ U/L; hence |∆v | ∼ h0U/L.

Scaling
We nondimensionalise

x = Lx∗, y = h0y∗, h(x) = h0h∗(x∗), u = Uu∗, v = h0Uv∗/L, p = p0p∗,

where p0 is an appropriate scale for the pressure (to be chosen). Note that x∗, y∗, u∗, v∗ and p∗

are all order 1.
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Lubrication theory III

Assuming a steady solution, the nondimensional governing equations are

ε2Re

(
u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)
=−

h2
0p0

µUL

∂p∗

∂x∗
+ ε2 ∂

2u∗

∂x∗2
+
∂2u∗

∂y∗2
, (16)

ε3Re

(
u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗

)
=−

h2
0p0

εµUL

∂p∗

∂y∗
+ ε3 ∂

2v∗

∂x∗2
+ ε

∂2v∗

∂y∗2
, (17)

∂u∗

∂x∗
+
∂v∗

∂y∗
=0, (18)

where ε = h0/L� 1 and Re = UL/ν.
We may immediately cancel the viscous terms that have a repeated x∗-derivative since they are
much smaller than the viscous terms with a repeated y∗-derivative. Balancing the pressure
derivative and viscous terms in the x-component equation (16) leads to the scaling p0 = µUL/h2

0.
Multiplying equation (17) by ε and simplifying, equations (16) and (17) can be written as

ε2Re

(
u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)
=−

∂p∗

∂x∗
+
∂2u∗

∂y∗2
, (19)

0 =−
∂p∗

∂y∗
, (20)

where we have neglected terms of order ε2 and terms of order ε3Re relative to the
leading-order terms.
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Lubrication theory IV

Solution procedure

The quantity ε2Re is called the reduced Reynolds number. We assume it is not too large,
which places an upper bound on the possible flux.

We may immediately solve (20) to find that the pressure is a function of x∗ only, that is, the
pressure is constant over the height of the gap.

The governing equations are thus (19) and (18), where p∗ is a function of x∗ only and these
must be solved subject to no-slip boundary conditions for u∗ at the walls.
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Lubrication theory V

Series expansion for small reduced Reynolds number

In the case that the reduced Reynolds number is small, ε2Re � 1 we can use a series expansion
method to find the velocity, by setting

u∗ =u∗0 + ε2Re u∗1 +
(
ε2Re

)2
u∗2 + . . . ,

v∗ =v∗0 + ε2Re v∗1 +
(
ε2Re

)2
v∗2 + . . . ,

p∗ =p∗0 + ε2Re p∗1 +
(
ε2Re

)2
p∗2 + . . . .

noting that all the p∗i ’s are independent of y , and then solving for u∗0 (from equation (19)), v∗0
(from equation (18)), u∗1 (from equation (19)), v∗1 (from equation (18)), etc in that order. An
equation for the pressure can be obtained by integrating the continuity equation over the gap
height.

In many cases it is sufficiently accurate to find just the first terms u∗0 and v∗0 (or even just u∗0 ).

Generalisation
Note that we could generalise this approach to include:

dependence upon the third spatial dimension;

time-dependence of the solution;

gravity;

. . . .
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Lubrication theory VI

Example of solution

We consider the domain shown in the figure. For simplicity, we assume two-dimensional flow. We
wish to solve the flow in the gap 0 ≤ y ≤ h(x), with 0 ≤ x ≤ L.
The flow
is subject to the following boundary conditions:

no-slip at y = 0 and y = h(x);

given

flux per unit length F =
∫ h0

0 udy at x = 0;

given pressure p = 0 at x = L.

We assume that h0 = h(0) is a typical value of
the thickness of the domain in the y -direction and
assume that ε = h0/L� 1. We can, therefore, apply the lubrication theory.
We scale the variables as follows

x∗ =
x

L
, y∗ =

y

h0
, u∗ =

u

U
, v∗ =

v

εU
,

with U = F/h0.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 49 / 197



Basic notions of fluid mechanics Lubrication Theory

Lubrication theory VII

Assuming that ε2Re � 1, we need to solve the following dimensionless equations (see equations
(19), (20) and (18))

∂2u∗

∂y∗2
−
∂p∗

∂x∗
= 0, (21)

∂p∗

∂y∗
= 0, (22)

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (23)

subject to the boundary conditions

u∗ = v∗ = 0 (y∗ = 0), (24)

u∗ = v∗ = 0 [y∗ = h∗(x∗)], (25)∫ 1

0
u∗dy∗ = 1 (x∗ = 0), (26)

p∗ = 0 (x∗ = 1). (27)
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Lubrication theory VIII

Equation (22) imposes that p∗ cannot depend on y∗. As a consequence equation (21) can be
integrated with respect to y∗ and, also using the boundary conditions (24) and (25), we obtain

u∗(x∗, y∗) =
1

2

dp∗

dx∗
(
y∗2 − h∗y∗

)
. (28)

In the above expression the term dp∗/dx∗ is still an unknown function of x∗.
Using the boundary condition (26) and (28) we find that

dp∗

dx∗

∣∣∣∣
x∗=0

= −12. (29)

We now integrate the continuity equation (23) with respect to y∗∫ h∗

o

∂u∗

∂x∗
+
∂v∗

∂y∗
dy∗ =���v∗(h∗)−���v∗(0) +

∫ h∗

o

∂u∗

∂x∗
dy∗ = 0,

where we have used the no-slip boundary conditions (24) and (25).
Using Leibniz rule2 and, again, the no-slip boundary conditions (24) and (25) we obtain the
following second order equation for the pressure

d

dx∗

(
h∗3 dp∗

dx∗

)
= 0.
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Lubrication theory IX

From the above equation and using (29) we obtain

dp∗

dx∗
= −

12

h∗3
,

which we can plug into equation (28) to obtain the following expression for the velocity in the
x∗-direction

u∗(x∗, y∗) = −
6

h∗3

(
y∗2 − h∗y∗

)
.

The y∗-component of the velocity can be obtained from the continuity equation (23) and reads

v∗(x∗, y∗) = −6

(
−

y∗3

h∗4
+

y∗2

h∗3

)
dh∗

dx∗
.

Finally, the pressure distribution can be obtained by integrating (44) and using the boundary
condition (27).
We note that we managed to obtain an analytical expression for the velocity without having to
specify the shape of the domain h∗(x∗).

2

b(z)∫
a(z)

∂f (x, z)

∂z
dx =

∂

∂z

b(z)∫
a(z)

f (x, z)dx − f (b, z)
∂b(z)

∂z
+ f (a, z)

∂a(z)

∂z
.
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The Boussinesq approximation for thermally driven flows I

Justification of the Boussinesq approximation
Let us consider a fluid with a weakly variable density and viscosity, so that we can write

ρ = ρ0

(
1 +

ρ′

ρ0

)
, ν = ν0

(
1 +

ν′

ν0

)
, (30)

with ρ′/ρo � 1 and ν′/νo � 1.
We assume that fluid flow is generated by buoyant effects. We fist consider the continuity
equation (5), which we write here in index notation

∂ρ

∂t
+

∂

∂xi
(ρui ) = 0. (31)

Substituting (30) into (31) we obtain

∂ρ′

∂t
+
(
ρ0 + ρ′

) ∂ui

∂xi
+ ui

∂ρ′

∂xi
= 0. (32)

We now introduce nondimensional variables as follows

x∗i =
xi

L
, t∗ =

tU

L
, u∗i =

ui

U
, (33)
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The Boussinesq approximation for thermally driven flows II

where L is a typical length scale of the problem and U a proper scale for the velocity. Substituting
the dimensionless variables (33) into (32) we obtain

∂

∂t∗

(
ρ′

ρ0

)
+

(
1 +

ρ′

ρ0

)
∂u∗i
∂x∗i

+ u∗i
∂

∂x∗i

(
ρ′

ρ0

)
= 0,

which shows that, since ρ′/ρ0 � 1, at leading order the continuity equation is the same as for an
incompressible fluid

∂u∗i
∂x∗i

= 0.

Let us now consider the momentum equation (7), which we again write in index notation, and in
which we substitute the expression (30) for the density

ρ0

(
1 +

ρ′

ρ0

)(
∂ui

∂t
+ uj

∂ui

∂xj

)
+
∂p

∂xi
− ρ0ν0

(
1 +

ρ′

ρ0

)(
1 +

ν′

ν0

)
∂2ui

x2
j

+ ρ0

(
1 +

ρ′

ρ0

)
gẑi = 0,

(34)
where ẑ is the upward directed vertical unit vector. It is convenient to decomposed the pressure
as po + p′, so that

∂p0

∂xi
+ ρ0gẑi = 0. (35)
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The Boussinesq approximation for thermally driven flows III

Substituting (35) into (34) we obtain

ρ0

(
1 +

ρ′

ρ0

)(
∂ui

∂t
+ uj

∂ui

∂xj

)
+
∂p′

∂xi
− ρ0ν0

(
1 +

ρ′

ρ0

)(
1 +

ν′

ν0

)
∂2ui

∂x2
j

+ ρ′gẑi = 0, (36)

We now scale the momentum equation using the following scales for the pressure: p′ =
p′

ρ0U2
.

With the above assumption the dimensionless version of equation (36) reads(
1 +

ρ′

ρ0

)(
∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)
+
∂p′∗

∂xi
−

1

Re

(
1 +

ρ′

ρ0

)(
1 +

ν′

ν0

)
∂2u∗i
∂x∗2

j

+
ρ′

ρ0

1

F 2
ẑi = 0, (37)

Since we assumed that flow is generated by buoyancy effects, the leading order convective terms
have to balance with the gravitational term. Thus we need to have

ρ′

ρ0

1

F 2
≈ 1.

If we now neglect in (37) terms of order ρ′/ρ0 and ν/ν0 with respect to terms of order 1 we obtain

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

+
∂p′∗

∂xi
−

1

Re

∂2u∗i
∂x∗2

j

+
ρ′

ρ0

1

F 2
ẑi = 0,
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The Boussinesq approximation for thermally driven flows IV

Writing the continuity and momentum equation back in dimensional form still neglecting small
terms, we obtain

∂uj

∂xj
= 0, (38a)(

∂ui

∂t
+ uj

∂ui

∂xj

)
+

1

ρ0

∂p

∂xi
− ν0

∂2ui

∂x2
j

+

(
1 +

ρ′

ρ0

)
gẑi = 0. (38b)

In other words, at leading order, the only term in which the perturbation of density appears is
gravity. This is what is called the Boussinesq approximation of the equations of motion.
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The Boussinesq approximation for thermally driven flows V

Heat transport equation

When density changes are due to temperature variations, for liquids we can write

ρ = ρ0 [1− α(T − T0)] , (39)

where α is the coefficient of thermal expansion.
In this case the equations of motion have to be coupled with the heat transport equation, which
reads

∂T

∂t
+ uj

∂T

∂xj
− D

∂2T

∂x2
j

= 0,

or, in vector form,
∂T

∂t
+ u · ∇T = D∇2T ,

where T denotes temperature and D is the thermal diffusion coefficient ([D] = L2T−1).
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Irrotational flows I

Potential function of the velocity

We define the vorticity as
ω = ∇× u. (40)

In the absence of viscous effects (and introduction of vorticity at the boundaries), it can be shown
that vorticity cannot be generated in a moving fluid.
As mentioned, for large values of the Reynolds number, the flow away from the boundaries
behaves as if it were inviscid. Therefore, if the vorticity is initially zero, it will remain so at all
times (provided there is no mechanism of introduction at the boundaries). In this case the flow is
said to be irrotational.
We assume

incompressible fluid, and

irrotational flow,

i.e.
∇ · u = 0, ∇× u = 0. (41)

Note that the conditions (41) are purely kinematic in nature (although they do, of course, affect
the dynamic behaviour of the fluid).
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Irrotational flows II

Let us consider a closed curve C in an irrotational flow. By Stokes’ theorem,∮
C

u · dx =

∫∫
S

(∇× u) · ndS =

∫∫
S
ω · ndS = 0,

and thus the circulation is zero.
Now consider any two points, say O and P, and any two paths, C1 and C2 from O to P through
the irrotational flow. Since travelling along C1 and then back along C2, is a closed curve through
the flow, we must have∮

C1

u · dx−
∮

C2

u · dx = 0 ⇒
∮

C1

u · dx =

∮
C2

u · dx.

