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Chapter 1

Introduction

In the last two decades the understanding of the basic mechanisms control-
ling the large scale morphodynamics of river systems has been considerably
improved. The latter progress, though accomplished with the aid of a large
number of field observations and laboratory investigations, is mainly the re-
sult of theoretical analyses based on a mechanical approach, coupled with
reasonable assumptions on relative importance of the temporal and spatial
scales involved. In this context asymptotic (perturbation) methods have
been proved to be particularly successful to describe the variety of patterns
which may arise when a suitable model for the hydrodynamic transport of
particles is fed into the conservation law for sediment. For instance, the for-
mation of river bars has been conclusively explained in terms of an inherent
instability of an erodible bed subject to a turbulent flow in almost straight
channels. This leads to the spontaneous development of free bottom pertur-
bations migrating downstream. Furthermore, the fundamental mechanisms
which control the planimetric evolution of single channels have been mainly
understood in terms of nonlinear competition between (self-excited) free bed
responses and the forced topography.

However theoretical predictors mostly refer to the case of single thread
channels (meandering rivers), well sorted sediment and steady flow. As for
braided rivers, satisfying dynamical models are not yet available: further-
more, typical signs of chaotic behavior seem to emerge from the results of
the simplified model of Murray & Paola (1994), which suggest that the be-
havior of these systems may be unpredictable over large time scales.

The fundamental factors distinguishing braided from meandering rivers
are still unclear. However braiding seems to occur provided the flow be suf-
ficiently laterally unconstrained, this implying that the channels can change
freely their width. Furthermore, braiding occurs in the presence of bedload
transport rather that suspended load. On the other hand meandering rivers

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Sunwapta river, Alberta, Canada (flow from left to right).

do not develop without the presence of some form of sides stabilization to
constrain the flow laterally, such as cohesive material constituting the banks
or the presence of vegetation. According to these observations Murray &
Paola (1994) define the braiding process as “the fundamental instability of

laterally unconstrained free-surface flow over choesionless beds”. Further-
more the authors consider the meandering of rivers as the result of partial
suppression of the above instability by factors that can inhibit local rede-
position, such as dominant suspended load, or can constrain laterally the
channel. In figures 1.1 and 1.2 two examples of braided rivers are shown.

A detailed modeling of a braided network presents several difficulties, the
system being characterized by numerous complicating features. The main
physical ingredients required to correctly reproduce the generation and de-
velopment of braided systems are briefly discussed in the following.

i) Strong nonlinearities. Braided systems are characterized by strong non
linearities; in particular the interactions between free responses of the
system (due to an inherent instability of free surface turbulent flow over
an erodible bed) and forced responses (induced by physical constraints,
such as curvature, width variations, confluences, . . . ) crucially affect
the topographic behavior of the network.

ii) Unsteadiness. Flow field and sediment transport in braided rivers are
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Figure 1.2: Borbera river, Italy (courtesy of Guido Zolezzi).

typically unsteady. An equilibrium configuration of the system does not
seem to exist, rather a recursive process of formation and obliteration
of bed forms and planimetric structures is always observed.

iii) Time scales. Unlike in the case of meandering rivers, where bed devel-
opment is much faster than planform development due to the effect of
cohesion and vegetation on bank stability, here the time scales of bed
and bank erosion are comparable. Hence, the full coupling between bed
and planform evolution must be retained. Furthermore, bank erosion
induces a net effect on sediment transport.

iv) Gravitational effects on sediment transport. Gravitational effects on
bedload transport have been found to play a fundamental role in river
morphodynamics, since they affect both the instability process which
leads to bar development and the equilibrium configuration of bedforms
(Fredsøe (1978), Colombini et al. (1987)). In braided systems the
presence of strong local depositions and scours, like those induced by
channel migration and confluences, implies that such effects have to be
taken into account in detail.

v) Partially transporting cross sections. Braided rivers are characterized
by relatively small values of Shields stress, which falls close to the crit-
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ical value even at high stages. Typically only some branches are simul-
taneously active. Furthermore, in a single channel sediment transport
may occur only in a limited part of the cross section; hence, the possi-
bility of partial transport of sediment within the cross section must be
accounted for to model the network.

vi) Secondary flows. Depositional and scour phenomena in alluvial rivers
are often associated with the development of secondary flows: a notable
example is bed deformation associated with secondary flows induced
by centrifugal effect in curved channels. In braided systems secondary
flows may be triggered by centrifugal effect induced by curvature of
streamlines of depth averaged flow and by inertial effects associated
with flow adjustments to spatial variations of channel geometry.

vii) Finite length effects. The relatively small length of each branch, due
to the continuous interplay of channels, implies that the condition of
infinite longitudinal domain, which is often introduced to investigate
bar development in rivers, can be hardly reproduced by single branches
of braided systems. Hence, upstream and downstream influences may
crucially affect water and sediment motion in each channel.

Due to the above features, braided rivers have been so far investigated
within the context of two different, and somehow complementary, points of
view: the study of the whole network under suitable simplifying hypotheses
or the investigation of single unit processes characterizing the network. Both
approaches are supported by experimental and field works which provide a
fundamental patrimony of observations and data.

Following the first approach several numerical models have been devel-
oped, with the aim of identifying the essential processes required to describe
the dynamics of the network. Murray & Paola (1994), for instance, tackle
the problem through a cellular model: the spatial domain is split into cells
and simple laws for the exchange of water and sediment between adjacent
cells are adopted. The given initial condition is a uniformly sloping bed over
which a white-noise perturbation is superimposed. The model is able to re-
produce a braiding-like configuration and seems suitable to catch the main
features of a braiding: channels divisions, confluences, branches migration;
however, the unit processes can not be described in detail.

A second approach to braided rivers consider separately single unit pro-
cesses governing the generation and development the network. Two experi-
mental works of Ashmore (1982, 1991) provide a detailed description of these
unit processes, which can be summarized as follows.
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(a) (b)

(c)

Figure 1.3: Braiding mechanisms. (a) central bar braiding mechanism, (b)
alternating point bar chute cutoff, (c) dissection of multiple row bars (from
Ashmore (1991)).

Channel bifurcations

Channel bifurcations are the formative process in braided systems; Ashmore
(1991) describes the possible mechanisms through which braiding may de-
velop:

i) Central bar mechanism and dissection of transverse unit bar. These two
mechanisms are the most commonly documented processes of braiding
generation and have been first described by Leopold & Wolman (1957).
They essentially imply the development of a submerged central bar
initiated from a symmetrical transverse unit bar, whose downstream
margin is usually marked by the accumulation of the coarsest fraction
of bedload. Figure 1.3a shows the typical development of this process:
the presence of the bar forces the flow to diverge and the central nucleus
is eventually exposed. Immediately downstream of the bar the divided
flows produce scour pools against the opposite banks, thus inducing a
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Figure 1.4: Circulation in a simple channel junction (from Ashmore (1982)).

widening of the channel and the generation of a bifurcation. Ashmore
(1991) suggests that the distinction between the central bar mechanism
and the dissection of transverse unit bar is essentially due to the much
higher sediment mobility which characterizes the latter process.

ii) Chute cutoff mechanism. A commonly reported alternative braiding
process is the chute cutoff of point bars in low-sinuosity channels. Fig-
ure 1.3b shows an example of alternating point bar cutoff. A transverse
alternating point bar in a weakly curved channel is transformed into a
more complex bed form by lateral accretion of portions of migratory
sheets that move along the channel. The rapid point bar accretion and
concave bank erosion immediately upstream of the chute causes more
flow to be directed over the point bar. The steep gradient near the head
of the slough channels captures progressively larger volumes of water.
The chute rapidly widen leading to the bifurcation of the flow. Chute
cutoff process plays an important role in maintenance of the braided
planform.

iii) Multiple bars mechanism. The generation of braiding from multiple
row bars was first documented by Fujita & Muramoto (1988). This
particular mechanism appears to be a special case that applies only to
channels with very high values of the width/depth ratio. The initial
bed configuration, consisting of numerous multiple bars, is gradually
converted to fewer larger bars which concentrate the flow into scour
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Figure 1.5: Avulsion and incision of a new channel (from Ashmore (1982)).

hollows, leading to dissection and emergence of portions of the bed and
finally to braiding (figure 1.3c).

Confluences

Another important unit process is represented by channel confluences; it is
probably the most studied braiding process since channel junctions generate
deep scour holes (see for instance Ashmore & Parker (1983)). The scour is
the result of strong secondary currents generated by the flow convergence
(figure 1.4). Scour occurs in the zone of attachment of helical cells and
deposition in the separation zone. According to Mosley (1976) the scour
depth is controlled by the angle of incidence of the two channels and by the
proportion of the total discharge flowing in each branch. The hole tends to
parallel the alignment of the dominant channel.

Bar formation

In single branches of braided rivers alternating bars develop, similar to those
of the straight channels. Though their formation may be associated to an in-
herent instability of the flow-sediment system, their development is crucially
affected by local flow conditions like curvature and local widening. Channels
confluences and alternating bars development are mainly responsible for the
generation of scour holes.
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Figure 1.6: Incision of a large bar (from Ashmore (1982)).

Avulsions

Avulsions (figure 1.5) are typical events in a fully developed braiding. They
occur under a variety of circumstances and do not necessarily involve reoccu-
pation of an abandoned channel. The presence of bars plays a crucial role on
the generation of avulsions both inducing bank erosion and raising the local
water level allowing overtopping of the channels sides. When the water finds
a definite path across the surface the incision of a new channel may occur.

Incision of bars

In braided networks large bars are often subject to an incision due to the
generation of an axial trough which displays accelerated sediment transport
(figure 1.6). This phenomenon usually occurs during declining water dis-
charge, being triggered by the concentration of flow along one line.

Channels migration

Single channels in braided networks are subject to planimetric migration
similar to that displayed by meandering rivers. However, since bank erosion
occurs on a time scale which is of the same order of the scale of the altimetric
deformation of the bed, channel migration in braided rivers is much faster
than in meandering channels. The lateral migration of branches is typically
driven by the scour at the outer bank produced by streamlines curvature.
Strong width variations are also often documented.
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In the present work the attention is focused on two unit processes charac-
terizing braided systems. The first mechanism which have been investigated
is the formation of a channel bifurcation. As discussed above, a mechanism
which appears to play a significant role in such process is the tendency for
diverging flows to give rise to sediment deposition in the central region of
the channel, which in turn implies a tendency of the flow to concentrate
on the sides of the central bar. In chapters 2, 3 and 4 of the present work
the problem of bed development in channels subject to periodic width varia-
tions is tackled both experimentally and theoretically. The results show that
width variations are likely to enhance the formation of central depositions
and scours, suggesting that the development of transverse variations of the
bed are mainly related to the development of secondary flows induced by the
variable channel geometry. Under suitable conditions the equilibrium bed
topography, forced by a variable bank profile, may lead the channel to be
planimetrically unstable: the flow tends to enhance any small initial width
variation leading to the generation of a bifurcation. Furthermore, theoretical
and experimental results show that width variations inhibit the development
of migrating alternating bars and promote the transition of previously formed
alternating bars to steady central deposits.

A second unit process which has been considered in chapter 5 is the
mechanism whereby one of the bifurcating channels may be progressively
abandoned. The stability of a bifurcation has been investigated through a
one dimensional numerical model, both in the unperturbed case and in the
case forced by boundary conditions.
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Chapter 2

Experimental study in a flume
with variable width

2.1 Introduction

Width variations constitute a typical characteristic of natural rivers, which
may also manifest a certain degree of regularity as exhibited by spectral anal-
yses of the planforms of natural streams (figure 2.1, figure 2.2). Width varia-
tions may be originated, in almost straight reaches, by bank erosion induced
by bar development and migration; in meandering channels width variations
follow closely curvature variations, with a dominant frequency correspond-
ing to half the length of meanders. All the available predicting models of
river development are based on the assumption of constant channel width:
however, recent experimental results obtained by Bittner (1994) in a labora-
tory flume with periodically varying width suggest that width variations may
induce typical topographic responses and enhance the formation of central
bars.

The problem bears both a conceptual and practical relevance. In fact, like
the effect of variable curvature in a meandering channel, which constitutes its
antisymmetric counterpart, the study of flow field and bottom topography in
a channel with periodic width variations represents the model problem for a
cohesionless channel subject to a symmetric planimetric forcing. Notice that
in the case of meandering channels the forced altimetric response essentially
consists of depositional bars displaying a spatial structure similar to that of
alternate bars which would spontaneously develop in the channel.

In the present case the forced response exhibits a transverse structure
similar to that of central bars. According to the available predicting models,
provided the channel be not exceedingly wide, central bars are not expected

11
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Figure 2.1: Width variations in Sunwapta river, Alberta, Canada (flow to-
ward the camera).

to form spontaneously in the absence of some forcing mechanism. Hence,
the study of width variations may also turn out to be relevant to under-
stand the process of channel bifurcation, which constitutes one of the unit
processes characterizing the dynamic behavior of braided systems. Experi-
mental observations suggest that, whatever be the primary mechanism, the
direct formation of a central bar, as suggested by field observations of Leopold
& Wolman (1957), or the transition from migrating alternate bars to steady
central bars, as documented by flume experiments performed by Ashmore
(1982), channel bifurcation is typically the consequence of a central bar de-
posit.

Width variations may also be important with respect to the interactions
they may exhibit with large-scale migrating forms such as bars. It is well
known that repetitive sequences of scour holes and depositional diagonal
fronts, with vertical scale of the order of the flow depth, develop sponta-
neously and migrate in straight channels with constant width, provided the
width to depth ratio exceed a threshold value which depends on flow and sed-
iment characteristics (Colombini et al. (1987)). Free bars display a variety
of possible altimetric patterns depending upon the most unstable transverse
mode (alternate, central or multiple rows bars). Theoretical analyses and
experimental results suggest that, when the sediment is mainly transported
as bed load, the alternate bars configuration is dominant for typical values
of the width to depth ratio of the channel. This generally implies that the
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Figure 2.2: Spectral analysis of width variations, Meduna river, Italy (A
harmonics amplitude, λ wave number).

associated effects of scour and deposition may be quite large. The latter
consideration justifies the attention which has been devoted so far to iden-
tify those mechanisms which can inhibit the formation of migrating bars and
stabilize bottom topography. Kinoshita & Miwa (1974) first showed that
channel sinuosity induces a damping effect on bar formation and migration.
They observed both the coexistence of free bars with the forced topogra-
phy driven by curvature, at low sinuosity, and the suppression of migrat-
ing bars for larger values of channel sinuosity. The latter process has been
also documented in subsequent laboratory experiments, both in the case of
weakly meandering channels (Colombini et al. (1992)) and in the case of
large amplitude meanders (Whiting & Dietrich (1993)). The process has
been interpreted theoretically by Tubino & Seminara (1990) with reference
to a regular sequence of small-amplitude meanders. They found that migrat-
ing bars are suppressed provided the maximum channel curvature exceed a
threshold value, which essentially depends on the amplitude of bars which
would develop in the channel in the absence of the forcing effect of curvature.

In the present chapter the results of experiments performed in a flume
with periodic width variations are presented. The attention is focused both
on the determination of equilibrium flow field and bed topography in the
channel and on the suppressive role of width variations on migrating alternate
bars.
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2.2 Experimental set up

The experiments were carried out in a flume with a length of 15m and a
maximum width of 60cm (figure 2.3) in the Hydraulic Laboratory of the
University of Trento. Along both sides of the channel was a 30cm high rail
that supported a carriage used for levelling the bed and measuring bottom
topography. The rail slope could be regulated at the prescribed value. At the
downstream end of the flume a sedimentation tank was placed, with a length
of 1.3m. Periodic width variations were constructed inside of the channel,
attaching 2.5m long and 0.4m high strips of PVC to wooden profiles, to form
vertical flume walls. The banks configuration considered is described by the
following relation

b∗ = b∗0 [1 + a cos (λ∗bx
∗)] , (2.1)

where b∗ and b∗0 are local and average half width, respectively, λ∗b is the wave
number of width variations and finally a is the amplitude of such variations.
Three different bank configurations have been tested: their geometrical char-
acteristics are summarized in the following table

λb a
0.5 0.25
0.3 0.25
0.3 0.5

Table 2.1: Realized bank configurations.

where λb = λ∗bb
∗

0 is the dimensionless wavenumber of width variations.
The main hydraulic circuit was constituted by

i) a pump with the following characteristics

maximum head ∆max=30m,

maximum discharge Qmax=59m3/h;

ii) a PVC delivery pipe DN50;

iii) an electromagnetic discharge meter with a relative precision of ∼2%;

iv) a 8m3 downstream tank.

At channel inlet the kinetic energy of the incoming flow was dissipated
through a system of metallic meshes. Furthermore, the initial part of the
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Figure 2.3: Picture of the flume.

flume, for a length of 50cm, was protected with gravel in order to avoid local
erosion.

The flume was filled with a well-sorted 1.3mm sediment, recirculated
through a cyclone pump from the channel downstream end to a second hydro-
cyclone, installed at the head of the flume, where the sediment and the water
used to recirculate it were separated. Water level inside of the tank was set
using a sluice gate. The cyclone pump was driven by a pump with maximum
head ∆max=6m and maximum discharge Qmax=200l/min.

To evaluate the water level along the channel during each run, eleven
piezometers have been placed with a longitudinal spacing of 1.2m.

Bed elevation was surveyed using a laser profiler mounted on a carriage
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driven by a motor along longitudinal and transverse directions. The laser is
able to survey the bed elevation in the absence of water flow; hence, once
a steady condition was achieved, the pumps were switched off and a back-
water profile was generated through the downstream tailgate to prevent the
dissection of bed topography.
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2.3 Experimental runs

2.3.1 Experiments performed

Uniform water and sediment flow in a movable bed channel with a given
width, is completely defined once three dimensionless parameters are fixed.
The following choice has been adopted herein

β =
b∗0
D∗

0

= width ratio, (2.2a)

ds =
d∗s
D∗

0

= grain roughness parameter, (2.2b)

ϑ0 =
τ ∗0

(ρs − ρ)gd∗s
= Shields parameter, (2.2c)

where D∗

0 is the uniform water depth, d∗s is sediment diameter, τ ∗0 is bed shear
stress, ρs and ρ are sediment and water density, respectively and finally g is
gravity.

Theoretical approaches to river morphodynamics (see for instance Colom-
bini et al. (1987)) suggest that the width to depth ratio β is the crucial
parameter which controls the formation of migrating macro-scale bedforms
(alternate or multiple bars); in particular, for given values of ϑ0 and ds, it
is possible to define a threshold value of β above which such bedforms de-
velop in the channel. One of the main purposes of our experimental study
is to understand the role that width variations play on the formation and
migration of alternate bars; hence a wide range of values of β have been in-
vestigated. However it is not possible, for given channel width, to increase the
width/depth ratio of the channel beyond certain values which would imply
Shields stresses below the threshold value for sediment movement ϑc. The ex-
periments have been performed for different water discharge and slope, which
correspond to the following ranges of values of dimensionless parameters

5.5 < β < 18,

ϑc < ϑ0 < 0.13,

0.05 < ds < 0.12.

2.3.2 Experimental procedure

In each experiment the following procedure was adopted.
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i) The bed was smoothed flat to the prescribed slope before each exper-
iment using a wide scraper attached to a carriage that ran along the
rails.

ii) Bottom elevation was surveyed with the laser profiler in order to check
the exact initial conditions. In each cross section 50 points were mea-
sured, with a longitudinal spacing of 10cm.

iii) A very low discharge was passed over the bed prior to the experiments
to prepare a smooth, saturated surface. The required discharge was
then achieved.

iv) During the run the following variables were periodically measured:

water discharge,

water level along the flume,

sediment discharge using a trap placed at the downstream end of the
channel.

v) The shape and position of bedforms in the channel were periodically
sketched and the migration speed of bars was estimated.

vi) Once the bottom had reached a quasi-steady condition the downstream
sluice gate was closed and a backwater profile was generated; the flume
was then slowly emptied.

vii) After few minutes, when the bed surface was dry, the bottom elevation
was surveyed using the laser profiler, measuring 50 points in each cross
section with a longitudinal spacing of 10cm.

viii) The position and length of each bar in the flume was measured in detail.

ix) Bottom elevation data have been analyzed through a FFT procedure.
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2.4 Experimental results

Two series of experiments have been carried out, which will be described in
the following.

2.4.1 Series “a”: suppression of free bars

The first series of experiments, denoted with “a”, was specifically designed
in order to ascertain whether or not width variations may have a suppressive
role on alternating bars development and migration.

A first set of experiments has been performed in a channel with a constant
width of 40cm, for different values of water discharge and slope. In this
case the development of regular trains of free migrating bars was observed
with dominant wave lengths which fall within the unstable range predicted
by the theoretical analysis of Colombini et al. (1987). In a second set of
experiments the behavior of free bars in channels with variable width has
been investigated, under identical hydraulic conditions and average width of
the previous case. The dimensionless wavenumber of width variations λb was
equal to 0.5 and the maximum width of the channel was equal to 50cm, which
corresponds to a = 0.25. A complete summary of experimental conditions is
reported in table 2.2, where with S is denoted the initial channel slope, with
Q the water discharge and with D0 the uniform flow depth. Furthermore,
βc is the critical value of width/depth ratio above which alternate bars are
expected to develop in the channel as predicted by Colombini et al. (1987).

run S Q [l/min] D∗

0 [m] β βc ϑ0 ds λb a
a1 0.007 214.0 0.022 9.22 5.17 0.068 0.062 0.5 0.25
a2 0.007 253.7 0.024 8.36 5.78 0.075 0.056 0.5 0.25
a3 0.010 163.9 0.017 11.91 5.28 0.075 0.080 0.5 0.25
a4 0.010 163.9 0.017 11.91 5.28 0.075 0.080 0.5 0.25
a5 0.010 163.9 0.017 11.91 5.28 0.075 0.080 0.5 0.25
a6 0.010 253.4 0.022 9.27 6.45 0.097 0.063 0.5 0.25
a7 0.015 113.9 0.012 16.42 5.10 0.082 0.111 0.5 0.25
a8 0.015 162.7 0.015 13.42 5.94 0.100 0.091 0.5 0.25
a9 0.015 193.6 0.016 12.15 6.29 0.111 0.082 0.5 0.25
a10 0.015 193.6 0.016 12.15 6.29 0.111 0.082 0.5 0.25
a11 0.015 222.6 0.031 11.22 6.54 0.120 0.076 0.5 0.25

Table 2.2: Summary of experimental conditions of series “a”.
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Figure 2.4: Fourier spectra of leading components of bottom elevation (run
“a11”).

The beginning of each experiment was usually characterized by the the
formation of a central bar at the wide sections of the flume. Such bar, once
reached a sufficient amplitude, started to migrate downstream with a speed
ranging between 5cm/min and 15cm/min, depending on the hydraulic con-
ditions of the experiment. The migration speed was observed to decrease
significantly as the front of the bar approached the narrowest section of the
flume. Usually the central bar was not able to migrate through the con-
straint; hence a temporary configuration was established, characterized by
sediment transport mainly occurring at channel sides within the narrowest
sections and at the centerline within the widest sections. After few minutes,
typically, the central bar pattern turned into a configuration characterized
by the development of short alternating bars, with a migration speed varying
form few cm/min to a maximum of 20cm/min. The development of alternate
bars was always irregular and highly unsteady. Regular trains of bars mi-
grating along the full length of the channel have never been detected; rather
a pulsating recursive process of formation and obliteration of bars character-
ized by variable length and height has often been observed.
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Figure 2.5: Comparison between the amplitudes of the leading harmonic
(i, 1) (alternate bar mode) measured in the case of constant width channel
and in the case of width variations.

An equilibrium bed configuration was never reached; the experiment was
stopped and the bottom topography was surveyed with the laser profiler
when alternate bars were recognizable in the flume. The following Fourier
representation has been adopted to describe bottom topography

f(x, y) =

∞
∑

m=0

∞
∑

n=0

Amn exp(iλx) exp(iky) + c.c., (2.3)

where λ = mλ0, k = nπ
2
and λ0 =

2πb∗
0

L∗

box

, being L∗

box the box length. Further-

more dimensionless coordinates have been defined as follows

x =
x∗

b∗0
, y =

y∗

b∗(x∗)
, (2.4a,b)

so that y falls in the range (-1,1). The harmonics with n = 0 (i, 0) corre-
spond to purely longitudinal deformations of the bed while alternate bars are
represented by the harmonics with n = 1 (i, 1). In figure 2.4 the results of
the Fourier analysis of the bed after run “a11” are reported. In the case of
constant width channel (plots on the left side) weak purely longitudinal defor-
mations are detected, while migrating alternate bars form with a longitudinal
wave number λ equal to 0.35. In the case of periodically variable width the
bed displays a strong longitudinal deformation, characterized by deposition
at the wide sections and scour at the constraints. This component is directly
forced by channel geometry, therefore it exhibits the same wave number of
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Figure 2.6: Comparison between the wavenumber of bars measured in the
case of constant width channel and in the case of width variations.

width variations and its longitudinal profile is almost in phase with respect to
banks configuration. Furthermore, it appears, from harmonics (i, 1), that the
alternate bars mode is damped with respect to the constant width case and
the wave length of bars decreases significantly. In appendix A the complete
set of results of the Fourier analyses of bed topography is reported.

In figure 2.5 a comparison is given between alternate bar amplitudes ob-
tained in each experiment, in the case of constant and variable-width channel.
It appears that width variations always induce a damping effect on alternate
bars amplitude; furthermore, figure 2.6 shows that in the variable width
flume, alternate bars display a length which is typically smaller than that
found in the case of straight banks: bedforms longer than the wave length of
width variations were seldom observed.