Thus the integral between O and P does not depend on the path of integration, but only on the
starting and ending points. This means we can define a function, Φ(x), which we call the
potential of the velocity field, such that

Φ(x) = Φ0 +

∫ P

O
u · dx, (42)

where Φ0 is the velocity potential at the point O. In a simply connected region the velocity
potential is unique up to the constant Φ0. Equation (42) implies that we can write

u = ∇Φ. (43)
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Irrotational flows III

The continuity equation for an incompressible fluid, i.e. ∇ · u = 0, together with (43) implies

∇2Φ = 0. (44)

This means the potential function Φ is harmonic, that is, it satisfies the Laplace equation. If we
solve the problem for the function Φ we can find the velocity u using equation (43).
The mathematical problem to find an irrotational flow is much easier than that for a rotational
flow, for the following main reasons:

equation (44) is linear, whereas the Navier–Stokes equations are nonlinear;

the problem is solved for a single scalar function (the potential) rather than multiple
functions (the velocity and pressure – four components altogether, which much be solved
simultaneously);

From Equation (44), the velocity distribution has the following properties.

Equation (44) is elliptic, so Φ is smooth, except possibly on the boundary.

The function Φ is single-valued (as long as the domain is simply connected).
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Bernoulli equation for irrotational flows I

If

the flow is incompressible,

the flow is irrotational, and

the body force field is conservative, i.e. ∇× f = 0,

then it may be shown that

H =
∂Φ

∂t
+
|u|2

2
+

p

ρ
+ Ψ = c, (45)

where Ψ is the potential of the body force field f, defined as f = −∇Ψ, and c is constant. This is
the Bernoulli theorem for irrotational flows.

Once the velocity field is known, we can use this theorem to find the pressure.
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Rheological models for non-Newtonian fluids I

Newtonian incompressible fluids

We recall that for an incompressible Newtonian fluid we can express the stress tensor σ as a
function of the rate of deformation tensor e as

σ = −pI + 2µe, (46)

where p is pressure, I is the identity tensor, µ is the dynamic viscosity of the fluid and e is defined
as the symmetric part of the velocity gradient tensor ∇u.

If we refer to a one-dimensional shear flow like that reported on the
left, with velocity components [u(y), 0, 0] in the directions x the
shear stress at any point is given by

σxy = τ = µ
du(y)

dy
= µγ̇,

where γ̇ is referred to as rate of shear strain.
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Rheological models for non-Newtonian fluids II

Newtonian incompressible fluids

τ

du/dy=γ
•

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for three Newtonian fluids with

different viscosity.
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Time-independent non-Newtonian fluids I

We now consider more complicated behaviours by referring first to the one-dimensional shear flow
and then presenting the three-dimensional formulation of the constitutive relationship.
A good reference for non-Newtoninan fluid flow is the book by Tanner (2000).

For inelastic, non-Newtonian fluids a possible model for shear behaviour is

γ̇ = f (τ).

The shear rate γ̇ at any point in the fluid is a function of the shear stress τ at that point. Fluid
behaving in this way are named non-Newtoninan viscous fluids or generalised Newtonian fluids.
They can be distinguished in the following categories:

Bingham-Green;

shear thinning or pseudo-plastic;

shear-thickening fluids or dilatant.
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Time-independent non-Newtonian fluids II

Bingham-Green fluids

One-dimensional formulation

In Bingham-Green fluids if the shear stress is below a certain threshold value τc no-flow occurs.
As the shear stress exceeds such a value the fluid behaves in analogy to a Newtonian fluid.
In one-dimensions we can thus write

τ = τc + µγ̇.

Three-dimensional generalisation

The above constitutive behaviour can be generalised to the three-dimensional case as follows

σ = −pI +

(
2µ+

τc√
−III

)
e, (47)

where III is the second invariant of the rate of deformation tensor, defined as

III =
1

2

[
(tre)2 −

(
tre2

)]
,

and, for an incompressible fluid can be written as

III =
1

2
e : e.
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Time-independent non-Newtonian fluids III

Bingham-Green fluids

τ

du/dy=γ
•

τc

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for a Bingham-Green fluid.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 66 / 197



Basic notions of fluid mechanics Rheological models for non-Newtonian fluids

Time-independent non-Newtonian fluids IV

Shear thinning/thickening fluids
One-dimensional formulation

The behaviour of many real fluid is approximately Newtonian in small intervals of the rate of
strain but with a viscosity that changes with γ̇.
This behaviour can often be expressed with good approximation with the following
one-dimensional law

τ = µn |γ̇|n sgn (γ̇) ,

where the quantity µn has the following dimensions: [µn] = ML−1T−2+n and, therefore, is not a
viscosity in general. However, it is possible to define an effective viscosity µeff , so that we have

τ = µeff (γ̇) γ̇.

Comparing the above two equations yields the following definition

µeff = µn |γ̇|n−1 .

If the effective viscosity µeff grows with γ̇ the fluid is said to be shear thickening;

if the effective viscosity µeff decreases with γ̇ the fluid is said to be shear thinning.

Three-dimensional generalisation

The above constitutive behaviour can be generalised to the three-dimensional case as follows:

σ = −pI +

(
2nµn
√
−III

1−n

)
e. (48)
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Time-independent non-Newtonian fluids V

Shear thinning/thickening fluids

τ

du/dy=γ
•

shear thinning fluid
shear thickening fluid

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for a shear thinning and a shear

thickening fluid.
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Time-independent non-Newtonian fluids VI

Herschel-Bulkley fluids

One-dimensional formulation

The behaviour of fluids carrying particles in suspension can often be expressed superimposing the
characteristics of a Bingham-Green fluid with those of a shear thinning/thickening fluid, in the
following form:

τ = [τc + µn |γ̇|n] sgn (γ̇) .

Three-dimensional generalisation

The above constitutive behaviour can be generalised to the three-dimensional case as follows:

σ = −pI +

(
τc√
III

+
2nµn
√
−III

1−n

)
e. (49)

This is known as a Herschel-Bulkley fluid.

Note that:

for τc = 0 (49) reduces to (47);

for n = 1 (49) reduces to (48);

for τc = 0 and n = 1 (49) reduces to (46).
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Time-independent non-Newtonian fluids VII

Herschel-Bulkley fluid

τ

du/dy=γ
•

Qualitative dependence of the shear stress τ on the rate of shear strain γ̇ for a Herschel-Bulkley fluid.
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Viscoelastic materials I

In many cases materials display both an elastic and viscous behaviour.

In the theory of linear elasticity the stress τ in a sheared body is taken proportional to the
amount of shear γ;

in a Newtonian fluid shearing stress is proportional to the rate of shear γ̇.

Stress relaxation
We consider the behaviour of a material in a simple shearing
motion, assuming inertia can be neglected.
Suppose the sample is homogeneously deformed, with the amount
of shear γ(t) variable in time. Let τ(t) be the corresponding
shearing stress.
We consider the single-step shear history γ(t) = γ0H(t), with
H(t) being the Heaviside unit step function (H(t) = 0 for t < 0,
H = 1 for t ≥ 0).

Elastic solid: τ(t) = τ0H(t), with τ0 = const.

Newtonian fluid: since τ = µγ̇, it would be instantaneously
infinite at t = 0 and zero for t > 0. Then, since

γ(t) =
1

µ

∫ t

−∞
τdt = γ0, (t ≥ 0),

γ = 0, (t < 0),

τ is a delta-function with strength µγ0.
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Viscoelastic materials II

Observations on real materials show that the above idealised models are always inaccurate.
The stress τ decreases from its initial value to a limiting value τ∞. The decrease is rapid first and
then slows down. This process is called relaxation.

If the limiting value is not zero we say that the material is a solid;

If the limiting value is zero we say that the material is a fluid.

We can define a relaxation time λ. This time has to be compared with the period of observation
Tobs.

If λ/Tobs � 1 one can conclude that the material is a perfectly elastic solid or a viscous
fluid, depending on the value of τ∞;

if λ/Tobs � 1 one can conclude that the material is a solid;

if λ/Tobs ≈ O(1) we call the material viscoelastic.
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Viscoelastic materials III

Creep

We now consider a single-step stress history τ(t) = τ0H(t).

Elastic solid: γ(t) = γ0H(t), with γ0 = const.

Newtonian fluid: the shear grows at a constant rate, thus
γ(t) = τ0t/µ, with µ being the dynamic viscosity.

Again, the behaviour of real materials shows departures from
these idealised cases. The shear, after an initial possible jump,
continues to increase over time.

If the shear approaches a limiting value γ∞ the material is
said to be a solid;

if the shear grows linearly after a long time the material is
said to be a viscous fluid.
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Viscoelastic materials IV

Response functions
We introduce

stress relaxation function R(γ, t): the stress at a time t after the application of a shear step
of size γ;

creep function C(τ, t): the shear at a time t after the application of a stress step of size τ .

The functions R and C are supposed to be zero for t < 0.
If the material is isotropic R has to be an odd function of γ and C an odd function of τ .
Assuming that

R and C are smooth functions,

γ and τ are small,

we can write
R(γ, t) = G(t)γ +O(γ3), C(τ, t) = J(t)τ +O(τ3),

where we have defined

G(t) linear stress relaxation modulus;

J(t) linear creep compliance.
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Viscoelastic materials V

Moreover we define

G(0+) = Gg , J(0+) = Jg , G(∞) = Ge J(∞) = Je .

Immediately after application of a step in stress/strain (t = 0+) we have

τ = Ggγ, γ = Jg τ,

therefore we have

Gg Jg = 1.
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Relaxation modulus G and creep compliance J for (a) solids and (b) fluids.
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Viscoelastic materials VII

Spring-dashpot models

It is useful to consider idealised models consisting of combinations
of springs and dashpots to interpret the behaviour of complex
viscoelastic materials.

Spring. The spring obeys the simple relationship τ = kγ. For
the spring we have

G(t) = kH(t), J(t) =
1

k
H(t).

Dashpot. This is a viscous element so that γ̇ = τ/µ. For the
dashpot the following relationships hold

G(t) = µδ(t), J(t) = t
H(t)

µ
.

Dashpots and springs can be combined with the following rules

when two elements are combined in series their compliances
are additive;

when two elements are combined in parallel their moduli are
additive.
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Viscoelastic materials VIII

Examples

Maxwell element
A Maxwell element consists of a spring and a dashpot in series. The creep
compliance is therefore

J(t) =

(
1

k
+

t

µ

)
H(t).