2.4.2 Series “b”: forced response

The second series of experiments, denoted with “b” has been mainly devoted
to the determination of the forced bed configuration. In this respect, in order
to keep only those components of bed deformation which are directly forced
by width variations the following Fourier representation of bed elevation has
been adopted

f(x, y) =
∞
∑

m=0

∞
∑

n=0

Amn exp(iλx) exp(iky) + c.c., (2.5)
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Figure 2.7: Amplitude of the leading purely longitudinal component of bed
profile with respect to Shields parameter (experiments b35-b44).

where λ = mλ0 and k = nπ. In this case the first transverse mode (i,1)
corresponds to the central bar configuration.

For variable geometric configurations (different wavelength and amplitude
of width variations) the bed displays a strong longitudinal deformation, al-
most in phase with respect to banks profile, whose amplitude increases with
Shields parameter as shown in figure 2.7. On the longitudinal component
transverse variations are superimposed and lead to a central bar configura-
tion. Results suggest that periodic width variations may trigger the transi-
tion from migrating alternate bars to a steady symmetrical bed configuration
(steady central bars) with dominant longitudinal wavenumber equal to that
of bank profile. In tables 2.3, 2.4 and 2.5 a complete summary of hydraulic
conditions of series “b” experimental runs is reported. In appendix A the full
set of experimental results is compared with theoretical findings discussed in
the next chapter.

Experiments b60-b67 were characterized by an amplitude a of width vari-
ations equal to 0.5: in this case migrating alternate bars were seldom observed
in the channel. This result confirms the suppressive role played by width
variations on large scale migrating forms.
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run S Q [l/min] D∗

0 [m] β ϑ0 ds λb a
b1 0.007 123.6 0.015 13.46 0.046 0.091 0.5 0.25
b2 0.007 313.6 0.026 7.70 0.081 0.052 0.5 0.25
b3 0.007 313.6 0.026 7.70 0.081 0.052 0.5 0.25
b4 0.007 333.1 0.027 7.43 0.084 0.050 0.5 0.25
b5 0.007 352.7 0.028 7.18 0.087 0.049 0.5 0.25
b6 0.007 372.5 0.029 6.94 0.090 0.047 0.5 0.25
b7 0.007 233.5 0.022 9.19 0.068 0.062 0.5 0.25
b8 0.007 233.5 0.022 9.19 0.068 0.062 0.5 0.25
b9 0.007 253.4 0.023 8.75 0.071 0.059 0.5 0.25
b10 0.007 183.9 0.019 10.61 0.059 0.072 0.5 0.25
b11 0.007 193.9 0.019 10.27 0.061 0.070 0.5 0.25
b12 0.007 313.6 0.026 7.70 0.081 0.052 0.5 0.25
b13 0.01 123.7 0.013 14.97 0.059 0.102 0.5 0.25
b14 0.01 93.8 0.011 17.68 0.050 0.120 0.5 0.25
b15 0.01 214.1 0.019 10.77 0.083 0.073 0.5 0.25
b16 0.01 234.1 0.020 10.21 0.087 0.069 0.5 0.25
b17 0.01 153.8 0.015 13.14 0.068 0.089 0.5 0.25
b18 0.01 214.1 0.019 10.77 0.083 0.073 0.5 0.25
b19 0.01 93.8 0.011 17.68 0.050 0.120 0.5 0.25
b20 0.015 113.9 0.011 17.77 0.075 0.121 0.5 0.25
b21 0.015 113.9 0.011 17.77 0.075 0.121 0.5 0.25
b22 0.015 162.7 0.014 14.35 0.093 0.098 0.5 0.25
b23 0.015 163.8 0.014 14.29 0.094 0.097 0.3 0.25
b24 0.015 213.1 0.016 12.20 0.110 0.083 0.3 0.25
b25 0.015 193.6 0.015 12.93 0.103 0.088 0.3 0.25
b26 0.015 113.9 0.011 17.77 0.075 0.121 0.3 0.25

Table 2.3: Summary of experimental conditions of series “b” (runs b1-b26).
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run S Q [l/min] D∗

0 [m] β ϑ0 ds λb a
b27 0.015 253.1 0.018 11.01 0.121 0.075 0.3 0.25
b28 0.015 133.4 0.012 16.16 0.083 0.110 0.3 0.25
b29 0.015 253.1 0.018 11.01 0.121 0.075 0.3 0.25
b30 0.015 222.8 0.017 11.88 0.112 0.081 0.3 0.25
b31 0.015 163.8 0.014 14.29 0.094 0.097 0.3 0.25
b32 0.015 222.8 0.017 11.88 0.112 0.081 0.3 0.25
b33 0.015 253.1 0.018 11.01 0.121 0.075 0.3 0.25
b34 0.015 113.9 0.011 17.77 0.075 0.121 0.3 0.25
b35 0.01 113.7 0.013 15.75 0.057 0.107 0.3 0.25
b36 0.01 193.6 0.017 11.45 0.078 0.078 0.3 0.25
b37 0.01 163.8 0.016 12.65 0.070 0.086 0.3 0.25
b38 0.01 214.1 0.019 10.77 0.083 0.073 0.3 0.25
b39 0.01 253.5 0.020 9.74 0.091 0.066 0.3 0.25
b40 0.01 133.7 0.014 14.29 0.062 0.097 0.3 0.25
b41 0.01 313.4 0.023 8.57 0.104 0.058 0.3 0.25
b42 0.01 153.8 0.015 13.14 0.068 0.089 0.3 0.25
b43 0.01 234.1 0.020 10.21 0.087 0.069 0.3 0.25
b44 0.01 93.8 0.011 17.68 0.050 0.120 0.3 0.25
b45 0.007 163.8 0.018 11.37 0.055 0.077 0.3 0.25
b46 0.007 214.0 0.021 9.68 0.064 0.066 0.3 0.25
b47 0.007 313.6 0.026 7.70 0.081 0.052 0.3 0.25
b48 0.007 372.5 0.029 6.94 0.090 0.047 0.3 0.25
b49 0.007 193.9 0.019 10.27 0.061 0.070 0.3 0.25
b50 0.007 293.1 0.025 8.02 0.078 0.054 0.3 0.25
b51 0.007 333.9 0.027 7.42 0.084 0.050 0.3 0.25
b52 0.007 323.8 0.026 7.55 0.083 0.051 0.3 0.25

Table 2.4: Summary of experimental conditions of series “b” (runs b27-b52).
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run S Q [l/min] D∗

0 [m] β ϑ0 ds λb a
b53 0.007 303.2 0.025 7.86 0.079 0.053 0.3 0.25
b54 0.007 308.2 0.026 7.78 0.080 0.053 0.3 0.25
b55 0.004 293.7 0.029 6.77 0.053 0.046 0.3 0.25
b56 0.004 314.1 0.031 6.50 0.055 0.044 0.3 0.25
b57 0.004 334.4 0.032 6.26 0.057 0.043 0.3 0.25
b58 0.004 373.2 0.034 5.86 0.061 0.040 0.3 0.25
b59 0.004 412.7 0.036 5.52 0.065 0.037 0.3 0.25
b60 0.004 263.9 0.028 7.22 0.049 0.049 0.3 0.5
b61 0.004 314.1 0.031 6.50 0.055 0.044 0.3 0.5
b62 0.004 214.5 0.024 8.17 0.044 0.056 0.3 0.5
b63 0.007 214.0 0.021 9.68 0.064 0.066 0.3 0.5
b64 0.007 163.8 0.018 11.37 0.055 0.077 0.3 0.5
b65 0.007 163.8 0.018 11.37 0.055 0.077 0.3 0.5
b66 0.007 253.4 0.023 8.75 0.071 0.059 0.3 0.5
b67 0.007 372.5 0.029 6.94 0.090 0.047 0.3 0.5

Table 2.5: Summary of experimental conditions of series “b” (runs b53-b67).



Chapter 3

Flow field and bed topography
in channels with variable width

3.1 Introduction

In this chapter some theoretical results are presented regarding the equilib-
rium flow field and bed topography in channels subject to periodic width
variations.

In section 3.2 an analytical two-dimensional model is proposed based
on a linearized solution of the problem. The model is able to produce an
average bed configuration displaying a good agreement with experimental
observations, which predict deposition at the widest section and scour at
the channel constrain. However, the model is not suitable to describe the
transverse deformation of the bed which comes out from experimental results.

To overcome this difficulty a 3D quasi-analytical model has been devel-
oped which is presented in section 3.3. The latter model reproduces as the
2D one the average bottom deformation but it predicts stronger transverse
variations of bed profile and of flow velocities. These considerations suggest
that three-dimensional effects associated with the generation of secondary
flows, are crucial to generate the equilibrium configuration in channels with
variable width.

In section 3.4 theoretical findings are compared with experimental results
presented in the previous chapter.

In order to understand the generation of secondary flows the two-dimensional
model has been corrected taking into account the effect of streamlines cur-
vature on transverse bed shear stress as shown in section 3.5. Results agree
fairly satisfactorily with those of the three-dimensional model; however, stream-
lines curvature doesn’t seem to be the only responsible for transverse flow

27



28 CHAPTER 3. FLOW FIELD AND BED TOPOGRAPHY

and bed variations.
In section 3.6 bank stability is investigated in the context of the three-

dimensional model, through a simplified approach, which goes back to that
originally introduced for meandering channels by Ikeda et al. (1981). The
bank erosion model relates the rate of bank retreat to the excess bed stress at
the bank induced by flow perturbations which arise as a consequence of width
variations; furthermore the channel is assumed to be stable in the absence
of the forcing effect due to the variable width. Experimental observations
of Ashmore (1982) seem to provide some support to the above hypothesis
in that single channels of braided networks reproduced in the laboratory
were often found to attain quasi-equilibrium width conditions as defined by
Parker (1978). We then neglect several complicating features like the effect
of cohesion and vegetation. Furthermore, in order to determine the initial
tendency of the flow to enhance planform development, we assume bank
erosion to be slow with respect to bottom evolution, which implies that on
the time scale of flow and bed development the planimetric configuration is
assumed to be steady. The latter hypothesis may turn out not to be adequate
when applied to single channels of a braided river with coarse sediment.
In this respect present results are to be seen as the appropriate starting
point for future investigations where the full coupling between bed and bank
development will have to be retained.

Some preliminary results of this work are reported in Repetto & Tubino
(1999)a.
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3.2 2D depth-averaged model

3.2.1 Formulation of the problem

We consider the flow in a straight cohesionless channel, with average width
2b∗0 over which small-amplitude sinusoidal variations are superimposed (see
figure 3.1). Hence, the side walls of the channel are described by the following
equation

y∗ = ±b∗ = ±b∗0
[

1 + δ
(

eiλ
∗

b
x∗

+ c.c.
)]

, δ ≪ 1, (3.1a,b)

where

λ∗b =
2π

L∗

b

(3.2)

is the wave number of width variations; furthermore x∗ and y∗ are longitu-
dinal and transverse coordinate (the asterisks denote dimensional variables
that will be let dimensionless in the following). Notice that δ = a/2, being a
the amplitude of width variations as defined by equation (2.1).

2D de Saint Venant equations are written in form

U∗

,t∗ + U∗U∗

,x∗ + V ∗U∗

,y∗ + gH∗

,x∗ +
τ ∗x
ρD∗

= 0, (3.3a)

V ∗

,t∗ + U∗V ∗

,x∗ + V ∗V ∗

,y∗ + gH∗

,y∗ +
τ ∗y
ρD∗

= 0, (3.3b)

D∗

,t∗ + (U∗D∗),x∗ + (V ∗D∗),y∗ = 0, (3.3c)

where U∗ and V ∗ are longitudinal and transverse velocity components, t∗ is
time, H∗ water level, D∗ water depth, τ ∗x and τ ∗y longitudinal and transverse
bottom shear stresses an g gravity.

The flow equations are coupled with the sediment continuity equation,
which reads

(1− p)(H∗ −D∗),t∗ + q∗x,x∗ + q∗y,y∗ = 0, (3.4)

where q∗x and q
∗

y are sediment flow rate components and p is sediment porosity.
The boundary conditions impose the physical requirement that channel

walls be impermeable both to flow and to sediment transport; they read

U∗ · n̂∗ = 0, (y∗ = ±b∗), (3.5a)

q∗ · n̂∗ = 0, (y∗ = ±b∗), (3.5b)
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Figure 3.1: Sketch of the geometry and notation.

where U∗ = (U∗, V ∗), q∗ = (q∗x, q
∗

y) and n̂∗ is the unit vector normal to the
banks. Furthermore, we have to impose the constance of water discharge and
average bed elevation along the channel, which read

∫ b∗

−b∗
U∗D∗ dy∗ = Q∗, (3.6a)

∫ 2π

λ∗
b

0

∫ b∗

−b∗
(H∗ −D∗) dy∗dx∗ = const., (3.6b)

where Q∗ is water discharge.
We stretch our physical domain into a rectangle normalizing the trans-

verse coordinate y∗ with the local width in the form

y =
y∗

b∗(x∗)
, (3.7)

so that y falls in the range (-1,1).
Let now define dimensionless variables as follows

x∗ = b∗0x, (U∗, V ∗) = U∗

0 (U, V ) , H∗ = D∗

0F
2
0H,

D∗ = D∗

0D,
(

τ ∗x , τ
∗

y

)

= ρU∗2
0 (τx, τy) , b∗ = b∗0b,

(

q∗x, q
∗

y

)

= d∗s

√

ρs − ρ

ρ
gd∗s (qx, qy) , t∗ =

b∗0
U∗

0

t, (3.8a-h)

where U∗

0 and D∗

0 are average speed and depth of a reference uniform flow in
the channel with constant width 2b∗0, for given water discharge and slope, F0

is Froude number of the latter flow and ρ is water density. Furthermore ρs
and d∗s are sediment density and diameter, respectively.

We look for the steady forced configuration induced by width variations,
hence we can neglect the time derivatives in equations (3.3a-c) and (3.4).
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In terms of the stretched coordinates (x, y) equations (3.3a-c) and (3.4) are
then written in the following dimensionless form

bUU,x + V U,y + bH,x + b
βτx
D

− yb,xUU,y − yb,xH,y = 0, (3.9a)

bUV,x + V V,y +H,y + b
βτy
D

− yb,xUV,y = 0, (3.9b)

b(UD),x + (V D),y − yb,x(UD),y = 0, (3.9c)

qx,x + qy,y − yb,xqx,y = 0, (3.9d)

where

β =
b∗0
D∗

0

(3.10)

is the average width ratio of the channel.
The boundary conditions (3.5a,b) read, in dimensionless form,

− Ub,x ± V = 0, (y = ±1), (3.11a)

− qxb,x ± qy = 0, (y = ±1), (3.11b)

∫ 1

−1

UD
[

1 + δ
(

eiλbx + c.c.
)]

dy = 2, (3.11c)

∫ 2π

λb

0

∫ 1

−1

(

F 2
0H −D

) [

1 + δ
(

eiλbx + c.c.
)]

dydx = const.. (3.11d)

In order to complete the mathematical formulation of the problem we
need to introduce some closures. We then write shear stress components in
terms of a friction coefficient Cf in the form

(τx, τy) = (U, V )
(

U2 + V 2
)1/2

Cf ,

C
−1/2
f = 6 + 2.5 ln

(

D

2.5ds

)

, ds =
d∗s
D∗

0

. (3.12a-c)

We are interested in studying braided rivers, hence we assume the sedi-
ment to be mainly transported as bed load. Furthermore, following a well-
established procedure (Ikeda (1982); Talmon (1995)) we model the influence
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of transverse bed slope on the direction of particles motion in the form

(qx, qy) = (cosα, sinα)Φ. (3.13)

Φ is bed load function, evaluated through Meyer-Peter & Müller (1948) for-
mula which reads

Φ = 8(ϑ− ϑc)
3/2, (3.14)

where ϑ is local Shields parameter defined as follows

ϑ =
|τ ∗|

(ρs − ρ)gd∗s
(3.15)

and ϑc is the threshold value of Shields parameter below which sediments do
not move, assumed equal to 0.047. Finally, following Ikeda (1982), the angle
α is expressed through a linear relationship which reads

sinα = V
(

U2 + V 2
)

−1/2 − r

βϑ1/2
(

F 2
0H −D

)

,y
, (3.16)

where r is an empirical constant ranging between 0.3 and 0.6.

3.2.2 Linear solution

The hypothesis of small-amplitude of width variations, mathematically ex-
pressed by (3.1b), allows us to linearize the equations through the following
expansion

(U, V,H,D) =
(

1, 0, H, 1
)

+ δ
[

eiλbx (U1, V1, H1, D1) + c.c.
]

+O
(

δ2
)

, (3.17)

where c.c. is the complex conjugate.
At order O(δ0) we find the solution of the basic flow in the 2b∗0 wide

channel for given slope and water discharge, in the form

dH

dx
= −βCf0 = −β

[

6 + 2.5 ln

(

1

2.5ds

)]

−2

(3.18)

and
qx0 = Φ0 = 8 (ϑ0 − ϑc)

3/2 . (3.19)

At order O(δ) the linearized form of equations (3.9a-d) is

a1U1 + a2H1 + a3D1 = 0, (3.20a)

a4V1 + a5H1,y = 0, (3.20b)
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a6U1 + V1,y + a6D1 = 0, (3.20c)

a7U1 + a8V1,y + a9(D1 −H1),yy + a10D1 = 0, (3.20d)

where the coefficients are defined as follows

a1 = iλb + 2βCf0, a2 = iλbF
−2
0 , a3 = βCf0(CD − 1),

a4 = iλb + βCf0, a5 = F−2
0 , a6 = iλb,

a7 = 2iλbΦT , a8 = 1, a9 =
r

βϑ
1/2
0

= R,

a10 = iλbCDΦT (3.21)

and

CD =
1

Cf0

(

dCf

dD

)

0

, ΦT =
ϑ0
Φ0

(

dΦ

dϑ

)

0

. (3.22a,b)

The linearized from of the boundary conditions is readily obtained from
(3.11a-d) and reads

V1 = ±iλb, (y = ±1), (3.23a)

(F 2
0H1 −D1),y = 0, (y = ±1), (3.23b)

∫ 1

−1

(U1 +D1) dy = −2, (3.23c)

∫ 2π

λb

0

∫ 1

−1

(

F 2
0H1 −D1 + F 2

0H − 1
)

eiλbx dydx = 0. (3.23d)

System (3.20a-d), with the boundary conditions (3.23a,b), can be trans-
formed into an ordinary differential equation of the forth order. In terms of
the variable V1 we obtain

d4V1
dy4

+ Γ1
d2V1
dy2

+ Γ2V1 = 0, (3.24a)

V1 = ±iλb, y = ±1, (3.24b)
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d2V1
dy2

= ±iλbΓ3, y = ±1, (3.24c)

where

Γ1 =
1

a1a11

[

a6(a3 − a1)
(

1 + F 2
0 a4a11

)

− a3a9 + a1a12 + a2a4a6a11
]

, (3.25a)

Γ2 =
a2a4a6
a1a11

(a12 − a9), (3.25b)

Γ3 = −a4a6
a1

[

F 2
0 (a3 − a1) + a2

]

. (3.25c)

Similar problems can be obtained for the other variables (U1, H1, D1).
The linear solution is found analytically in the form

V1 = γ1 sinh(λ1y) + γ2 sinh(λ2y), (3.26a)

U1 = φ1 cosh(λ1y) + φ2 cosh(λ2y), (3.26b)

H1 = θ1 cosh(λ1y) + θ2 cosh(λ2y), (3.26c)

D1 = δ1 cosh(λ1y) + δ2 cosh(λ2y). (3.26d)

In equations (3.26a-d) we have defined

λ1 =

√

1

2

(

−Γ1 +
√

Γ2
1 − 4Γ2

)

, (3.27a)

λ2 =

√

1

2

(

−Γ1 −
√

Γ2
1 − 4Γ2

)

(3.27b)

and the coefficients have the following expressions

γ1 =
iλb (λ

2
2 − Γ3)

(λ22 − λ21) sinh(λ1)
, γ2 =

iλb (λ
2
1 − Γ3)

(λ21 − λ22) sinh(λ2)
,

φ1 =
1

a3 − a1

[

a2θ1 −
a3
a6
λ1γ1

]

, φ2 =
1

a3 − a1

[

a2θ2 −
a3
a6
λ2γ2

]

,

θ1 = −a4
γ1
λ1
, θ2 = −a4

γ2
λ2
,
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Figure 3.2: Typical equilibrium bed configuration (λb = 0.2, β = 15, ϑ0 =
0.07, ds = 0.05).

δ1 =
1

a3 − a1

[

a1
a6
λ1γ1 − a2θ1

]

, δ2 =
1

a3 − a1

[

a1
a6
λ2γ2 − a2θ2

]

. (3.28)

In a linear context the conditions (3.23c,d) are automatically satisfied by
the solution.

3.2.3 Results

In figure 3.2 a typical equilibrium bed configuration predicted by the theory is
plotted (η1 is the perturbation of bottom elevation). It appears that a strong
longitudinal deformation is found, which gives rise to deposition at the wide
section and scour at the channel constraint. Figure 3.3 shows that bed profile
is nearly in phase with respect to the banks, in agreement with experimental
observations of Bittner (1994) and with the results presented in the previous
chapter. In this respect present findings do not differ significantly from results
which could be obtained through a simpler 1D model; in fact, under steady
conditions, deposition within the wide sections is a consequence of the overall
mass balance for the water and the sediment. A longitudinal perturbation
of cross sectionally averaged velocity is associated with the bed topography,
which attains its maximum positive value almost exactly at the narrowest
section (figure 3.3).

It is worth to notice that the model doesn’t seem to be able to predict
the transverse bed deformation which comes out from experimental observa-
tions. In fact predicted transverse variations are very weak with respect to
the longitudinal variations of bed profile as it is shown in figure 3.4 where
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Figure 3.3: Velocity and bed elevation longitudinal profiles (λb = 0.2, β = 15,
ϑ0 = 0.07, ds = 0.05).
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Figure 3.4: Transverse bed profile in different sections (λb = 0.2, β = 15,
ϑ0 = 0.07, ds = 0.05).

equilibrium bed profiles are plotted for different sections, form the widest (0)
to the narrowest one (π/λb). To avoid this difficulty a correction to trans-
verse shear stress due to streamlines curvature has been taken in to account
as described in section 3.5.

In the context of a linear analysis the solution is no more valid close to
resonant conditions. Resonance occurs when the forcing effect of variable
planform is such to excite a free response of the channel with the same
planimetrical structure of the forced pattern. In the case of meandering
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Figure 3.5: Resonance point for central bars in the plane λ, β (θ0 = 0.07,
ds = 0.05).

channels Blondeaux & Seminara (1985) showed that alternate bars could be
resonantly excited by channel curvature. In the presence of repetitive width
variations the situation is conceptually similar; however, in the latter case
the forcing effect is symmetrical and it can only excite symmetrical free forms
such as central bars (or higher order even modes).

According to the linear stability theory for free central bars formation,
the dispersion relationship allows one to compute the growth rate Ω and the
migration speed ω of bars as function of the governing parameters

(Ω, ω) = f(ϑ0, ds, β, λ), (3.29)

where ϑ0, ds, β, and λ are Shields parameter, grain roughness, width ra-
tio of the basic flow and bars wave number, respectively. Plotting in the
plane (β, λ) the curves corresponding to Ω = 0 and ω = 0, as suggested by
Colombini et al. (1987), resonance conditions are defined by their intersec-
tion (figure 3.5). In other words the free response of the channel is resonantly
excited when the wave number of width variations λb is equal to λr and β is
equal to βr, for given Shields stress and grain roughness.

In figure 3.6 the bottom configuration predicted by the theory close to
resonant conditions is shown. It appears that the transverse deformation
of bed profile is strongly enhanced and its amplitude tends to infinite when
the resonant condition is exactly met. From figure 3.7, in which transverse
bed profile is plotted for different cross sections, it is furthermore possible to
argue that resonance increases the amplitude of the transverse deformation
but does not affect the average longitudinal pattern.
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It is interesting to notice that, unlike in the case of meandering channels
investigated by Blondeaux & Seminara (1985), here the range of parameters
in which resonance affects the results seems to be quite narrow. This is shown
in figure 3.8 where the difference between bed elevation at the centerline and
at the banks is plotted versus the wave number of width variations.
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Figure 3.6: Equilibrium bed configuration close to resonant conditions (λb =
0.237, β = 15.9, ϑ0 = 0.07, ds = 0.05).
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Figure 3.7: Transverse bed profile in different sections (λb = 0.237, β = 15.9,
ϑ0 = 0.07, ds = 0.05).
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3.3 3D model

3.3.1 Formulation of the problem

In this section we intend to determine the flow and bed structure of a cohe-
sionless straight channel subject to periodic width variations through a three-
dimensional model. Referring to figure 3.9, let x∗, y∗, z∗ be the longitudinal,
transverse and normal to the average bed coordinates, respectively (super-
script asterisks refer to dimensional variables that will be let dimensionless
in the following). Furthermore, let u∗, v∗, w∗ be the velocity components.
The equation describing channel banks is given by (3.1a).

As showed in section 3.2 we work in stretched domain in which the trans-
verse coordinate is normalized with the local width, following equation (3.7).

Dimensionless variables are defined as follows

x∗ = b∗0x, (u∗, v∗, w∗) = U∗

0

(

u, v,
w

β

)

, λ∗b =
λb
b∗0
,

(H∗, D∗, z∗) = D∗

0(H,D, z), ν∗t =
√

gD∗

0SD
∗

0νt, (3.30a-e)

where νt is kinematic viscosity and S channel slope. According to the shallow
water approximation, dimensionless Reynolds equations in steady conditions
are written in the form

uu,x + (uN1 + vN0)u,y + wu,z + F−2
0 H,x +

−β
√

Cf0(νtu,z),z + F−2
0 N1H,y = 0, (3.31a)

uv,x + (uN1 + vN0)v,y + wv,z +

−β
√

Cf0(νtv,z),z + F−2
0 N0H,y = 0, (3.31b)

u,x +N1u,y +N0v,y + w,z = 0, (3.31c)

where

Cf0 =
gD∗

0S

U∗2
0

, β =
b∗0
D∗

0

, F0 =
U∗

0
√

gD∗

0

(3.32a-c)

are friction factor, width ratio and Froude number of the basic flow, respec-
tively. Furthermore, N0(x) and N1(x, y) are defined in the form

N0(x) =
[

1 + δ
(

eiλbx + c.c.
)]

−1
, (3.33a)
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Figure 3.9: Sketch of the geometry and notation.