Kelvin-Meyer element
A Kelvin-Meyer element consists of a spring and a dashpot in parallel. The
relaxation modulus is therefore

G(t) = kH(t) + µδ(t).
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Viscoelastic materials IX

Superposition of multiple steps
Knowledge of the single-step response functions G(t) and J(t) allows one to predict the response
to any input within the linear range, i.e. when stresses proportional to γ3 and strains proportional
to τ3 can be neglected.

We first note that the response is invariant to time translations, so that

γ(t) = γ0H(t − t0) ⇒ τ(t) = γ0G(t − t0).

We now consider a 2-step shear history

γ(t) = H(t − t1)∆γ1 + H(t − t2)∆γ2.

In general the corresponding stress can depend on t, t1,
t2, ∆γ1 and ∆γ2. We assume that it is a smooth function
of the step sizes and expand it as follows

τ(t) = G1(t, t1, t2)∆γ1 + G2(t, t1, t2)∆γ2 +O(∆γ3).

Since the above expression also has to hold for ∆γ1 = 0 and ∆γ2 = 0 it follows that
Gi = G(t − ti ), with i = 1, 2. Generalising ot N steps at the times tn we obtain

γ(t) =
N∑

n=1

H(t − tn)∆γn ⇒ τ(t) =
N∑

n=1

G(t − tn)∆γn.
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Viscoelastic materials X

Passing to the limit in the above sums we obtain that the shear history can be written as

γ(t) =

∫ t

0
H(t − t′)dγ(t′),

and the stress in time as

τ(t) =

∫ t

−∞
G(t − t′)dγ(t′). (50)

This is called the stress relaxation integral.

Important notes

Since G(t) = 0 for t < 0 the upper limit in the integral can be arbitrarily chosen in the range
[t,∞).

Assuming γ(t) is differentiable, we have dγ(t) = γ̇(t)dt.

Following analogous steps we could consider the following stress history

τ(t) =

∫ t

0
H(t − t′)dτ(t′),

and obtain the creep integral as

γ(t) =

∫ t

−∞
J(t − t′)dτ(t′).
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Linear viscoelastic behaviour
A suitable three-dimensional extension of equation (50) is given by

σij + pδij = dij =

∫ t

−∞
2G(t − t′)eij (t′)dt′, (51)

where dij is the deviatoric part of the stress tensor and eij is the rate of strain tensor.

Note: for a Newtonian fluid we have G(t − t′) = µδ(t − t′) and therefore

σij + pδij = dij =

∫ t

−∞
2µδ(t − t′)eij (t′)dt′ = 2µeij (t),

which agrees with equation (46).
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Sinusoidal viscoelastic response
A commonly used procedure to test rheological properties of viscoelastic fluids consists of
applying to the material a time-sinusoidal strain of small amplitude, so that

γ = γ̂e iωt + c.c., γ̇ = iωγ̂e iωt + c.c. (52)

with γ̂ � π. Under the assumption of linear behaviour of the system, following from the
assumption γ̂ � π, the shear modulus can be written as

τ = τ̂e iωt + c.c.

Substituting (52) into (50) (and omitting the complex conjugates) we obtain

τ̂e iωt = iωγ̂

∫ t

−∞
G(t − t′)e iωt′dt′.

We define the complex modulus G∗ as τ̂ /γ̂. From the above equation, setting s = t − t′, we
obtain

G∗ = G ′ + iG ′′ = iω

∫ ∞
0

G(s)e−iωs ds. (53)

Separating in (53) the real and imaginary parts we find

G∗ = G ′ + iG ′′ =

∫ ∞
0

ωG(s) sin(ωs)ds + i

∫ ∞
0

ωG(s) cos(ωs)ds.

with
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G ′(ω) is the storage modulus;

G ′′(ω) is the loss modulus.

It is also possible to define the complex viscosity as

µ∗ =
τ̂

ˆ̇γ
= µ′ − iµ′′ =

G∗

iω
=

G ′′

ω
− i

G ′

ω
. (54)

Note that µ′ = G ′′/ω is the equivalent of the dynamic viscosity for a Newtonian fluid.

If we record with and an experiment γ(t) and τ(t) we
have a phase shift δ between the two signals. If G ′′ = 0
the phase shift is zero (δ = 0). In particular we have

tan δ =
G ′′

G ′
.
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Solution of sinusoidally oscillating linear flows of a viscoelastic fluid
The equation of motion is given by the Cauchy equation (7) and the continuity equation (6)

ρ

(
∂u

∂t
+ (u · ∇u)

)
= ∇ · σ, (55)

∇ · u = 0, (56)

Substituting (51) into (55) and neglecting quadratic terms in the velocity, we obtain

ρ
∂u

∂t
= −∇p +

∫ t

−∞
G
(
t − t′

)
∇2u dt′. (57)

Assuming a sinusoidally oscillating flow we can set u(x, t) = û(x)e iωt + c.c. and
p(x, t) = p̂(x)e iωt + c.c., and substituting into (57), also making use of (53) and (54), we obtain

ρiωû = −∇p̂ + µ∗∇2û, (58)

∇ · û = 0. (59)

In other words the problem to solve is the same as that for a Newtonian fluid under the same
conditions, provided the fluid viscosity µ is replaced with the complex viscosity µ∗.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 84 / 197



Flow in the posterior chamber

Flow in the posterior chamber
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Flow in the posterior chamber Aqueous flow

Flow of aqueous humour: Why is there flow? I

The aqueous flow has two main roles:

Provides the cornea and the lens (avascular tissues) with nutrients

Maintains balance between aqueous production and drainage. Outflow resistance regulates
the intraocular pressure (IOP).

Nutrition of the cornea and lens is mainly achieved through flow of the aqueous humour.
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Flow of aqueous humour: Why is there flow? II

There is bulk flow from ciliary processes through the pupil (radially inward) and then radially
outward to the trabecular meshwork and Schlemm’s canal and out of the eye.

In addition, there is a temperature gradient across the anterior chamber:

at the back of the anterior chamber the temperature is close to the core body temperature (∼ 37◦);

the outside of the cornea is exposed to ambient conditions (perhaps ∼ 20◦);

even though the temperature on the inside wall is close to 37◦, there is a significant difference
between the temperature at the front and that at the back.

Therefore buoyancy effects give rise to an additional flow.

The latter flow is particularly relevant when there is particulate matter in the anterior
chamber.
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Motivation for studying aqueous humour flow I

Red blood cells
Red blood cells are not normally found in the anterior chamber.

Occur when there is rupture of blood vessels in the eye.

Two forms:
fresh cells (less than 4 months old) can deform substantially and squeeze through the drainage
system of the eye;
ghost cells (older than 4 months) are stiffer and cannot exit the eye. This may cause an increase in
intraocular pressure as drainage pathways become blocked. Their density is significantly higher than
that of water (∼ 1500 kg/m3). May cause sediment at the bottom of the anterior chamber
(hyphema).
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Motivation for studying aqueous humour flow II

White blood cells
White blood cells may also be present, typically indicating an inflammatory state of the
ciliary body.

The cells aggregate, forming the so-called keratic precipitates, shown below.
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Motivation for studying aqueous humour flow III

Glaucoma

Glaucoma results in slow progressive damage to the optic nerve and subsequent loss of
vision.

Risk factors include:

elevated eye pressure;
increased age;
previous ocular injury.

The only treatable risk factor is elevated eye pressure.

Characteristics
Rate of production of aqueous humour remains
constant.
The resistance to drainage increases (although the
causes of this are not well understood).
Result is increase in intraocular pressure.

Two types:
open-angle glaucoma: more common, when drainage
becomes blocked.
closed-angle glaucoma: when flow from the posterior
to the anterior chambers is blocked. Closed angle glaucoma (Wolfe Eye Clinic)
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Geometry and coordinate system

Figure : Left: ultrasound scan image of the posterior chamber. Right: coordinate system and notation.

The geometry is taken from high frequency ultrasound scans.

We can split the domain in two regions: posterior chamber and iris–lens channel.

Both regions are “long” and “thin”. We therefore use lubrication theory.

We adopt a system of spherical coordinates (r , θ, φ) and the corresponding velocity
components are denoted with u = (ur , uθ, uφ).

The domain chamber lies within the boundaries R < r < R + h(θ), θp < θ < θpc ,
0 ≤ φ ≤ 2π.

The aqueous humour is treated as a Newtonian fluid with density ρ and viscosity ν.
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Scaling I

Geometric length scales

The width of the posterior chamber L = R(θpc − θp) is comparable with curvature of the
lens R, which we therefore can use as a lengthscale in (θ, φ) direction.

The average height of the domain ha = R
L

∫
θp<θ<θpc

h(θ)dθ is used as lengthscale in the

radial (across the chamber) direction.

We define the aspect ratio of the domain as ε = ha/R. In the real case ε / 0.1

Velocity scale

Production/drainange flow. We denote the flux as of aqueous procuced at the ciliary
processes as F . ciliary processes.

Flow induced during iris motion. During pupil dilation/contraction we assume that the iris
moves with a prescribed velocity v = (vr , vθ, vφ) and the volume of the posterior chamber
varies by ∆V . The aqueous flux through the pupil is Fi = ∆V /T , where T is the time of
iris motion.

Pupil constriction lasts less than one second.
Pupil dilation takes place over several seconds.

We define the case of the velocity in the θ and φ directions as
U = F̃/(2π sin θpc hpc (R + hpc/2)), where F̃ = F for the fixed iris case and F̃ = Fi during
iris motion.

The velocity in the r -direction is scaled with εU.
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Scaling II

The reduced Reynolds number Rered = ε2RU/ν is much smaller than one in all cases,
justifying the lubrication theory approximation.

For the case of pupil expansion/contraction we can use the quasi-steady approximation for
the flow.
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Governing equations

After simplifying the Navier-Stokes equations using the lubriation theory we find the following set
of equations

∇hp = µ
1

r2

∂

∂r

(
r2 ∂uh

∂r

)
, (60a)

∇h · uh +
1

r2

∂(r2ur )

∂r
= 0, (60b)

where p is independent of r , and ‘h’ is a subscript indicating that only the (θ, φ)-components are
considered (and not the r -component).

Boundary conditions

No slip condition at the lens and iris (that can move);

given flus at the ciliary processes;

given pressure at the pupil.
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Solution

The solution to (60a), subject to no-slip boundary conditions, is

uh =
1

2µ
∇hp

(
r2 + R(R + h(θ))− r(2R + h(θ))

)
+ vh

R + h

h

(
1−

R

r

)
, (61)

where vh is the (θ, φ)-components of v (or zero in the case with no miosis).

Integrating continuity equation (60b) with respect to r and using the no-slip conditions
ur = 0 at r = R and ur = vr at r = R + h, we obtain a governing equation for the pressure

1

12µ
∇h · (h3∇hp) = vr +

h

2(R + h)
∇h ·

(
(R + h)vh

)
−

1

2
∇hh · vh, (62a)

F

π sin θ
=
∂p

∂θ

h3

6µ
− (R + h)hvθ (θ = θpc ), (62b)

p = 0 (θ = θp). (62c)
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Flow in the posterior chamber Results

Results I

Production/drainage flow

(a) (b)

Figure : (a) Pressure distribution along the posterior chamber, I = 0 corresponds to the position of the pupil
and I = 1 to the ciliary body. (b) View on the posterior chamber from the top. Colors represent pressure and
arrows show the normalised velocity vectors.
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Results II

Flow during miosis

Figure : Maximum pressure as a function of the percentage of posterior chamber volume change after the
contraction. Time of the contraction is 1 second.
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Results III

Partial pupillary block

(a)
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(b)

Figure : (a) Pressure distribution along the posterior chamber and normalized velocity vectors in the case of a
partial pupil block. (b) Maximim pressure as a fuction of the percentage of blocked pupil for different lengths of
the iris-lens channel.
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Flow in the anterior chamber
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Flow in the anterior chamber Thermal flow between infinitely long parallel plates

Thermal flow between infinitely long parallel plates I

As a simple introductory example to understand the flow induced by thermal effects in the
anterior chamber of the eye we consider the problem depicted in the figure below. A
two-dimensional steady flow is generated in the space between two infinitely long parallel plates,
kept at different temperatures (T0 and T1, respectively). The two plates are at a distance h
between one another. We assume that gravity acts in the positive x-direction.

We study the motion of the fluid adopting Boussinesq approximation (see page 53). Owing to the
infinite dimension of the domain in the x-direction we seek solutions such that

u = [u(y), 0],
∂T

∂x
= 0.

Under the above assumptions the equations of motion and the corresponding boundary conditions
read

−
1

ρ0

∂p

∂x
+ ν

∂2u

∂y2
+ g [1− α(T − T0)] = 0, (63a)
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Thermal flow between infinitely long parallel plates II

∂p

∂y
= 0, (63b)

∂2T

∂y2
= 0, (63c)

u = 0 (y = 0, h), (63d)

T = T0 (y = 0), (63e)

T = T1 (y = h). (63f)

Note that the continuity equation is automatically satisfied.
From equation (63c) with boundary conditions (63e) and (63f) we obtain

T = T0 + ηy , η =
T1 − T0

h
.

From equation (63b) we infer that p does not depend on y . We can therefore integrate (63a)
with respect to y and, imposing the boundary conditions (63d), we obtain

u =
1

2ν

(
1

ρ0

∂p

∂x
− g

)
y(y − h) +

gαη

6ν
y
(
y2 − h2

)
. (64)

Since we have assumed ∂u/∂x = 0, (64) implies that ∂2p/∂x2 = 0 and therefore ∂p/∂x = const.
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Thermal flow between infinitely long parallel plates III

In order to determine ∂p/∂x we note that, for symmetry reasons, the net flux in the x-direction
must vanish. Hence, we impose ∫ h

0
udy = 0,

and finally obtain

p = ρ0g
[
1−

α

2
(T1 − T0)

]
x + c,

u =
gα

6νh
(T1 − T0) y

(
y −

h

2

)
(y − h),

where c is an arbitrary constant. As expected for symmetry reasons, the velocity vanishes at
y = 0, y = h/2 and y = h.
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Thermal flow between infinitely long parallel plates IV

This solution is plotted in terms of normalised variables in the following figure
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Analytical model of aqueous humour flow I

The generation of thermally riven flows in the anterior chamber has been studied by various
authors:

Canning et al. (2002), Fitt and Gonzalez (2006): analytical models.

Heys et al. (2001), Heys and Barocas (2002) fully numerical model.

. . .

In the following we briefly present the models by Canning et al. (2002) and Fitt and Gonzalez
(2006).

Geometry

Sketch of the geometry. Note that gravity acts along the positive x-axis.
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Flow in the anterior chamber Analytical model of aqueous humour flow

Analytical model of aqueous humour flow II

Governing equations
We use Boussinesq approximation to model density changes due to thermal effects. Thus,
according to equation (39), we write

ρ = ρ0 (1− α (T − T0)) .

We recall that, according to Boussinesq’s approximation (see 53), since density and viscosity
changes are small we can replace ρ with ρ0 in all terms of the Navier-Stokes equation, except the
gravitational one, and assume that the kinematic viscosity is constant (ν0).
We thus need to solve the following system of equations

ρ0

(
∂u

∂t
+ (u · ∇u)

)
= −∇p + ρ0ν0∇2u + ρ0 (1− α (T − T0)) g,

∇ · u = 0,

∂T

∂t
+ u · ∇T = D∇2T ,

subjected to the boundary conditions

u = v = w = 0, T = T1 (z = 0),

u = v = w = 0, T = T0 (z = h),

with u, v and w the x , y and z components of the velocity, respectively.
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Flow in the anterior chamber Analytical model of aqueous humour flow

Analytical model of aqueous humour flow III

Simplification using lubrication theory

We define ε = h0/a (anterior–posterior chamber depth divided by radius).

Typically ε2 ≈ 0.06, motivating the limit of small ε.

We use the lubrication theory to simplify the equations, as described at page 44. In
particular we neglect terms of order ε2, ε2Re and ε2RePr with respect to terms of order 1,
where we have defined:

Reynolds number Re =
Ua

ν0
,

Prandtl number Pr =
ν0

D
,

and U is a characteristic scale of the velocity.
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Flow in the anterior chamber Analytical model of aqueous humour flow

Analytical model of aqueous humour flow IV

The reduced system of equations

The simplified equations read:

x-momentum: −
1

ρ0

∂p

∂x
+ ν0

∂2u

∂z2
+ g (1− α (T − T0)) = 0,

y-momentum: −
1

ρ0

∂p

∂y
+ ν

∂2v

∂z2
= 0,

z-momentum:
∂p

∂z
= 0,

Continuity
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

Diffusion
∂2T

∂z2
= 0.
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Flow in the anterior chamber Analytical model of aqueous humour flow

Analytical model of aqueous humour flow V

This system of equations can be solved analytically (for any domain
shape h), following a procedure very similar to that described at
page 49. The following solution is obtained

u = −
(T1 − T0)gαz

12νh
(2z − h) (z − h)

v = 0

w = −
(T1 − T0)gαz2

24νh2

∂h

∂x

(
z2 − h2

)
p = p0 + (x + a) gρ0

(
1−

α(T1 − T0)

2

)

The flow is two-dimensional, as it takes place on planes
defined by the equation y = const.

The maximum velocity, computed with realistic values of all
parameters, is estimated to be 1.98× 10−4(T1 − T0) m/s/K,
which is consistent with experimental observations.

The solution allows us to compute many other physically
meaningful quantities, e.g. the wall shear stress on the surface.
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Flow in the anterior chamber Numerical models of aqueous humour flow

Numerical simulations I

Fully numerical solutions have also been proposed in the literature, e.g. Heys et al. (2001); Heys
and Barocas (2002).

Modelling assumptions:
Fully numerical approach.

The aqueous is modelled as a Newtonian
fluid.

Axisymmetric flow (Heys et al., 2001), fully
thee-dimensional flow (Heys and Barocas,
2002).

Linear elastic behaviour of the iris.

Sketch of the domain (from Heys et al., 2001).

Velocity and temperature fields (from Heys and

Barocas, 2002).
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Flow in the anterior chamber Numerical models of aqueous humour flow

Numerical simulations II

Three-dimensional particle paths (from Heys and Barocas, 2002).
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Flow in the anterior chamber Numerical models of aqueous humour flow

Numerical simulations III

Three-dimensional particle paths and residence times (from Heys and Barocas, 2002).
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Fluid dynamics of the vitreous chamber

Fluid dynamics of the vitreous chamber
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Fluid dynamics of the vitreous chamber The vitreous humour

Vitreous characteristics and functions

Vitreous composition

The main constituents are

Water (99%);

hyaluronic acid (HA);

collagen fibrils.

Its structure consists of long, thick, non-branching collagen fibrils suspended in hyaluronic acid.

Normal vitreous characteristics

The healthy vitreous in youth is a gel-like material with visco-elastic mechanical properties,
which have been measured by several authors (Lee et al., 1992; Nickerson et al., 2008;
Swindle et al., 2008).

In the outermost part of the vitreous, named vitreous cortex, the concentration of collagen
fibrils and HA is higher.

The vitreous cortex is in contact with the Internal Limiting Membrane (ILM) of the retina.

Physiological roles of the vitreous

Support function for the retina and filling-up function for the vitreous body cavity;

diffusion barrier between the anterior and posterior segment of the eye;

establishment of an unhindered path of light.
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Fluid dynamics of the vitreous chamber The vitreous humour

Vitreous ageing

With advancing age the vitreous typically undergoes significant changes in structure.

Disintegration of the gel structure which leads to vitreous
liquefaction (synchisys). This leads to an approximately
linear increase in the volume of liquid vitreous with time.
Liquefaction can be as much extended as to interest the
whole vitreous chamber.

Shrinking of the vitreous gel (syneresis) leading to the
detachment of the gel vitreous from the retina in certain
regions of the vitreous chamber. This process typically occurs
in the posterior segment of the eye and is called posterior
vitreous detachment (PVD). It is a pathophysiologic
condition of the vitreous.

Vitreous replacement
After surgery (vitrectomy) the vitreous may be completely
replaced with tamponade fluids:

silicon oils water;

aqueous humour;

perfluoropropane gas;

. . .
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Fluid dynamics of the vitreous chamber The vitreous humour

Partial vitreous liquefaction
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Fluid dynamics of the vitreous chamber Motivations

Motivations of the work

Why research on vitreous motion?

Possible connections between the mechanism of retinal detachment and
the shear stress on the retina;
flow characteristics.

Especially in the case of liquefied vitreous eye rotations may produce effective fluid mixing.
In this case advection may be more important that diffusion for mass transport within the
vitreous chamber.
Understanding diffusion/dispersion processes in the vitreous chamber is important to predict
the behaviour of drugs directly injected into the vitreous.
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Fluid dynamics of the vitreous chamber Motivations

Retinal detachment

Posterior vitreous detachment and vitreous
degeneration:

more common in myopic eyes;

preceded by changes in vitreous
macromolecular structure and in
vitreoretinal interface → possibly
mechanical reasons.

If the retina detaches from the underlying
layers → loss of vision;

Rhegmatogeneous retinal detachment: fluid
enters through a retinal break into the
subretinal space and peels off the retina.

Risk factors:
myopia;
posterior vitreous detachment (PVD);
lattice degeneration;
...
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Fluid dynamics of the vitreous chamber Motivations

Scleral buckling

Scleral buckling is the application of a rubber band around the eyeball at the site of a retinal tear
in order to promote re-attachment of the retina.
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Fluid dynamics of the vitreous chamber Motivations

Intravitreal drug delivery

It is difficult to transport drugs to the retina from ’the outside’ due to the tight blood-retinal
barrier → use of intravitreal drug injections.
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Fluid dynamics of the vitreous chamber Motivations

Saccadic eye rotations

Saccades are eye movements that rapidly redirect the eyes from one target to another
The main characteristics of a saccadic eye movement are (Becker, 1989):

an extremely intense angular acceleration (up to 30000 deg/s2);

a comparatively less intense deceleration which is nevertheless able to induce a very fast
arrest of the rotation

an angular peak velocity increasing with the saccade amplitude up to a saturation value
ranging between 400 - 600 deg/s.

The maximum amplitude of a saccade is about 50◦ though
most eye rotations have amplitudes smaller than 20◦.
Saccade duration and amplitude are related and the
duration is at most of the order of a tenth of a second.
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid I

We start by considering a very simple unidirectional flow. Even if the flow in the eye is obviously
not unidirectional this analysis allows us to discuss some important characteristics of the flow in
the vitreous chamber.
We consider the flow of a homogeneous and viscoelastic fluid within a gap between two parallel
walls, located at y = 0 and y = d .