N1(x, y) = −y
(

iλbδe
iλbx + c.c.

)

N0. (3.33b)

The boundary conditions for equations (3.31a-c) read

u = v = w = 0, (z = η + z0D), (3.34a)

βw − (vN0 + uN1)H,y − uH,x = 0, (z = H), (3.34b)

u,z = v,z = 0, (z = H), (3.34c)

∫

D

u · n̂b dz = 0, (y = ±1), (3.34d)

with η = (H −D) local bed elevation, u velocity vector and n̂b unit vector
normal to the banks. They express the no-slip condition at the bed (with z0
reference level at which the condition is imposed in uniform flow), the kine-
matic and dynamic conditions at free surface (in the simplified form which
follows from the shallow water approximation) and the kinematic condition
at the banks. We assume the bed to be constituted by a uniform sediment
of diameter d∗s and density ρs, which is sufficiently coarse to be mainly trans-
ported as bed load. The flow equations are then coupled with the sediment
continuity equation

qx,x +N1qx,y +N0qy,y = 0, (3.35)

where the bedload vector q = (qx, qy) has been made dimensionless using the
Einstein (1950) scale

q∗ = q

(

ρs − ρ

ρ
gd∗3s

)1/2

, (3.36)
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with the associated boundary conditions which express the requirement of
no sediment flux through the banks

q · n̂b = 0, (y = ±1). (3.37)

Notice that the effect of width variations is mainly felt through the depen-
dence on the shape of the banks embodied in the definition of the unit vector
appearing in boundary conditions (3.34d) and (3.37).

A slowly varying approach is adopted to introduce the closure relation-
ships which are required to complete the formulation of the problem. Hence,
we assume that the closures, given in terms of local values of flow variables,
maintain the same structure of the uniform case. We set

νt =

√

Cf

Cf0

|u|DN (ζ), (3.38)

where the vertical structure of turbulent kinematic viscosity is given in terms
of the stretched vertical variable ζ according to the relationship proposed by
Dean (1974)

N (ζ) =
kζ

1 + ζ + 4.68ζ2
, ζ =

z − η

D
, (3.39a,b)

with k V. Karman constant. Furthermore friction factor is evaluated through
equations (3.12).

Bed load intensity is evaluated through Meyer-Peter & Müller (1948)
formula in terms of the local value of Shields parameter

ϑ =
|τ ∗|

(ρs − ρ)gd∗s
, (3.40)

where τ
∗ is bottom shear stress. The local bed slope modifies both the

intensity and the direction of bedload. The first effect is introduced as a
correction of the critical Shields parameter ϑc. The second effect is quantified
on the basis of experimental observations (Ikeda (1982); Talmon (1995))
which suggest the following estimate for the angle α̂ describing the deviation
of particle trajectories with respect to the local bed stress vector

tan(α̂) = − r

β
√
ϑ
G, (3.41)

where r is an empirical coefficient ranging between 0.3 and 0.6 and G is the
local bottom gradient normal to the bed stress vector.
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3.3.2 Linearization

We take advantage of the assumption of small amplitude of width variations
(δ ≪ 1) and expand the solution in the form

(u, v, w,H,D) =
(

u0, 0, 0, H, 1
)

+ δ
[

(u′, v′, w′, h, d)eiλbx + c.c.
]

+O(δ2),
(3.42)

where u0(ζ) is the velocity profile of the basic uniform flow. Substituting
the expansion (3.42) into equations (3.31a-c) and (3.34a-d) and keeping only
linear terms, the following differential problem for the variables u′, v′, w′, h
and d is obtained

(N v′,ζ),ζ −
iλbu0v

′

β
√

Cf0

− h,y

βF 2
0

√

Cf0

= 0, (3.43a)

(Nu′,ζ),ζ −
iλbu0u

′

β
√

Cf0

−
√

Cf0

(

CD

2
d+

∫ 1

z0

u′ dζ

)

− u0,ζw
′

β
√

Cf0

+
iλbu0u0,ζ

β
√

Cf0

[h− d(1− ζ)]− iλbh

βF 2
0

√

Cf0

+
√

Cf0d = 0, (3.43b)

w′

,ζ + iλbu
′ − iλbu0,ζ [h− d(1− ζ)] + v′,y = 0, (3.43c)

with the boundary conditions

w′ − iλbhu0 = 0 (ζ = 1), (3.44a)

v′,ζ = u′,ζ = 0 (ζ = 1), (3.44b)

u′ = v′ = w′ = 0 (ζ = z0), (3.44c)

∫ 1

z0

v′ dζ = ±iλb (y = ±1), (3.44d)

where

CD =
1

Cf0

(

dCf

dD

)

0

. (3.45)

The linearized form of bedload components reads

qsx = Φ(ϑG), ϑG = ϑ− r1
β
(η,x +N1η,y),
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qsy = Φ(ϑ0)

[

(

τy
|τ |

)

z0

− r

β
√
ϑ0
N0η,y

]

, (3.46a-c)

where Φ is bed load function, r1 = ϑc/µ, with µ dynamic friction coefficient,
and ϑ0 is Shields parameter of the uniform basic flow. Substituting from
(3.46a-c) into sediment continuity equation we obtain

iλbΦT

[

CD

2
d+

∫ 1

z0

u′ dζ +
(Nu′,ζ)z0
√

Cf0

]

+

(

v′,ζy
u0,ζ

)

z0

− r

β
√
ϑ0

(h− d),yy = 0,

(3.47)
with the boundary conditions

(

v′,ζ
u0,ζ

)

− r

β
√
ϑ0

(h− d),y = ±iλb, (y = ±1) (3.48)

and

ΦT =
ϑ0

Φ(ϑ0)

(

dΦ

dϑG

)

ϑG=ϑ0

. (3.49)

3.3.3 Solution

Lets define the two new variables

F =

∫ ζ

z0

u′ dζ, G =

∫ ζ

z0

v′ dζ (3.50a,b)

as the integrals in ζ of longitudinal and transverse velocity components, re-
spectively.

Integrating in ζ continuity equation (3.43c) it is possible to find an explicit
expression for the vertical velocity component w′ as follows

w′ = −G,y − iλbF + iλbd

[

(u0(ζ − 1)−
∫ ζ

z0

u0 dζ

]

+ iλbhu0. (3.51)

Substituting such expression into equation (3.43b) and applying a derivative

in ζ in order to eliminate the term
∫ 1

z0
u′ dζ , we find a differential problem

for the variables F , G, in the form

G,ζζζ = −N,ζ

N G,ζζ +
iλbu0

β
√

Cf0N
G,ζ +

h,y

βF 2
0

√

Cf0N
, (3.52a)

F,ζζζζ = −2N,ζ

N F,ζζζ +
1

N

(

iλbu0

β
√

Cf0

−N,ζζ

)

F,ζζ −
iλbu0,ζζ

β
√

Cf0N
F +
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− u0,ζζ

β
√

Cf0N
G,y −

u0,ζ

β
√

Cf0N
G,ζy +

− iλbd

β
√

Cf0N

(

u0,ζζ

∫ ζ

z0

u0 dζ + u0u0,ζ

)

, (3.52b)

with the boundary conditions

G,ζζ = 0, (ζ = 1), (3.53a)

G,ζ = 0, (ζ = z0), (3.53b)

G = 0, (ζ = z0), (3.53c)

F,ζζζ = −N,ζ

N F,ζζ +

√

Cf0

N

(

CD

2
d+ F(1)

)

+

+
iλbh

βF 2
0

√

Cf0N
−
√

Cf0

N d, (ζ = z0), (3.53d)

F,ζζ = 0, (ζ = 1), (3.53e)

F,ζ = 0, (ζ = z0), (3.53f)

F = 0, (ζ = z0), (3.53g)

G = 0, (ζ = 1, y = ±1). (3.53h)

The boundary conditions (3.53h) suggest the following structure for the
solution

G = G0(ζ)y +
∞
∑

m=1

Gm(ζ) sin(mπy), (3.54a)

(F , h, d) =
[

F(ζ), h, d
]

y2 +

+
∞
∑

m=0

[Fm(ζ), hm, dm] cos (mπy) . (3.54b)
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Substituting from (3.54a,b) into (3.52a,b), leads to a sequence of ordinary
differential problems in the variable ζ , which are solved numerically using a
”shooting” procedure along with a IV order Runge-Kutta scheme.

The solution proceeds as follows. At first we determine the vertical struc-
ture of G0 in the form

G0(ζ) = Ĝ0(ζ)h, (3.55)

solving the following problem

G0,ζζζ = −N,ζ

N G0,ζζ +
iλbu0

β
√

Cf0N
G0,ζ +

2h

βF 2
0

√

Cf0N
, (3.56a)

G0,ζζ = 0, (ζ = 1), (3.56b)

G0,ζ = 0, (ζ = z0), (3.56c)

G0 = 0, (ζ = z0). (3.56d)

From boundary conditions (3.44d) and (3.48) we evaluate h and d as
follows

h =
iλ

Ĝ(1)
, d = h +

β
√
ϑ0

2r

(

iλb −
Ĝ0,ζζ

u0,ζ

∣

∣

∣

∣

∣

z0

)

. (3.57a,b)

We determine F solving the problem

F ,ζζζζ = −2N,ζ

N F ,ζζζ +
1

N

(

iλbu0

β
√

Cf0

−N,ζζ

)

F ,ζζ −
iλbu0,ζζ

β
√

Cf0N
F+

− iλbd

β
√

Cf0N

(

u0,ζζ

∫ ζ

z0

u0 dζ + u0u0,ζ

)

, (3.58a)

F ,ζζζ = −N,ζ

N F ,ζζ +

√

Cf0

N

(

CD

2
d+ F(1)

)

+

+
iλbh

βF 2
0

√

Cf0N
−
√

Cf0

N d, (ζ = z0), (3.58b)

F ,ζζ = 0, (ζ = 1), (3.58c)
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F ,ζ = 0, (ζ = z0), (3.58d)

F = 0, (ζ = z0). (3.58e)

We then solve the problem for F0, d0 and h0 which reads

F0,ζζζζ = −2N,ζ

N F0,ζζζ +
1

N

(

iλbu0

β
√

Cf0

−N,ζζ

)

F0,ζζ −
iλbu0,ζζ

β
√

Cf0N
F0+

− u0,ζζ

β
√

Cf0N
G0 −

u0,ζ

β
√

Cf0N
G0,ζ+

− iλbd0

β
√

Cf0N

(

u0,ζζ

∫ ζ

z0

u0 dζ + u0u0,ζ

)

, (3.59a)

F0,ζζζ = −Nζ

N F0,ζζ +

√

Cf0

N

(

CD

2
d0 + F0(1)

)

+

+
iλbh0

βF 2
0

√

Cf0N
−
√

Cf0

N d0, (ζ = z0), (3.59b)

F0,ζζ = 0, (ζ = 1), (3.59c)

F0,ζ = 0, (ζ = z0), (3.59d)

F0 = 0, (ζ = z0). (3.59e)

The unknowns h0, d0 can be determined through kinematic condition (3.44a),
where w′ has been substituted through (3.51), and Exner equation (3.47).

The generic Gm is then computed in terms of hm and dm trough the
following system

Gm,ζζζ = −N,ζ

N Gm,ζζ +
iλbu0

β
√

Cf0N
Gm,ζ −

mπhm

βF 2
0

√

Cf0N
= 0, (3.60a)

Gm,ζζ = 0, (ζ = 1), (3.60b)

Gm,ζ = 0, (ζ = z0), (3.60c)
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Gm = 0, (ζ = z0). (3.60d)

Furthermore, Fm can be found in terms of hm and dm solving the following
problem

Fm,ζζζζ = −2N,ζ

N Fm, ζζζ +
1

N

(

iλbu0

β
√

Cf0

−N,ζζ

)

Fm,ζζ −
iλbu0,ζζ

β
√

Cf0N
Fm+

− mπu0,ζζ

β
√

Cf0N
Gm − mπu0,ζ

β
√

Cf0N
Gm,ζ+

− iλbdm

β
√

Cf0N

(

u0,ζζ

∫ ζ

z0

u0 dζ + u0u0,ζ

)

, (3.61a)

Fm,ζζζ = −N,ζ

N Fm,ζζ +

√

Cf0

N

(

CD

2
dm + Fm(1)

)

+

+
iλbhm

βF 2
0

√

Cf0N
−
√

Cf0

N dm, (ζ = z0), (3.61b)

Fm,ζζ = 0, (ζ = 1), (3.61c)

Fm,ζ = 0, (ζ = z0), (3.61d)

Fm = 0, (ζ = z0), (3.61e)

Finally hm and dm are computed using again the kinematic condition (3.44a),
where w′ has been substituted through (3.51), and Exner equation (3.47).