The unidirectional flow under consideration is governed by the following equation

ρ
∂u

∂t
+

∫ t

−∞
G(t − t′)

∂2u

∂y2
dt′ = 0, (65)

where the only velocity component, u, is the x-direction, and only depends on y and t.
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid II

Eigenvalue problem
We first investigate the relaxation behaviour of the system, starting from a prescribed non-zero
velocity field at t = 0 and assuming the plates remain stationary for t > 0. In particular we look
for natural frequencies of the system that could be resonantly excited by oscillations of one plate.
We seek solutions of the form

u(y , t) = uλ(y)eλt + c.c. (66)

with λ ∈ C, being an eigenvalue. Substituting (66) into (65), and considering stationary plates,
we obtain

ρλuλ − µ∗
d2uλ

dy2
= 0, (67a)

uλ = 0 (y = 0), (67b)

uλ = 0 (y = d), (67c)

with

µ∗ =

∫ ∞
0

G(s)e−λs ds.

being the complex viscosity µ∗ (see equation (54)). For simplicity we assume that µ∗ = µ′ − iµ′′

is a constant.
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid III

We seek a solution in the form

uλ =
∞∑

m=1

am sin
(

mπ
y

d

)
,

which satisfies the boundary conditions (67b) and (67c). Substituting into (67a) we find for the
m-th mode the following eigenrelationship

λ = −
m2π2µ∗

ρd2
.

The real part of λ is always negative and represents a decay in time of the oscillations.

If λ is complex the system admits natural frequencies of oscillation.

The imaginary part of λ represent the natural frequency of the system. It obviously depend
on m, and different modes (different values of m) are associated with different natural
frequencies.
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid IV
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Plot of the first four eigenfunctions.
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid V

Forced problem
We now consider the case in which the wall at y = 0 oscillates in the x-direction according to the
following law

uw = U cos(ωt) =
U

2
exp(iωt) + c.c.,

where uw is the wall velocity, U the maximum wall velocity and c.c. denotes the complex
conjugate.
Writing the x-component of the velocity u as u(y , t) = û(y)e iωt the Navier–Stokes equation in
the x-direction and the appropriate boundary conditions read

µ∗
d2û

dy2
− ρiωû = 0, (68a)

û =
U

2
, (y = 0), (68b)

û = 0, (y = d). (68c)

The general solution of equation (68a) is

û = c1 exp
(√

Γy
)

+ c2 exp
(
−
√

Γy
)
,

with Γ = ρiω/µ∗, and the constants c1 and c2 can be obtained by imposing the boundary
conditions (68b) and (68c).
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid VI

Velocity profiles - fixed ω and variable µ∗
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d = 0.01 m, U = 0.1 m/s, ω = 0.3 rad/s. (a) µ∗ = 0.001 Pa·s, (b) µ∗ = 0.001 + 0.001i Pa·s, (c)

µ∗ = 0.001 + 0.003i Pa·s (resonance of mode m = 1), (d) µ∗ = 0.001 + 0.005i Pa·s.
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Fluid dynamics of the vitreous chamber Unidirectional motion of a viscoelastic fluid

Unidirectional motion of a viscoelastic fluid VII

Velocity profiles - fixed µ∗ and variable ω
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d = 0.01 m, U = 0.1 m/s, µ∗ = 0.001 + 0.003i Pa·s. (a) ω = 0.1 rad/s, (b) ω = 0.2 rad/s, (c) ω = 0.3

rad/s, (resonance of mode m = 1), (d) ω = 0.5 rad/s.
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Unidirectional motion of a viscoelastic fluid VIII

Velocity profiles - excitation of different modes
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d = 0.01 m, U = 0.1 m/s, µ∗ = 0.001 + 0.003i Pa·s. (a) ω = 0.3 rad/s (mode m = 1), (b) ω = 1.18 rad/s

(mode m = 2), (c) ω = 2.66 rad/s (mode m = 3), (d) ω = 4.74 rad/s (mode m = 4).
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Motion of a viscous fluid in a periodically rotating sphere

We now consider a more realistic problem. In particular we make the following assumptions
(Repetto et al., 2005).

Spherical domain
As a first approximation we consider that the vitreous chamber has spherical shape, with
radius R. The role of departure from sphericity will be discussed in the following.
We the domain is axisymmetric we will seek axisymmetric solutions.

Purely viscous fluid
We first consider the case of a purely viscous, Newtonian fluid. Therefore, we should not
expect the possible occurrence of resonance phenomena.
This assumption makes sense in the following cases:

vitreous liquefaction;
substitution of the vitreous with viscous tamponade fluids, such as silicon oils.

Small-amplitude harmonic eye rotations
We assume that the sphere performs harmonic torsional oscillations with amplitude ε and
frequency ω.
The assumption of small amplitude rotations allows us to linearise the equations.

The mathematical details of the following analysis are not reported since they are quite technical.
The student is assumed to just follow the reasoning and understand the results.
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Theoretical model I

Governing equations

∂

∂t
u + (u · ∇)u +

1

ρ
∇p − ν∇2u = 0,

∇ · u = 0,

u = v = 0, w = ε sinϑ sin t (r = R),

where the equations are written in terms of spherical polar coordinates (r , ϑ, ϕ), with r being the
radial, ϑ the zenithal and ϕ the azimuthal coordinates. The velocity vector is written as
u = (u, v ,w)T is the velocity vector. Moreover, ε is the amplitude of oscillations.

Solution
At leading order in an expansion in terms of the small parameter ε, it can be shown that
p = u = v = 0 and the only component of the velocity which is non zero is w = w(r , ϑ). The
solution for w is given by

w = −
iεωR3

(
sin

ar

R
−

kr

R
cos

ar

R

)
2r2 (sin a− a cos a)

e iωt sinϑ+ c.c., a = e−iπ/4α, (69)

where we have defined the Womersley number as

α =
√
ωR2/ν.
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Theoretical model II

Velocity profiles on the plane orthogonal to the axis of rotation at different times.

Limit of small α: rigid body rotation;

Limit of large α: formation of an oscillatory boundary layer at the wall.
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus I

Perspex cylindrical
container.

Spherical cavity with
radius R0 = 40 mm.

Glycerol (highly viscous
Newtonian fluid).
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus II

The eye model is mounted on the shaft of a computer controlled motor.
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental apparatus III
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements I

PIV (Particle Image Velocimetry) measurements are taken on the equatorial plane orthogonal to
the axis of rotation.

Typical PIV setup
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements II

Typical PIV image
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements III

In the PIV technique

the image is subdivided in small interrogation windows (IW);

cross-correlation of the image in each IW at two successive time instants yields the most
likely average displacement s within the IW;

in each IW the velocity vector is obtained as

u =
s

∆t
,

with ∆t time step between the two images.
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Experimental measurements IV

Typical PIV flow field
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Fluid dynamics of the vitreous chamber Motion of a viscous fluid in a periodically rotating sphere

Comparison between experimental and theoretical results

Radial profiles of normalised real and imaginary parts of the velocity (see equation (69)).
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a sphere

The case of a viscoelastic fluid

We now consider the case of a viscoelastic fluid within a spherical domain (Meskauskas et al.,
2011).

As we deal with an sinusoidally oscillating linear flow we can obtain the solution for the
motion of a viscoelastic fluid simply by replacing the real viscosity with the complex viscosity.

Rheological properties of the vitreous (complex viscosity) can be obtained from the works of
Lee et al. (1992), Nickerson et al. (2008) and Swindle et al. (2008).
Note that is this case the complex viscosity µ∗ depends on the frequency of oscillations. This
dependency is taken either from experimental data (where available) or is based on the use
simple rheological models, such as those described at page 77.

In this case, due to the presence of an elastic component of vitreous behaviour, the system
could admit natural frequencies that can be excited resonantly by eye rotations.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a sphere

Relaxation behaviour I

In analogy with what was shown at page 122, we seek solution with the following structure

u(x, t) = uλ(x)eλt + c.c., p(x, t) = pλ(x)eλt + c.c.,

where uλ, pλ do not depend on time and, in general the eigenvalue λ ∈ C.
Substituting into the governing equations we obtain the eigenvalue problem:

ρλuλ = −∇pλ + µ∗∇2uλ, ∇ · uλ = 0,

which has to be solved imposing stationary no-slip conditions at the wall and regularity
conditions at the origin.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a sphere

Relaxation behaviour II

Solution

For all existing measurements of the rheological properties of the vitreous we find complex
eigenvalues, which implies the existence of natural frequencies of the system.

Such frequencies, for the least decaying modes, are within the range of physiological eye
rotations (ω = 10− 30 rad/s).

Natural frequencies could be resonantly excited by eye rotations.
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Spatial structure of two different eigenfunctions.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a sphere

Periodic forcing I

We now consider the case in which the sphere performs small-amplitude harmonic torsional
oscillations, with amplitude ε and frequency ω.
As in the case of Newtonian fluids the velocity is purely azimuthal.

Velocity profiles
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Azimuthal velocity profiles, (a) ω = 10, (b) ω = 19.1494, (c) ω = 28, and (d) ω = 45.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 143 / 197



Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a sphere

Periodic forcing II

Shear stress at the wall
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Stress normalised with ερR2ω2 vs the oscillation frequency. The different curves correspond to different

measurements of the vitreous rheological properties.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a sphere

Some conclusions

If the eye rotates at certain frequencies resonant excitation is possible.

Resonance leads to large values of the stress on the retina.

Does resonant excitation really occur in-vivo?
Need for in-vivo measurements of vitreous velocity (Ultrasound scan of vitreous motion).
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Echo-PIV measurement of vitreous motion (Rossi et al., 2012).

Are ex-vivo measurements of vitreous rheological properties reliable?

The possible occurrence of resonance has implications for the choice of tamponade fluids to
be used after vitrectomy.
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Fluid dynamics of the vitreous chamber A simple irrotational model

The effect of the shape of the vitreous chamber

In reality the vitreous chamber is not exactly
spherical, mainly because:

the antero-posterior axis is shorted than the
others;

the lens produces an anterior indentation.

The non-sphericity of the domain may have an
important role on the fluid dynamics in the
vitreous chamber.
We consider this problem starting with a very
simple two-dimensional irrotational model. We
will then show results from three-dimensional
calculations (but will not show the corresponding
mathematics, which is quite technical).
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Fluid dynamics of the vitreous chamber A simple irrotational model

Formulation of the problem I

We consider a two-dimensional irrotational flow within a weakly deformed, rotating circle.
Recalling the theory of irrotational flows presented at page 58, we can define a velocity potential
Φ∗ as

u∗ = ∇Φ∗,

where u∗ denotes velocity and superscript stars indicate dimensional variables that will be made
dimensionless in the following. We work in terms of polar coordinates fixed in space (r∗, φ), so
that

u∗ = (u∗r , u
∗
φ) =

(
∂Φ∗

∂r
,

1

r∗
∂Φ∗

∂φ

)
. (70)

Fluid incompressibility implies that the velocity potential must be a harmonic function, i.e.

∇2Φ∗ =
1

r∗
∂

∂r∗

(
r∗
∂Φ∗

∂r∗

)
+

1

r∗2

∂2Φ∗

∂φ2
= 0.

We assume that the boundary of the domain be described by the following equation

F∗ = r∗ − R∗(φ, t∗) = R∗[φ− α(t∗)] = 0, (71)

where α(t∗) denotes the angle of rotation of the domain with respect to a reference position.
The boundary conditions impose vanishing flux through the wall. This implies

DF∗

Dt∗
=
∂F∗

∂t∗
+ u∗ · ∇∗F∗ = 0, (F∗ = 0).
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Fluid dynamics of the vitreous chamber A simple irrotational model

Formulation of the problem II

Introducing (70) into the above equation and using (71) we get

−
∂R∗

∂t∗
+
∂Φ∗

∂r∗
−

1

r∗2

∂Φ∗

∂φ

∂R∗

∂φ
= 0 [r∗ = R∗(φ− α(t∗)].

Once the velocity potential is known, one can compute the pressure through the Bernoulli
equation (45).
Therefore, the governing equations can be written as

∂

∂r∗

(
r∗
∂Φ∗

∂r∗

)
+

1

r∗
∂2Φ∗

∂φ2
= 0, (72a)

−
∂R∗

∂t∗
+
∂Φ∗

∂r∗
−

1

r∗2

∂Φ∗

∂φ

∂R∗

∂φ
= 0 [r∗ = R∗(φ− α(t∗)] (72b)

p∗ = −ρ
∂Φ∗

∂t∗
−

1

2
ρ

[(
∂Φ∗

∂r∗

)2

+
1

r∗2

(
∂Φ∗

∂φ

)2
]
. (72c)
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Fluid dynamics of the vitreous chamber A simple irrotational model

Change of coordinates I

We now perform the following change of coordinates, so that the equation of the domain
becomes time independent

(r∗, φ, t∗)→ (r∗, ϕ, t∗),

with ϕ = φ− α(t∗). This implies

∂

∂r∗
→

∂

∂r∗
,

∂

∂φ
→

∂ϕ

∂φ

∂

∂ϕ
=

∂

∂ϕ
,

∂

∂t∗
→

∂

∂t∗
+
∂ϕ

∂t∗
∂

∂ϕ
=

∂

∂t
− α̇∗

∂

∂ϕ
,

with α̇∗ = dα/dt∗, so that equations (72a), (72b) and (72c) become

∂

∂r∗

(
r∗
∂Φ∗

∂r∗

)
+

1

r∗
∂2Φ∗

∂ϕ2
= 0, (73a)

α̇∗
∂R∗

∂ϕ
+
∂Φ∗

∂r∗
−

1

r∗2

∂Φ∗

∂φ

∂R∗

∂φ
[r∗ = R∗(ϕ)], (73b)

p∗ = ρα̇∗
∂Φ∗

∂ϕ
− ρ

∂Φ∗

∂t∗
−

1

2
ρ

[(
∂Φ∗

∂r∗

)2

+
1

r∗2

(
∂Φ∗

∂ϕ

)2
]
. (73c)
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Fluid dynamics of the vitreous chamber A simple irrotational model

Scaling

We scale all variables as follows

(r ,R) =
(r∗,R∗)

R
, Φ =

Φ∗

ΩpR2
, p =

p∗

ρΩ2
pR4

, t = Ωpt∗, (74)

where

R: radius of the circle with the same area as the actual domain;

Ωp : peak angular velocity of the saccadic movement.

The governing equations can be written in dimensionless form as

∂

∂r

(
r
∂Φ

∂r

)
+

1

r

∂2Φ

∂ϕ2
= 0, (75a)

α̇
∂R

∂ϕ
+
∂Φ

∂r
−

1

r2

∂Φ

∂ϕ

∂R

∂ϕ
[r = R(ϕ)], (75b)

p = α̇
∂Φ

∂ϕ
−
∂Φ

∂t
−

1

2

[(
∂Φ

∂r

)2

+
1

r2

(
∂Φ

∂ϕ

)2
]
, (75c)

where α̇ = dα/dt.
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Fluid dynamics of the vitreous chamber A simple irrotational model

Expansion

We describe the domain as a weakly deformed circle writing

R(ϕ) = 1 + δR1(ϕ),

where δ � 1 represents the maximum departure of the domain from the unit circle.

The function R1(ϕ) can be expanded in Fourier series as follows

R1 =
∞∑

m=1

am cos(mϕ) + bm sin(mϕ). (76)

Note that with the above expansion we can in principle describe any shape of the domain.
Moreover, we assume that the function R1 is symmetrical with respect to ϕ, and this implies
bm = 0 ∀m.

Owing to the assumption δ � 1 we can expand Φ and p in powers of δ as follows

Φ = Φ0 + δΦ1 +O(δ2), (77a)

p = p0 + δp1 +O(δ2). (77b)

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 151 / 197



Fluid dynamics of the vitreous chamber A simple irrotational model

Solution I

Leading order problem O(δ0)
At leading order we find the trivial solution

Φ0 = 0, p0 = const.

No motion is generated in a fluid within a rotating circle if the no slip condition at the wall is not
imposed.

Order δ problem
At order δ the governing equations (75a)-(75c) reduce to

∇2Φ1 = 0, (78a)

∂Φ1

∂r
= −α̇

∂R1

∂ϕ
(r = 1), (78b)

p1 = −
∂Φ1

∂t
+ α̇

∂Φ1

∂ϕ
. (78c)

Equation (76) and the boundary condition (78b) suggest to expand the function Φ1 as follows

Φ1 =
∞∑

m=0

Φ1m sin(mϕ).
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Fluid dynamics of the vitreous chamber A simple irrotational model

Solution II

Substituting the above expansion into the equations (78a) and (78b), we obtain the following
ODE

r
d2Φ1m

dr2
+

dΦ1m

dr
−

m2

r
Φ1m = 0, (79a)

dΦmn

dr
= mamα̇ (r = 1), (79b)

regularity (r = 0). (79c)

The general solution of equation (79a) is

Φ1m = c1r−m + c2rm.

The regularity condition at the origin (79c) implies c1 = 0. Imposing condition (79b) we obtain

Φ1m = α̇anr−m. (80)

Finally, from the linearised Bernoulli equation (78c) we find the pressure, which takes the form

p1 =
∞∑

m=1

[
α̈ sin(mϕ) + α̇2m cos(mϕ)

]
amrm.
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Fluid dynamics of the vitreous chamber A simple irrotational model

Results I

We show here results from an analogous but three-dimensional model based on the same
approach as described in the previous slides (Repetto, 2006).
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Fluid dynamics of the vitreous chamber A simple irrotational model

Results II
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Fluid dynamics of the vitreous chamber A simple irrotational model

Results III
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Fluid dynamics of the vitreous chamber A simple irrotational model

Some conclusions

This simple model suggests that, especially in the case of low viscosity fluids, the shape of
the vitreous chamber plays a significant role in vitreous motion.

The flow field is complex and significantly three-dimensional.

A circulation is likely to form in the anterior part on the vitreous chamber, close to the lens.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a deformed sphere

Vitreous motion in myopic eyes

The approach adopted in the previous section to treat the non-sphericity of the domain can also
be employed to study the motion of a viscoelastic fluid in a quasi-spherical domain.
We describe here the particular case of myopic eyes (Meskauskas et al., 2012).
In comparison to emmetropic eyes, myopic eyes are

larger in all directions;

particularly so in the antero-posterior direction.

Myopic eyes bear higher risks of posterior vitreous detachment and vitreous degeneration and,
consequently, an increased the risk of rhegmatogeneous retinal detachment.

The shape of the eye ball has been related to the degree of myopia (measured in dioptres D) by
Atchison et al. (2005), who approximated the vitreous chamber with an ellipsoid.
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(a) horizontal and (b) vertical cross sections of the domain for different degrees of myopia.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a deformed sphere

Mathematical problem

Equation of the boundary
We again describe the domain as a weakly deformed sphere, writing

R(ϑ, ϕ) = R(1 + δR1(ϑ, ϕ)),

where

R denotes the radius of the sphere with the same volume as the vitreous chamber;

δ is a small parameter (δ � 1);

the maximum absolute value of R1 is 1.

Expansion
We expand the velocity and pressure fields in terms of δ as follows

u = u0 + δu1 +O
(
δ2
)
, p = p0 + δp1 +O

(
δ2
)
.

Leading order problem O(δ0)

At leading order we find the solution in a sphere, discussed at page 146.

Order δ problem
The solution at order δ can be found in the form of a series expansion, similarly to what was done
in the case of the irrotational model (see page 140).
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a deformed sphere

Solution I

Stress distribution on the retina

Spatial distribution of (a, c) the maximum dimensionless tangential stress and (b, d) normal stress. (a) and (b):

emmetropic eye; (c) and (d): myopic eye with refractive error 20 D.
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Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a deformed sphere

Solution II

Maximum stress on the retina as a function of the refractive error
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Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 161 / 197



Fluid dynamics of the vitreous chamber Motion of a viscoelastic fluid in a deformed sphere

Some conclusions

The vitreous and the retina in myopic eyes are continuously subjected to significantly higher
shear stresses than emmetropic eyes.

This provides a feasible explanation for why in myopic eyes vitreous liquefaction, posterior
vitreous detachment and retinal detachment are more frequent than in emmetropic eyes.
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Flow in axons of the optic nerve during glaucoma

Flow in axons of the optic nerve during
glaucoma
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Flow in axons of the optic nerve during glaucoma Introduction

Introduction I

The optic nerve

The optic nerve acts like a cable
connecting the eye with the brain.

It transmits electrical impulses
from the retina to the brain.

It connects to the back of the eye
near the macula.
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Flow in axons of the optic nerve during glaucoma Introduction

Introduction II

Neuronal connectivity of the retina

The axons in the
retina are about
15 cm long.

They pass from the
retina through the
optic nerve head
along the optic
nerve and into the
brain.

There are
approximately one
million retinal
ganglion cells (and
therefore one
million axons!
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Flow in axons of the optic nerve during glaucoma Introduction

Introduction III

The optic nerve head

Section of the optic nerve head and the lamina cribrosa.
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Flow in axons of the optic nerve during glaucoma Introduction

Introduction IV

The lamina cribrosa

Lamina cribrosa.
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Flow in axons of the optic nerve during glaucoma Glaucoma

Glaucoma

Glaucoma is a disease of the eye that gradually narrows the field of vision.

This progression of damage can culminate in total blindness.

Glaucoma is the second leading cause of blindness worldwide.

It causes the progressive loss of retinal ganglion cells, giving rise to an optic neuropathy.

The mechanisms that initiate and fuel progression of the disease are not well understood.
However, it is known that glaucoma is related to high intraocular pressure.
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Flow in axons of the optic nerve during glaucoma Existing theories for the development of glaucoma

Possible mechanisms causing glaucoma

The mechanism whereby a high intraocular pressure leads to the loss of retinal ganglion cells has
so far proven to be enigmatic.

There are two main theories:

Cell loss due to mechanical deformation (e.g. Yan et al., 1994; Burgoyne et al., 2005).

Adverse effect on vascular perfusion (e.g. Yamamoto and Kitazawa, 1998).
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Flow in axons of the optic nerve during glaucoma Existing theories for the development of glaucoma

Theory of mechanical deformation I

Basic assumption:

An increase in IOP induces mechanical stress in the load-bearing tissues of the optic-nerve
(the lamina cribrosa, peripapillary sclera and scleral canal), which causes tissue deformation.