3.3.4 Results

In figure 3.10a-d typical bottom configurations induced by width variations
are plotted, for increasing values of λb. The results of the Fourier analysis of
bottom elevation η, reported in figure 3.11a-d, suggest that the bed profile is
mainly characterized by two leading harmonics. The first component repre-
sents a purely longitudinal oscillation of the bed, constant in the transverse
direction, which gives rise to deposition at the wide section and scour at the
channel constraint: bed topography is nearly in phase with respect to bank
profile in agreement with the experimental observations of Bittner (1994) and
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Figure 3.10: Equilibrium bed configurations for different values of the
wavenumber of width variations. (a) λb = 0.1, (b) λb = 0.2, (c) λb = 0.3, (d)
λb = 0.5 (ϑ0 = 0.1, ds = 0.05, β = 10).

with the results presented in the previous chapter. The purely longitudinal
component predicted by the 3D model does not differ significantly from that
computed with the 2D one (figure 3.11e-h).

The second leading component of bottom topography implies a transverse
deformation of the bed in the form of a central bar. Its relative importance
with respect to the previous one increases with the wave number λb of width
variations: for typical values of the control parameters β, ϑ0 and ds it reaches
a maximum for λb ∼ 0.3 (figure 3.11a-d). The relative position of the maxi-
mum of the transverse component with respect to the widest section changes
significantly with the wavenumber of width variations: as λb increases the
peak of the transverse component moves from an upstream to a downstream
location with respect to the peak of the longitudinal component. When
λb ∼ 0.5 the phase shift becomes so large that the two leading components
of bottom topography are nearly out of phase as appears from figure 3.10d.

It is worth pointing out that the transverse deformation of the bed, which
also implies a transverse variation of longitudinal velocity (figure 3.12a-d), is
mainly related to three dimensional effects. In fact, the comparison between
3D and 2D results, which are reported in figures 3.11 and 3.12, displays a
strong difference in harmonic-1 amplitude both for bed elevation and for
longitudinal velocity component. Hence, the generation of a central bar in
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Figure 3.11: Fourier analysis of bottom profile: amplitude of the first three
harmonics obtained with the 3D and the 2D models, respectively. (a), (e)
λb = 0.1; (b), (f) λb = 0.2; (c), (g) λb = 0.3; (d), (h) λb = 0.5 (ϑ0 = 0.1,
ds = 0.05, β = 10).

the widest part of the channel, and the related effect of flow divergence, is
inherently associated with secondary flows. Such secondary flows can be
driven by convective terms and by streamlines curvature. The latter effect is
investigated in the following section in which the 2D model has been suitably
corrected.

Let now consider the role of convective terms on secondary flow gener-
ation. A circulation on the plane (y, z) is triggered by the convective term
appearing in equation (3.43a), which vanishes at the bed and reaches its
maximum at the free surface. This implies a phase shift in the response of
transverse velocity to the variable planform as illustrated in figure 3.13a: just
downstream the narrowest section the transverse velocity at the bottom is
already directed outward while streamlines are still converging at the free
surface. The resulting circulation, which is sketched in figure 3.13b, induces
a transverse deformation of the bed (figure 3.13c) which in turn affects the
transverse distribution of longitudinal velocity. A similar mechanism oper-
ates in the widest section, thus promoting the formation of a central bar.

In figure 3.14 the velocity field on the plane (y, z) at the narrowest section
is plotted, showing a secondary circulation. The local depth-averaged value
has been filtered out from transverse velocity component.
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Figure 3.12: Fourier analysis of longitudinal velocity: amplitude of the first
three harmonics obtained with the 3D and the 2D models, respectively. (a),
(e) λb = 0.1; (b), (f) λb = 0.2; (c), (g) λb = 0.3; (d), (h) λb = 0.5 (ϑ0 = 0.1,
ds = 0.05, β = 10).

Figure 3.13: (a) Mechanism of generation of secondary flow in the plane (y,z),
(b), (c) secondary flow and bed deformation at the narrowest section.
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Figure 3.14: Secondary flow at the narrowest section (β = 10, λb = 0.2,
ϑ0 = 0.1, ds = 0.05).
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3.4 Comparison with experimental results

In this section theoretical results are compared with experimental findings
presented in chapter 2 (series “b”). In figure 3.15, the theoretical and exper-
imental amplitudes of the first two transverse harmonics of the Fourier rep-
resentation of bed topography are compared (harmonic 0 represents purely
longitudinal deformations and harmonic 1 the central bar mode, with the
same longitudinal wavenumber which coincides with λb). Each plot corre-
sponds to a different geometric configuration of the banks.

As for the harmonic 0 the agreement is satisfactory in all cases; for
δ = 0.25 the theory slightly underestimates the values of longitudinal bed
deformation. Notice, however, that in the latter conditions, being the ampli-
tude of width variations relatively large, a linearized theory may turn out to
be not completely adequate to describe the solution: non linear effects may
be responsible for the small differences detected.

As for the amplitude of the central bar mode, the results must be con-
sidered with more care. Figures 3.16, 3.17 and 3.18 report the amplitude
of the first two harmonics of bottom configuration plotted versus Shields
parameter; theoretical findings are denoted by continuous lines. Each plot
corresponds to a different initial bed slope. The amplitude of the central bar
mode predicted by the theory agrees with the experimental results at high
values of Shields parameter while the agreement is less satisfactory close to
the critical conditions for sediment movement. Notice, however, that in the
latter case the flume was often partially transporting sediment and emersion
of bars occurred frequently: under these conditions the theory is not likely to
be applicable. Furthermore, for suitable values of the controlling parameters,
the theory displays a resonant response (figure 3.17) and the predicted bed
elevation tends to infinite: in these cases a linear approach is no longer valid
and a non linear analysis, like that proposed by Seminara & Tubino (1992)
for meandering channels, is required.

In appendix A the results of Fourier analyses of experimental bed topog-
raphy are reported together with a comparison with theoretical findings for
all the runs of series “b”. Aexp and Ath denote the experimental and theo-
retical amplitudes of each harmonic of bed profile, respectively. In the plots
theoretical results are indicated with continuous lines.
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Figure 3.15: Comparison between the first two transverse harmonics of the
Fourier representation of the bed predicted by the theory and the experi-
ments.
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Figure 3.16: Amplitude of the first two transverse harmonics of the Fourier
representation of bed topography (λb = 0.5, δ = 0.125).
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Figure 3.17: Amplitude of the first two transverse harmonics of the Fourier
representation of bed topography (λb = 0.3, δ = 0.125).
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Figure 3.18: Amplitude of the first two transverse harmonics of the Fourier
representation of bed topography (λb = 0.3, δ = 0.25).
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3.5 Correction due to the streamlines curva-

ture effect on transverse bed shear stress

In this section we correct the 2D model formulated in section 3.2 in order to
take into account the effect of streamlines curvature on transverse bottom
shear stress.

The curvature radius rc of streamlines is defined by the following equation

1

rc
=

−
(

V

U

)

,x
[

1 +

(

V

U

)2
]3/2

. (3.62)

Ideas originally developed by Engelund (1974) are followed: the trans-
verse velocity component is decomposed into a helical component with no
net flux and a depth-averaged component. The suitability of the above de-
composition has been demonstrated by Johannesson & Parker (1989) who
showed that, for typical natural channels, the equations governing the above
two components of transverse velocity are not directly coupled to each other,
at least within a linear context, the helical component being essentially driven
by curvature. Following Tubino & Seminara (1990) and referring to a me-
andering channel with wavenumber λm, we denote the vertical distributions
of these transverse components by Γ0 and Γ1 and the vertical distribution
associated with the longitudinal component by Ψ1; hence, the velocity field
can be expressed in the form

u = Ψ1(ζ, λm)U(s, n), (3.63a)

v = ν [Γ0(ζ, λm) exp(iλms) + c.c.]U(s, n)D(s, n) +

+Γ1(ζ, λm)V (s, n), (3.63b)

where

ζ =
z − η

D
(3.64)

is a stretched vertical coordinate, (s, n) represents a curvilinear orthogonal
system of coordinates where s denotes the arclength, U and V are depth-
averaged longitudinal and transverse velocity components and D is water
depth. Furthermore, the local radius of curvature, scaled by half -width b∗0,
is given by

1

r(s)
= ν exp(iλms) + c.c. (3.65)
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Figure 3.19: Real and imaginary part of k versus λb (β = 15, ϑ0 = 0.1,
ds = 0.01).

and c.c. denotes complex conjugate. In order to keep the leading dispersive
effects which are associated with the transverse velocity component with
zero depth-average, the vertical structure of Γ0 is fully derived by the three-
dimensional solution. Moreover, neglecting longitudinal convection, the lat-
ter solution shows that both Γ1 and Ψ1 coincide with the logarithmic velocity
distribution u0(ζ). Thus equations (3.63a,b) can be written in the form

u = u0(ζ)U, (3.66a)

v = ν [Γ0(ζ, λm) exp(iλms) + c.c.]UD + u0(ζ)V. (3.66b)

The above structure strictly applies within the context of a linear theory
and in the limit λm → 0. However the analysis is not largely affected by
the latter assumption since longitudinal convection is neglected only in the
estimate of dispersive effects associated with Γ1 and Ψ1 distributions but
is fully accounted for in the depth-averaged model. It is also kept in the
evaluation of Γ0 as it is appropriate to describe the lag required for secondary
flow to adapt to local curvature.

Equations (3.66a,b) imply a similar decomposition for bed stresses in the
the form

(τs, τn) = {U, V + νUD [k exp(iλms) + c.c.]}Cf(U
2 + V 2)1/2, (3.67)

where a further contribution to transverse bottom stress associated with the
helical component of secondary flow has been included through the parameter
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k which reads

k =

(

Γ0,ζ

u0,ζ

)

ζ0

. (3.68)

In figure 3.19 the real and imaginary parts of k are plotted versus curva-
ture wave number.

Notice that even though in the present study k has been directly obtained
from the 3D model, some formulas exist which allow to compute k without
solving the 3D problem (Olesen (1987)).

The results can be extended to the case of channels subject to width
variations, taking into account streamlines curvature, given by (3.62).

At the linear level equation (3.67) implies a correction to the transverse
component of bottom stress which reads

τy = τ ′y + τ ′′y = Cf0V1

(

1− k
iλb
β

)

. (3.69)

In system (3.20a-d) all the coefficients remain unchanged except for a4
and a7 which take the following expressions

a4 = iλb + βCf0

(

1 +
iλbk

β

)

, a8 = 1 +
iλbk

β
. (3.70a,b)

In figures 3.20, 3.21 and 3.22 the amplitude and phase of harmonic 1 of
the Fourier representation of bed topography as predicted by the 3D and the
corrected 2D models are plotted. It appears that the results are fairly close:
with the inclusion of the effect of streamlines curvature the two-dimensional
model is able to describe transverse deformations of bed profile and flow char-
acteristics. Furthermore the dependence of the phase shift and the amplitude
of flow and bed variables on wave number of width variations is similar to
that predicted by the three-dimensional model. Notice that both models
predict a resonant response for almost the same values of the parameters
(figures 3.20e, 3.21e and 3.22e). Figure 3.23 shows a comparison between
the transverse bed profiles predicted by the models for different values of the
longitudinal coordinate x and for different wave numbers of width variations.

It also appears that, even though including streamlines curvature effect
increases the agreement between 2D and 3D models, this is not the only
three-dimensional effect responsible for transverse variations of flow field and
bed topography. In particular the amplitude of harmonic 1 of longitudinal
velocity component displays a rather different dependence on λb in the two
models (figure 3.21a,c,e). The above findings suggest that the longitudinal
velocity is also influenced by secondary flow associated with convective terms
as described in the previous section.
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Figure 3.20: Amplitude ((a), (c), (e)) and phase ((b), (d), (f)) of harmonic
1 of bed profile versus λb, for different values of β. (a), (b) β = 10; (c), (d)
β = 15; (e), (f) β = 20 (ϑ0 = 0.1, ds = 0.05, β = 10).

3.6 Planimetric evolution

We now investigate the conditions under which the perturbed flow induced
by width variations is able to produce a positive erosion rate in the widest
section, which implies that the flow tends to enhance the given initial per-
turbation of channel width. It will appears that these conditions, which are
taken as implying the incipient bifurcation of the flow, are strictly connected
with the role of the transverse deformations of flow and bottom topography
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Figure 3.21: Amplitude ((a), (c), (e)) and phase ((b), (d), (f)) of harmonic
1 of longitudinal velocity component versus λb, for different values of β. (a),
(b) β = 10; (c), (d) β = 15; (e), (f) β = 20 (ϑ0 = 0.1, ds = 0.05, β = 10).

associated with 3D effects.
As pointed out in the introduction of the present chapter bank stability is

investigated through a simplified model, whereby the net channel widening
is neglected and the rate of bank retreat is related to the excess of depth
averaged velocity at the banks Ub with respect to the uniform flow velocity,
in the form

dys
dt

= EUbe
iλbx + c.c., (3.71)

where ys is bank profile and E is a suitable erosion coefficient.
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Figure 3.22: Amplitude ((a), (c), (e)) and phase ((b), (d), (f)) of harmonic
1 of transverse velocity component versus λb, for different values of β. (a),
(b) β = 10; (c), (d) β = 15; (e), (f) β = 20 (ϑ0 = 0.1, ds = 0.05, β = 10).