As the tissue deforms, it pinches the retinal ganglion cells inducing physiological stress that
could lead to cell death.

Several FEM models have been developed to understand the impact of a raised intraocular
pressure on the biomechanics of the optic-nerve head (e.g. Sigal et al., 2004, 2005).
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Flow in axons of the optic nerve during glaucoma Existing theories for the development of glaucoma

Theory of mechanical deformation II

From Ethier and Simmons (2007).
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Flow in axons of the optic nerve during glaucoma Existing theories for the development of glaucoma

Theory of vascular perfusion

Basic assumption:

The intraocular circulation is autoregulated. We know this because tissue perfusion is
independent of pressure.

It is hypothesised that glaucoma induces faulty autoregulation of blood flow in the
optic-nerve head (e.g. Evans et al., 1999; Flammer et al., 2002).

However, a modest elevation of intraocular pressure, in the region of 10 mm Hg, can lead to
optic neuropathy, even though this elevation is well within the range in which autoregulation
will operate.
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Flow in axons of the optic nerve during glaucoma An alternative assumption for glaucoma progression

Facts about the functions of neurons

Basic assumptions

Active axonal transport (AAT): this transports necessary substances in vesicles along the
axons,

AAT is induced by motor molecules:
dynein (retrograde transport: synapse to cell body),
kinesin (orthograde transport: cell body to synapse).

Dynein and kinesin gain energy by ATP (adesosine triphosphate),

ATP is distributed throughout the axons primarily by diffusion.
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Flow in axons of the optic nerve during glaucoma A possible alternative mechanism for glaucoma generation

A possible alternative mechanism for glaucoma generation I

Band et al. (2009)

Hypothesised sequence of events

The difference between the intraocular and cerebro-spinal pressures causes fluid flow along
the axons, called Passive Neuronal Intracellular Fluid Flow (PNIFF).

The PNIFF disrupts the diffusive transport of ATP and creates a ‘wash out’ zone close to
the lamina cribrosa in which ATP is depleted.

The ATP depletion leads to an energy deficiency that disrupts AAT. The axons will then
not be able to maintain communication between the cell body and the synapse, which could
lead to cell death.
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Flow in axons of the optic nerve during glaucoma A possible alternative mechanism for glaucoma generation

A possible alternative mechanism for glaucoma generation II

The mathematical model

1D model 2D model
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Flow in axons of the optic nerve during glaucoma A possible alternative mechanism for glaucoma generation

Typical values of the parameters

- Reliable data from the literature
- No data from the literature
- Very sparse or uncertain data
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Flow in axons of the optic nerve during glaucoma Formulation of the mathematical problem

Formulation of the mathematical problem I

Flow in the axons
Model using Poiseuille flow

Flux F (r , z) = −
πR4

8µ

∂p

∂z
, (81)

Velocity U(r , z) =
2F

πR2
=

R2

4µ

∂p

∂z
. (82)

Problem in the eye (1D model, z < 0)

−
d

dz

(
πR4

8µ

dp−

dz

)
+ 2πRκ− (p− − pe )︸ ︷︷ ︸

flux through wall

= 0. (83)
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Flow in axons of the optic nerve during glaucoma Formulation of the mathematical problem

Formulation of the mathematical problem II

Problem in the optic nerve (2D model, z > 0)

The cross-section of the optic nerve is
approximated as a hexagonal lattice of
axons.

Each axon is labelled by the (x , y)
coordinate of its centre.

The pressure in a given axon only
depends on z, thus p(x0,y0)(z) denotes
the value of p+ in the axon centred on
(x0, y0).
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Flow in axons of the optic nerve during glaucoma Formulation of the mathematical problem

Formulation of the mathematical problem III

Flux per unit area across the axon’s membrane
(e.g, A → B)

FAB = −
Rκ+√

3

(
p(x0+

√
3R,y0+R) − p(x0,y0)

)
.

(84)
Since R � a, a Taylor series can be used to
approximate these discrete pressure differences
by continuous pressure differences:

FAB = −
Rκ+√

3

(√
3R

∂p+

∂x
+ R

∂p+

∂y
+

3R2

2

∂2p+

∂x2

+
√

3R2 ∂
2p+

∂x∂y
+

R2

2

∂2p+

∂y2

)
. (85)
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Flow in axons of the optic nerve during glaucoma Formulation of the mathematical problem

Formulation of the mathematical problem IV

Summing over the six edges of the axon A:

∂F

∂z
=

Rκ+√
3

(
p(x0,y0+2R) + p(x0+

√
3R,y0+R) + p(x0−

√
3R,y0+R)

+p(x0+
√

3R,y0−R) + p(x0−
√

3R,y0−R) + p(x0,y0−2R) − 6p(x0,y0)

)
, (86)

and, using a Taylor series to approximate the above expression:

∂F

∂z
≈ 2
√

3R3κ+

(
∂2p+

∂x2
+
∂2p+

∂y2

)
=

2
√

3R3κ+

r

∂

∂r

(
r
∂p+

∂r

)
. (87)

Introduce Poiseuille’s law to evaluate F :

−
∂

∂z

(√
3R4

4µ

∂p+

∂z

)
−

2
√

3R3κ+

r

∂

∂r

(
r
∂p+

∂r

)
= 0 for 0 < r < a, z > 0. (88)
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Flow in axons of the optic nerve during glaucoma Formulation of the mathematical problem

Formulation of the mathematical problem V

Boundary conditions:
Regularity at the centre and continuity of pressure at the edge of the optic nerve:

∂p+

∂r
= 0 on r = 0, p+ = pc on r = a, (89)

where pc is the pressure of the cerebro-spinal fluid.

No flux through the ends of the axons:

F = 0 at z = L,−M. (90)

Continuity of the pressure and flux across the lamina cribrosa

p− = p+
dp−

dz
=
∂p+

∂z
at z = 0. (91)
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Solution I

Nondimensionalisation

p± = pc + (pe − pc ) p̂±, r = ar̂ , z = Lẑ, (92)

Dimensionless parameters

m =
M

L
, lo =

1

L

√
Ra2

8µκ+
, le =

1

M

√
R3

16µκ−
, (93)

so that

m is the ratio of the length of the axon in the eye and the length in the optic nerve,

lo is the ratio of the axial length scale over which the flux across the axons’ membranes
influences the axoplasmic pressure in the optic nerve and the length of the optic nerve, and

le is the ratio of the axial length scale over which the flux across the axons’ membranes
influences the axoplasmic pressure in the eye and the length of the axon in the eye.
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Solution II

Dimensionless equations and boundary conditions

l2
o
∂2p+

∂z2
+

1

r

∂

∂r

(
r
∂p+

∂r

)
= 0 in z > 0 problem in the optic nerve (94)

−m2l2
e

d2p−

dz2
+ p− − 1 = 0 in z < 0 problem in the eye (95)

∂p+

∂r
= 0 at r = 0

p+ = 0 at r = 1
dp−
dz

= 0 at z = −m
∂p+

∂z
= 0 at z = 1

p− = p+

dp−
dz

=
∂p+

∂z
= 0

}
at z = 0


boundary conditions (96)
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Solution III

Solution in the eye

p− (z; r) = 1 + A(r)
(

ez/(le m) + e−(2m+z)/(le m)
)
, (97)

for z < 0 (we have applied the boundary condition at z = −m.
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Solution IV

Solution in the optic nerve
Use separation of variables to obtain the general solution for p+ as a sum of functions of the form(

C (1)eλz/lo + C (2)e−λz/lo
)(

C (3)J0(λr) + C (4)Y0(λr)
)
, (98)

where J0 and Y0 are Bessel functions of the first and second kinds respectively at order zero.

Apply the boundary conditions to obtain C (4) = 0 and e2λj/lo C
(1)
j = C

(2)
j , and hence

p+ (r , z) =
∞∑

j=1

Cj

(
eλj z/lo + eλj (2−z)/lo

)
J0

(
λj r
)
, (99)

where

Cj =
(

1− e−2/le
) 1

λj
J1(λj )

(∫ 1

0
r
(
J0(λj r)

)2
dr

)−1

×
[(

1 + e2λj/lo
)(

1− e−2/le
)
−

mleλj

lo

(
1 + e−2/le

)(
1− e2λj/lo

)]−1

, (100)

A(r) =

−1 +
∞∑

j=1

Cj

(
1 + e2λj/lo

)
J0(λj r)

(1 + e−2/le
)−1

. (101)
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Results I

Axoplasmic pressure and flux close to the edge of the optic nerve
For IOP = 30 mmHg
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Results II

In health ATP is distributed along the axon primarily by diffusion.

The PNIFF is expected to influence the ATP distribution by advecting ATP downstream.

This may result in depletion of ATP locally.

The relative importance of advection to diffusion is characterised by the Peclet number

Pe = Ul/D (102)

Large Pe: advection dominates
Small Pe: diffusion dominates

where

U characteristic velocity
l characteristic lengthscale of the diffusion process
D diffusion coefficient

Note: Since ATP is produced by mitochondria it must diffuse between them to supply energy
throughout the axon. Therefore we could base our estimate of the lengthscale l on the average
distance between neighbouring mitochondria.
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Flow in axons of the optic nerve during glaucoma Results

Results III

Damage is expected to occur in regions where Pe is order 1 or larger. The shaded parts of this
figure show the regions where Pe > 1 for three different IOP’s. These are the regions in which
the model predicts that damage could occur.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 188 / 197



Flow in axons of the optic nerve during glaucoma Conclusions

Conclusions

The mathematical model shows that the PNIFF mechanism is a plausible explanation for the
generation of glaucoma.

Although the PNIFF may transport material to compensate the breakdown of orthograde
AAT, the retrograde transport would still be impaired.

Both orthograde and retrograde transports are essential for cell functionality.

The locations of reduced AAT are qualitatively consistent with experimental observations.

This model does not exclude the possibility that other mechanisms (e.g. mechanical
deformation of the lamina cribrosa) may also contribute to cell death in the optic nerve.

Accounting for the finite thickness of the lamina cribrosa made relatively little difference to
the results.

Important note

The PNIFF mechanism presented here predicts that it is the pressure difference between the
IOP and the pressure in the cerebro-spinal fluid that induces AAT disruption, as opposed to
the absolute value of the IOP.

Low pressures in the cerebro-spinal fluid have recently been observed in patients with
glaucoma.
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Appendix:
the equations of motion in different

coordinates systems
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Appendix: the equations of motion in different coordinates systems Cylindrical coordinates

Cylindrical coordinates

Let us consider cylindrical coordinates (z, r , ϕ), with corresponding velocity components
(uz , ur , uϕ).

Continuity equation

∂uz

∂z
+

1

r

∂

∂r
(rur ) +

1

r

∂uϕ

∂ϕ
= 0 (103)

Navier-Stokes equations

∂uz

∂t
+ uz

∂uz

∂z
+ ur

∂uz

∂r
+

uϕ

r

∂uz

∂ϕ
+

1

ρ

∂p

∂z
− ν

[
∂2uz

∂z2
+

1

r

∂

∂r

(
r
∂uz

∂r

)
+

1

r2

∂2uz

∂ϕ2

]
= 0. (104)

∂ur

∂t
+ uz

∂ur

∂z
+ ur

∂ur

∂r
+

uϕ

r

∂ur

∂ϕ
−

u2
ϕ

r
+

1

ρ

∂p

∂r
+

− ν
[
∂2ur

∂z2
+

1

r

∂

∂r

(
r
∂ur

∂r

)
+

1

r2

∂2ur

∂ϕ2
−

ur

r2
−

2

r2

∂uϕ

∂ϕ

]
= 0. (105)

∂uϕ

∂t
+ uz

∂uϕ

∂z
+ ur

∂uϕ

∂r
+

uϕ

r

∂uϕ

∂ϕ
+

ur uϕ

r
+

1

ρr

∂p

∂ϕ
+

− ν
[
∂2uϕ

∂z2
+

1

r

∂

∂r

(
r
∂uϕ

∂r

)
+

1

r2

∂2uϕ

∂ϕ2
+

2

r2

∂ur

∂ϕ
−

uϕ

r2

]
= 0. (106)
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Spherical polar coordinates I

Let us consider spherical polar coordinates (r , ϑ, ϕ) (radial, zenithal and azimuthal), with
corresponding velocity components (ur , uϑ, uϕ).

Continuity equation

1

r2

∂

∂r

(
r2ur

)
+

1

r sinϑ

∂

∂ϑ
(sinϑuϑ) +

1

r sinϑ

∂uϕ

∂ϕ
= 0. (107)

Navier-Stokes equations

∂ur

∂t
+ ur

∂ur

∂r
+

uϑ

r

∂ur

∂ϑ
+

uϕ

r sinϑ

∂ur

∂ϕ
−

u2
ϑ

r
−

u2
ϕ

r
+

1

ρ

∂p

∂r
+

− ν
[

1

r2

∂

∂r

(
r2 ∂ur

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂ur

∂ϑ

)
+

1

r2 sin2 ϑ

∂2ur

∂ϕ2
+

−
2ur

r2
−

2

r2 sinϑ

∂(uϑ sinϑ)

∂ϑ
−

2

r2 sinϑ

∂uϕ)

∂ϕ

]
= 0. (108)

∂uϑ

∂t
+ ur

∂uϑ

∂r
+

uϑ

r

∂uϑ

∂ϑ
+

uϕ

r sinϑ

∂uϑ

∂ϕ
+

ur uϑ

r
−

u2
ϕ cotϑ

r
+

1

ρr

∂p

∂ϑ
+

− ν
[

1

r2

∂

∂r

(
r2 ∂uϑ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂uϑ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2uϑ

∂ϕ2
+
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Spherical polar coordinates II

+
2

r2

∂ur

∂ϑ
−

uϑ

r2 sin2 ϑ
−

2 cosϑ

r2 sin2 ϑ

∂uϕ)

∂ϕ

]
= 0. (109)

∂uϕ

∂t
+ ur

∂uϕ

∂r
+

uϑ

r

∂uϕ

∂ϑ
+

uϕ

r sinϑ

∂uϕ

∂ϕ
+

ur uϕ

r
+

uϑuϕ cotϑ

r
+

1

ρr sinϑ

∂p

∂ϕ
+

− ν
[

1

r2

∂

∂r

(
r2 ∂uϕ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂uϕ

∂ϑ

)
+

1

r2 sin2 ϑ

∂2uϕ

∂ϕ2
+

+
2

r2 sinϑ

∂ur

∂ϕ
+

2 cosϑ

r2 sin2 ϑ

∂uϑ

∂ϕ
−

uϕ

r2 sin2 ϑ

]
= 0. (110)

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 193 / 197



References

References I

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope. Shape of
the retinal surface in emmetropia and myopia. Investigative Ophthalmology & Visual Science,
46(8):2698–2707, 2005. doi: 10.1167/iovs.04-1506.

L. R. Band, C. L. Hall, G. Richardson, O. E. Jensen, J. H. Siggers, and A. J. E. Foss. Intracellular
flow in optic nerve axons: A mechanism for cell death in glaucoma. Investigative
Ophthalmology & Visual Science, 50(8):3750 –3758, 2009. doi: 10.1167/iovs.08-2396.

W. Becker. Metrics. In R. Wurtz and M. Goldberg, editors, The neurobiology of saccadic eye
movements. Elsevier Science Publisher BV (Biomedical Division), 1989.

R. J. Braun. Dynamics of the tear film. Annual Review of Fluid Mechanics, 44(1):267–297, 2012.
doi: 10.1146/annurev-fluid-120710-101042.

C. Burgoyne, J. Downs, A. Bellezza, J. Suh, and R. Hart. The optic nerve head as a
biomechanical structure: a new paradigm for understanding the role of iop-related stress and
strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res.,
24:39–73, 2005.

C. R. Canning, M. J. Greaney, J. N. Dewynne, and A. Fitt. Fluid flow in the anterior chamber of
a human eye. IMA Journal of Mathematics Applied in Medicine and Biology, 19:31–60, 2002.

C. R. Ethier and C. A. Simmons. Introductory Biomechanics - From Cells to Organisms.
(Cambridge Texts in Biomedical Engineering) Cambridge University Press, 2007.

C. R. Ethier, M. Johnson, and J. Ruberti. Ocular biomechanics and biotransport. Annu. Rev.
Biomed. Eng, 6:249–273, 2004.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 194 / 197



References

References II

D. Evans, A. Harris, M. Garrett, H. Chung, and L. Kagemann. Glaucoma patients demonstrate
faulty autoregulation of ocular blood flow during posture change. Brit. Med. J., 83(7):809,
1999.

A. D. Fitt and G. Gonzalez. Fluid mechanics of the human eye: Aqueous humour flow in the
anterior chamber. Bulletin of Mathematical Biology, 68(1):53–71, 2006.

J. Flammer, S. Orgül, and V. Costa. The impact of ocular blood flow in glaucoma. Prog. Retin.
Eye Res., 21(4):359–393, 2002.

J. J. Heys and V. H. Barocas. A boussinesq model of natural convection in the human eye and
formation of krunberg’s spindle. Annals of Biomedical Engineering, 30:392–401, 2002.

J. J. Heys, V. H. Barocas, and M. J. Taravella. Modeling passive mechanical interaction between
aqueous humor and iris. Transactions of the ASME, 123:540–547, December 2001.

B. Lee, M. Litt, and G. Buchsbaum. Rheology of the vitreous body. Part I: viscoelasticity of
human vitreous. Biorheology, 29:521–533, 1992.

J. Meskauskas, R. Repetto, and J. H. Siggers. Oscillatory motion of a viscoelastic fluid within a
spherical cavity. Journal of Fluid Mechanics, 685:1–22, 2011. doi: 10.1017/jfm.2011.263.

J. Meskauskas, R. Repetto, and J. H. Siggers. Shape change of the vitreous chamber influences
retinal detachment and reattachment processes: Is mechanical stress during eye rotations a
factor? Investigative ophthalmology & visual science, 53(10):6271–6281, Oct. 2012. ISSN
1552-5783. doi: 10.1167/iovs.11-9390. PMID: 22899755.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 195 / 197



References

References III

C. S. Nickerson, J. Park, J. A. Kornfield, and H. Karageozian. Rheological properties of the
vitreous and the role of hyaluronic acid. Journal of Biomechanics, 41(9):1840–6, 2008. doi:
10.1016/j.jbiomech.2008.04.015.

R. Repetto. An analytical model of the dynamics of the liquefied vitreous induced by saccadic eye
movements. Meccanica, 41:101–117, 2006. doi: 10.1007/s11012-005-0782-5.

R. Repetto, A. Stocchino, and C. Cafferata. Experimental investigation of vitreous humour
motion within a human eye model. Phys. Med. Biol., 50:4729–4743, 2005. doi:
10.1088/0031-9155/50/19/021.

T. Rossi, G. Querzoli, G. Pasqualitto, M. Iossa, L. Placentino, R. Repetto, A. Stocchino, and
G. Ripandelli. Ultrasound imaging velocimetry of the human vitreous. Experimental eye
research, 99(1):98–104, June 2012. ISSN 1096-0007. doi: 10.1016/j.exer.2012.03.014. PMID:
22516112.

T. W. Secomb. Modeling and Simulation of Capsules and Biological Cells, chapter 4. Mechanics
of red blood cells and blood flow in narrow tubes. Chapman and Hall/CRC, 1 edition, May
2003. ISBN 1584883596.

I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier. Finite element modeling of optic nerve
head biomechanicsp. Investigative ophthalmology & visual science, 45(12):4378–4387,
December 2004.

I. A. Sigal, J. G. Flanagan, and C. R. Ethier. Factors influencing optic nerve head biomechanics.
Investigative Ophthalmology & Visual Science, 46(11):4189–4199, November 2005.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 196 / 197



References

References IV

J. H. Siggers and C. R. Ethier. Fluid mechanics of the eye. Annual Review of Fluid Mechanics, 44
(1):347–372, 2012. doi: 10.1146/annurev-fluid-120710-101058.

K. Swindle, P. Hamilton, and N. Ravi. In situ formation of hydrogels as vitreous substitutes:
Viscoelastic comparison to porcine vitreous. Journal of Biomedical Materials Research - Part A,
87A(3):656–665, Dec. 2008. ISSN 1549-3296.

R. I. Tanner. Engineering Rheology. Oxford University Press, USA, 2 edition, May 2000. ISBN
0198564732.

T. Yamamoto and Y. Kitazawa. Vascular pathogenesis of normal-tension glaucoma: a possible
pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog.
Retin. Eye Res., 17(1):127–143, 1998.

D. Yan, F. Coloma, A. Metheetrairut, G. Trope, J. Heathcote, and C. R. Ethier. Deformation of
the lamina cribrosa by elevated intraocular pressure. Brit. J. Ophthalmol., 78(8):643–648, 1994.

Rodolfo Repetto (University of Genoa) Mathematical models of the human eye May 2016 197 / 197


	Introduction to the fluid mechanics of the human eye
	What is biological fluid mechanics?
	Peculiarities of physiological fluid flows
	Anatomy of the eye
	The anterior segment
	The posterior segment
	Visual tricks
	Specific references

	Basic notions of fluid mechanics
	The Continuum Approach
	Statics of fluids
	Kinematics of fluid
	Equations of motion for a continuum
	Scaling and dimensional analysis
	The dynamic pressure
	Lubrication Theory
	The Boussinesq approximation for thermally driven flows
	Irrotational flows
	Rheological models for non-Newtonian fluids

	Flow in the posterior chamber
	Aqueous flow
	Motivation
	A model of the flow in the posterior chamber
	Results

	Flow in the anterior chamber
	Thermal flow between infinitely long parallel plates
	Analytical model of aqueous humour flow
	Numerical models of aqueous humour flow

	Fluid dynamics of the vitreous chamber
	The vitreous humour
	Motivations
	Unidirectional motion of a viscoelastic fluid
	Motion of a viscous fluid in a periodically rotating sphere
	Motion of a viscoelastic fluid in a sphere
	A simple irrotational model
	Motion of a viscoelastic fluid in a deformed sphere

	Flow in axons of the optic nerve during glaucoma
	Introduction
	Glaucoma
	Existing theories for the development of glaucoma
	An alternative assumption for glaucoma progression
	A possible alternative mechanism for glaucoma generation
	Formulation of the mathematical problem
	Solution
	Results
	Conclusions

	Appendix: the equations of motion in different coordinates systems
	Cylindrical coordinates
	Spherical polar coordinates