In figure 3.24 the phase αu of the longitudinal depth-average velocity,
that is the location of its maximum longitudinal value with respect to bank
profile, is plotted versus the wavenumber of width variations. In the same
figure results of the 2D model are also reported. In the latter case longitu-
dinal velocity attains its maximum value at the narrowest section both at
the centerline and at the banks (αu/π ∼ 1): this implies that the channel is
planimetrically stable since bank erosion tends to widen the channel where
the channel is narrow. The figure shows that the results of present 3D model
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Figure 3.23: Transverse bottom profile for different values of the longitudinal
coordinate. (a), (b) λb = 0.1; (c), (d) λb = 0.2; (e), (f) λb = 0.3; (g), (h)
λb = 0.5 (ϑ0 = 0.1, ds = 0.05, β = 10).

lead to a different scenario: while at the centerline we obtain a similar be-
havior, the opposite situation occurs at the banks where, for a wide range of
values of λb, the maximum of longitudinal velocity, that is of erosion rate, is
located at the wide sections (αu/π > 1.5). Under these conditions the chan-
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the wavenumber of width variations(β = 20,ϑ0 = 0.1, ds = 0.05).

nel is planimetrically unstable since flow and bottom perturbations tend to
enhance the initial amplitude of width variations.

Figure 3.25 shows the results for the depth averaged velocity at the banks
obtained both in case of mobile bed and fixed bed. The results are given in
terms of the difference (Un − Uw) between the values in the narrowest and
widest section, respectively. It appears that the planimetric instability is



3.6. PLANIMETRIC EVOLUTION 67

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

θ 0

λb

Unstable

Stable

Stable

β=10
β=12
β=15
β=20

Figure 3.26: Neutral stability curves in the plane (λb, ϑ0) (β0 = 15, ds =
0.05).

enhanced by the flow divergence associated with bed deformation, which
leads to the formation of a central bar in the wider part of the channel.
However, even in the case of fixed bed, (Un − Uw) is negative, which implies
that three dimensional effects are able to counteract the overall decrease of
cross sectionally averaged velocity which occurs in the widest section.

Figure 3.25 also suggests that in case of movable bed the solution is
strongly dependent on the wavenumber of width variations: at large values
of λb the central bar is shifted downstream with respect to the widest section
so that topographic effects are no longer destabilizing.

Theoretical results are summarized in figure 3.26 where marginal stability
curves are reported in the plane (λb, ϑ0) for different values of the width ratio
β. Three distinct regions can be identified. At low values of ϑ0 the channel
is always unstable. When ϑ0 increases a threshold value of λb exists above
which the channel is stable; at large values of ϑ0 the channel is unstable
for all wave numbers of width variations. For suitable values of β a quasi
resonant behavior is exhibited by the solution: in this case the planform is
unstable provided the wavenumber λb fall within a convenient range.
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Chapter 4

Suppression of free bars in
channels with variable width

4.1 Introduction

In the present chapter we investigate the effect of periodic width variations
on the development process of free bars in straight cohesionless channels.

Kinoshita & Miwa (1974) showed experimentally that channel curvature
induces a damping effect on alternate bar formation and migration; in partic-
ular they observed that, provided channel sinuosity exceed a certain thresh-
old value, depending on hydraulic conditions, migrating alternate bars do
not develop in the channel. The process has also been interpreted theoreti-
cally by Tubino & Seminara (1990) with reference to a regular sequence of
small-amplitude meanders.

The aim of the present chapter is to ascertain whether a similar suppres-
sive mechanism on migrating alternate bars is exerted by periodic variations
of channel width. The approach adopted herein presents several analogies
with respect to the case of meandering channels. In both cases it is required
an investigation of the non linear interactions between free responses which
would naturally develop (alternate bars) and forced responses (due to chan-
nel curvature or width variations). In the present case, in order to determine
the forced response we take advantage of the assumption of small amplitude
of width variations. It is worth pointing out that unlike in the case of me-
andering channels, here the forced bed response displays a spatial structure
which differs from that of alternate free bars, due to the symmetric character
of the forcing effect exerted by channel banks.

Some preliminary results of this work are reported in Repetto & Tubino
(1999)b.

69
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4.2 Formulation of the problem

We tackle the problem within a context of a two dimensional model, hence
we refer to the mathematical formulation presented in section 3.2.1.

The adoption of a depth averaged model may turn out to be a rather
crude approximation in the light of results presented in section 3.3.4, which
suggest that three dimensional effects influence significantly the flow and bed
structure in channels with variable width. However, a two dimensional model
is amenable to an analytical solution which requires a comparatively small
effort with respect to the three dimensional solution. Also notice that the
effect of secondary flows due to local curvature of streamlines on transverse
bed shear stress can be taken into account as described in section 3.5.

4.3 Solution

4.3.1 Outline of the solution procedure

We develop a linear stability theory for free bars formation in a channel
with sinusoidal width variations of small amplitude. It will appear that our
solution will lead to determine a linear correction to the growth rate of free
bars as predicted in the case of constant width channel (Colombini et al.
(1987)).

The first step of the analysis is to study the forced problem driven by
width variations. The assumption of small-amplitude of width variations,
which is mathematically expressed by (3.1b), suggests to expand the solution
in terms of parameter δ as follows

(U, V,H,D) =
(

1, 0, H, 1
)

+ δ [e1 (U1, V1, H1, D1) + c.c.] +

+δ2 {[e2 (U2, V2, H2, D2) + c.c.] + (U0, V0, H0, D0)}+O
(

δ3
)

,

(4.1)

where
e1 = exp(iλbx), e2 = exp(2iλbx). (4.2a,b)

Substituting from (4.1) into the governing differential equations (3.9a-d)
and in the boundary conditions (3.11a-d), leads to a sequence of ordinary
differential problems in terms of the transverse coordinate y. In particular,
at order O(δ) we find the linear forced solution described in section 3.2 which
leads to the following structure of variables

V1 = γ1 sinh(λ1y) + γ2 sinh(λ2y), (4.3a)
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U1 = φ1 cosh(λ1y) + φ2 cosh(λ2y), (4.3b)

H1 = θ1 cosh(λ1y) + θ2 cosh(λ2y), (4.3c)

D1 = δ1 cosh(λ1y) + δ2 cosh(λ2y). (4.3d)

The O (δ2) terms arise from nonlinear interactions of the linear forced
solution and consist of a second harmonic in the longitudinal direction (U2, V2,
H2, D2) and a distortion of the basic uniform flow (U0, V0, H0, D0).

We now investigate the conditions required for the basic flow (4.1) to
loose stability with respect to infinitesimal perturbations periodic in the lon-
gitudinal direction. The structure of the solution (say for the longitudinal
velocity) can be written in terms of a two parameters expansion in the form

U = 1 + δ [e1U1(y) + c.c.] + δ2 [(e2U2(y) + c.c.) + U0(y)] +O
(

δ3
)

+

+ A(t) [E1u1(y) + c.c.] + A(t)δ
[

E1e1U
′

11(y) + E1e1U
′′

11(y) + c.c.
]

+

+ A(t)δ2 [E1U01(y) + c.c.] +O
(

A2, Aδ2
)

,

(4.4)

with A(t) infinitesimal amplitude of bars and

E1 = exp [i (λx− ω0t)] , (4.5)

where λ and ω0 are the dimensionless wavenumber and angular frequency of
free bars. Overlines denote the complex conjugates.

AtO(A) we recover the linear homogeneous problem for free bars stability
in channels with constant width. If we neglect higher order terms, according
with the solution of Colombini et al. (1987) we obtain

A = Â exp(Ω0t). (4.6)

Solvability of linear problem leads to a dispersion relationship for the growth
rate Ω0 and the angular frequency ω0 of free bars in channels with constant
width in the form

(Ω0, ω0) = f (λ, β, ϑ0, ds) , (4.7)

where ϑ0 is Shields parameter of the reference uniform flow.
The structure of the expansion (4.4) suggests that non linear interactions

involving the fundamental O(A) alternate bar mode and the O(δ) forced
mode lead to mixed modes. At order O(Aδ2) the fundamental free mode
is reproduced by the interactions of the mixed O(Aδ) mode with the linear
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forced mode and of the O(δ2) distortion of the basic flow with the linear free
mode. This implies the appearance of O(δ2) terms in the linear problem for
free bars. Hence, solvability is accomplished provided the growth rate Ω and
angular frequency ω of free bars are given in the form

(Ω− iω) = (Ω0 − iω0) + δ2 (Ω1 − iω1) , (4.8)

where Ω1 and ω1 depend also on the wavenumber λb of width variations.

4.3.2 First order free problem - O(A)

We recall in this section the linear solution of Colombini et al. (1987) for free
bars formation in straight channels with constant width. We study the sta-
bility of the uniform flow in the channel with respect to small perturbations
of the bed. The problem is mathematically described by 2D de Saint Venant
flow equations, continuity equation and sediment continuity equation. We
assume the time scale of bottom deformation to be much smaller than the
time scale of flow field variations; hence, we neglect time derivatives in flow
field equations. In other words we assume the flow to be, at each time, in
equilibrium with the instantaneous bed configuration. The governing differ-
ential equations read

UU,x + V U,y +H,x +
βτx
D

= 0, (4.9a)

UV,x + V V,y +H,y +
βτy
D

= 0, (4.9b)

(UD),x + (V D),y = 0, (4.9c)

(F 2
0H −D),t +Q0(qx,x + qy,y) = 0, (4.9d)

where

Q0 =

d∗s

(

ρs − ρ

ρ
gd∗s

)1/2

(1− p)D∗

0U
∗

0

. (4.10)

The boundary conditions impose vanishing of water and sediment flux at
the side walls; they read

V = 0, (y = ±1), (4.11a)

qy = 0, (y = ±1). (4.11b)



4.3. SOLUTION 73

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

β

λ

bars

no bars

Figure 4.1: Neutral stability curve for bars formation.

We expand the solution in terms of the small amplitude of bed perturba-
tions A(t) in the form

(U, V,H,D) = (1, 0, H, 1) + A(t)E1[u1(y), v1(y), h1(y), d1(y)] + c.c.. (4.12)

The infinitesimal amplitude A is found to grow in time according to the
following relationship

A = Â exp(Ω0t), (4.13)

where Ω0 is the growth rate of bars.
Substituting (4.12) into equations (4.9a-d) and (4.11a,b) we find the fol-

lowing homogeneous differential system

Γ ·





















u1

v1

h1

d1





















=





















0

0

0

0





















, (4.14)

where

Γ11 = iλ+ 2βCf0, Γ12 = Γ21 = Γ24 = Γ33 = 0,
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Γ13 = Γ31 = Γ34 = iλ, Γ14 = βCf0(CD − 1),

Γ22 = iλ+ βCf0, Γ23 = Γ32 =
d

dy
,

Γ41 = 2Q0Φ0iλΦT , Γ42 = Q0Φ0
d

dy
,

Γ43 = F 2
0

(

−Q0Φ0R
d2

dy2
+ Ω0 − iω0

)

,

Γ44 = Q0Φ0

(

R
d2

dy2
+ iλCDΦT

)

− Ω0 + iω0 (4.15)

and all the coefficients have been defined in section 3.2.
To find a non trivial solution of system (4.14) a solvability condition is

required, which leads to determine the dispersion relation and allows one to
calculate the growth rate Ω0 and migration speed ω0 of free bars in the form

(Ω0, ω0) = f (λ, β, ϑ0, ds) , (4.16)

The analysis performed by Colombini et al. (1987) suggests that the
crucial parameter to predict bar formation is the width to depth ratio β:
when β exceeds a threshold value, which is dependent on Shields parameter
and grain roughness parameter, free bars develop. Figure 4.1 shows a neutral
stability curve in the plane (λ, β) for given values of ϑ0 and ds.

4.3.3 First order forced problem - O(δ)

The first order forced problem, which has been already considered in sec-
tion 3.2, can be written in the form

L1 ·
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, (4.17)

with the boundary conditions

V1 = ±iλb, (y = ±1), (4.18a)
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(F 2
0H1 −D1),y = 0, (y = ±1), (4.18b)

where

L1 =





























iλb + 2βCf0 0 iλb βCf0(CD − 1)

0 iλb + βCf0
d

dy
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iλb
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0 iλb
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−F 2

0R
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R

d2
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+ iλbCDΦT





























,

(4.19)
where all the coefficients have been defined in section 3.2 and

b
(1)
1 = b

(1)
2 = b

(1)
3 = b

(1)
4 = 0. (4.20a-c)

4.3.4 Scheme of the solution at the higher orders

Proceeding to the higher orders of approximation the structure of the solu-
tion is given by the interaction between the first order solutions O(A) and
O(δ) which have the following form (for instance for the perturbation of the
longitudinal velocity component)

A exp(iλx) sin
(π

2
y
)

+ A exp(−iλx) sin
(π

2
y
)

, (4.21a)

δ exp(iλbx) cosh(αy) + δ exp(−iλbx) cosh (αy) , (4.21b)

where we are considering the alternate bar mode and the overline indicates
the complex conjugate problem.

The structure of the solution at order O(δ2) and order O(Aδ) read
Order δ2

δδ exp (2iλbx) cosh
2 (αy) + c.c., (4.22a)

δδ cosh (αy) cosh (αy) + c.c.. (4.22b)

Order Aδ

Aδ exp [i(λ + λb)x] sin
(π

2
y
)

cosh(αy) + c.c., (4.23a)
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Aδ exp [i(λ− λb)x] sin
(π

2
y
)

cosh(αy) + c.c.. (4.23b)

At order O(Aδ2) non linear interactions lead to the following structure of
the solution

A (δδ) exp [i(λ+ 2λb)x] sin
(π

2
y
)

cosh2(αy) + c.c., (4.24a)

A
(

δδ
)

exp [i(λ− 2λb)x] sin
(π

2
y
)

cosh2(αy) + c.c., (4.24b)

→ A
(

δδ
)

exp (iλx) sin
(π

2
y
)

cosh(αy) cosh(αy) + c.c., (4.24c)

δ (Aδ) exp [i(λ+ 2λb)x] sin
(π

2
y
)

cosh2(αy) + c.c., (4.24d)

→ δ
(

Aδ
)

exp (iλx) sin
(π

2
y
)

cosh(αy) cosh(αy) + c.c., (4.24e)

δ
(

Aδ
)

exp [i(−λ + 2λb)x] sin
(π

2
y
)

cosh2(αy) + c.c., (4.24f)

→ δ
(

Aδ
)

exp (−iλx) sin
(π

2
y
)

cosh(αy) cosh(αy) + c.c.. (4.24g)

Notice that some interactions, namely those indicated by an arrow, reproduce
the structure of the fundamental O(A) solution: at this level a solvability
condition for the system is required as discussed in the following. Since we are
studying the effect of width variations on free bars formation, we only need to
solve those problems which lead to the fundamental structure reproduction.

The reproduction of the fundamental solution is obtained, at the third
order, also by self interactions involving free modes only, as discussed by
Colombini et al. (1987) (A

(

AA
)

+ c.c. and A(AA) + c.c.). However, in the
context of a linear stability analysis, this contribution is negligible since we
are assuming A to be much smaller with respect to the amplitude δ of width
variations: this implies O(A3) ≪ (Aδ2).



4.3. SOLUTION 77

4.3.5 O(δ2) problem

The differential system governing the distortion of the basic flow is obtained
as the solution of the following system

L0 ·
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, (4.25)

with the boundary conditions

V0 = ±iλbU1 + c.c., (y = ±1), (4.26a)

R(F 2
0H0 −D0),y = Qy0 ± iλb

(

U1 −Qx1

)

+ c.c., (y = ±1), (4.26b)

where L0 is a linear differential operator obtained from L1 by replacing λb
with 0; the coefficients b

(0)
j arise from non linear interactions and read

b
(0)
1 = −

[

iλb(U1 +H1)− βCf0D1 + βTx1 + U1,yV 1+

−βTx1D1 + βCf0D1D1 − iyλb(U 1,y +H1,y) + βTx0
]

+ c.c., (4.27a)

b
(0)
2 = −

[

iλb(V1 + V1U 1) + V1V 1,y − βTy1D1+

+βTy1 − iλbyV 1,y + βTy0
]

+ c.c., (4.27b)

b
(0)
3 = −

[

iλb(U1 +D1) + V1,yD1 +D1,yV 1+

−iλby(U1,y +D1,y)
]

+ c.c., (4.27c)

b
(0)
4 = −Q0 [iλbQx0 +Qy0,y − iλbyQx1,y] + c.c., (4.27d)

where

Tx1 = Cf0(2U1 + CDD1), (4.28a)

Ty1 = Cf0V1, (4.28b)
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Qx1 = 2Φ0ΦTU1 + CDΦ0ΦTD1 (4.28c)

and the coefficients Tx0, Ty0, Qx0 and Qy0 are not reported for the sake of
brevity.

Furthermore the condition (3.11d) has to be satisfied, it reads

∫ 2π

Lb

0

∫ 1

−1

(

F 2
0H0 −D0

)

dydx = 0. (4.29)

4.3.6 O(Aδ) problem

At the order O(Aδ) mixed interactions give rise to 11 components satisfying
the following differential system

L′

11 ·
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b
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1
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b
(11)′
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, (4.30)

with the boundary conditions

V ′

11 = ±iλbu1, (y = ±1), (4.31a)

R(F 2
0H

′

11 −D′

11),y = Q′

y11 ± iλb (u1 − qx1) , (y = ±1), (4.31b)

The coefficients b
(11)′

j arise from non linear interactions and read

b
(11)′

1 = − [i(λ+ λb)U1u1 + iλu+ V1u1,y + v1U1,y + iλh1 + βtx1+

−βCf0d1 − βtx1D1 − βTx1d1 + 2βCf0d1D1+

+βT ′

x11 − iλbu1,y − iyλbh1,y] , (4.32a)

b
(11)′

2 = − [iλU1v1 + iλbu1V1 + iλv1 + v1V1,y + V1v1,y + βty1+

−βty1D1 − βTy1d1 + βT ′

y11 − iyλbv1,y
]

, (4.32b)

b
(11)′

3 = − [i(λ+ λb)(d1U1 +D1u1) + iλ(d1 + u1) + v1D1,y + V1d1,y+
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+V1,yd1 + v1,yD1 − iyλb(u1 + d1),y] , (4.32c)

b
(11)′

4 = −Q0

[

i(λ+ λb)Q
′

x11 +Q′

y11,y +−iyλqx1,y
]

, (4.32d)

where

tx1 = Cf0(2u1 + CDd1), (4.33a)

ty1 = Cf0v1, (4.33b)

qx1 = 2Φ0ΦTu1 + CDΦ0ΦTd1 (4.33c)

and the coefficients T ′

x11, T
′

y11, Q
′

x11 and Q′

y11 are not reported for the sake
of brevity.

The differential problem for ′′ component appearing in expansion (4.4) is
obtained from (4.30), (4.31a,b), (4.32a-d) and (4.33a-c) by replacing iλ with
−iλ and the coefficients of the O(A) fundamental free mode (u1, v1, h1, d1)
with their complex conjugate.

4.3.7 Solvability condition

At the order O(Aδ2) the following differential system is found

L ·
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b
(01)
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, (4.34)

where L is the linear operator governing the fundamental free mode and on
the right side of the equation the corrections to bars growth rate and migra-
tion speed appear. The coefficients b

(01)
1 , b

(01)
2 , b

(01)
3 and b

(01)
4 are not reported.

System (4.34) requires a solvability condition because its homogeneous part
admits of a non trivial solution. The solvability condition allows one to de-
termine the total growth rate and migration speed of bars corrected by the
effect of width variations in the form

(Ω− iω) = (Ω0 − iω0) + δ2 (Ω1 − iω1) . (4.35)
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Figure 4.2: The correction Ω1 to the growth rate of free bars is plotted versus
λb (a) and λ (b) for different values of Shields parameter ϑ0 ((a)λ = 0.5, (b)
λb = 0.3, β = 20, ds = 0.01).

4.4 Results

The main result of present analysis is the determination of the correction to
the growth rate and migration speed of bars induced by periodic variations
of channel width.

In figure 4.2a,b the correction Ω1 to the growth rate is plotted versus the
wavenumbers of width variations λb and of free bars λ, respectively, for dif-
ferent values of Shields parameter ϑ0. It appears that Ω1 is always negative,
which implies that the effect of width variations is invariably stabilizing. It
also appears that the damping effect is slightly dependent on the wavenum-
ber of width variations; furthermore it increases for increasing values of ϑ0.
Notice that bar wavenumber of figure 4.2a roughly corresponds to that of
the fastest growing bar in the constant width channel. Also notice that a
resonant behavior analogous to that originally discovered by Blondeaux &
Seminara (1985) in meandering channels is exhibited by our solution with
ϑ0 = 0.07.

Equation (4.35) suggests that the damping effect on free bars is propor-
tional to δ2, i.e. it increases as the amplitude of width variations increases.
When the total growth rate vanishes free bars are suppressed: theoretical re-
sults suggest that this occurs for values of δ which are small enough to justify
the small-amplitude assumption embodied in (4.1). Threshold values of δ
for free bar suppression are given in figure 4.3 for different values of β and ϑ0.
It appears that larger values of δ are required to suppress free bars when β is
large. The latter finding is consistent with the fact that free bar instability
is enhanced as we move away from the threshold value of width ratio βc.
This is also shown in figure 4.4a,b where the total growth rate of free bars is
plotted versus λ for different values of λb and β, for given amplitude δ. When
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Figure 4.3: The threshold value of δ above which bars are suppressed is
plotted versus β for different values of ϑ0 (ds = 0.05, λb = 0.3).
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Figure 4.4: The growth rate Ω of free bars is plotted versus λ for different
values of λb, (a) β = 18, (b) β = 34 (cwc: constant width channel. ϑ0 = 0.2,
ds = 0.01, δ = 0.125).

β is small (figure 4.4a) free bars are suppressed; within the range of the most
unstable bar perturbations the damping effect increases for increasing values
of the wavelength of width variations. When β is large (figure 4.4b) width
variations are unable to suppress free bars, however they significantly affect
the selection process of the most unstable bar perturbation: for relatively
slow variations (small λb) shorter bars are selected; as λb increases the most
unstable range shifts towards smaller values of λ (longer bars).

Furthermore, figure 4.5a,b shows that the suppressive effect of width vari-
ations is more efficient at high values of Shields parameter (figure 4.5b).

Results for the migration speed of bars are reported in figures 4.6 and 4.7:
it appears that width variations slow down the propagation of free bars; how-
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Figure 4.5: The growth rate Ω of free bars is plotted versus λ for different
values of λb, (a) ϑ0 = 0.1, (b) ϑ0 = 0.2 (cwc: constant width channel. β = 20,
ds = 0.01, δ = 0.125).
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Figure 4.6: The correction ω1 to total angular frequency ω of free bars is
plotted versus λ for different values of λb (ϑ0 = 0.2, ds = 0.01, β = 18,
δ = 0.125).

ever, at small values of λb the correction ω1 becomes positive, which implies
that slow spatial variations of channel width may speed up bar propagation.
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Figure 4.7: The total angular frequency ω of free bars is plotted versus λ for
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Chapter 5

Stability of bifurcations in
channels with movable bed

5.1 Introduction

Channel bifurcations are fundamental features characterizing braided sys-
tems, being the formative braiding mechanism (figure 5.1). Their role is also
crucial in fully developed braided networks: the evolution of a bifurcation
governs water and sediment distribution into the downstream branches and
slight changes at the channels division may strongly affect the topographic
behavior of the downstream reaches. In the present chapter the stability
of a bifurcation is investigated through a one dimensional numerical model.
The bifurcation is defined stable when both branches remain open, while it
is defined unstable when one branch tends to close and water and sediment
discharge flows into the other. The abandonment of one branch may be due
to an inherent instability of the system under suitable conditions or may be
induced by external forcings, such as backwater effects, migration of bars
through the bifurcation, changes of bed level in the downstream branches,
etc.. The present work deals both with free instability of bifurcations and
with the case of instability forced by the boundary conditions.

In one dimensional network models of rivers confluences and bifurcations
form nodal points. The equations used to describe both processes are the
same; nevertheless, there is a significant difference between modeling a con-
fluence or a bifurcation: in the former case water and sediment discharges
are known in both of the upstream branches; on the other hand, at a bifurca-
tion it is necessary to decide how do water and sediment divide. Hence, a so
called nodal point relationship is required, which determines the distribution
of flow and bedload transport into the two downstream branches.

85
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Figure 5.1: Bifurcation in a braided river, Sunwapta (Alberta, Canada).

In this chapter a quasi two dimensional nodal point relationship is pre-
sented. The results show that, in the absence of forcing effects, bifurcations
are stable provided Shields stress exceed a threshold value, which depends
on channel geometry and hydraulic conditions.
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5.2 Previous contributions: Wang et al. (1995)

model

In this section the main results of a previous theoretical work performed by
Wang et al. (1995) on the stability of river bifurcations are presented. The
authors consider the simple channel network sketched in figure 5.2 in which
a river bifurcates into two branches ending in a lake. The attention is mainly
devoted to the behavior of a river delta. The conditions under which the
bifurcation loses stability are investigated through a one-dimensional model,
in the absence of any forcing effect.

At the upstream section of the first channel water and sediment discharge
are imposed while at the end of the two downstream branches water level is
kept constant. A one dimensional model is unable to represent accurately
water and sediment flow at the bifurcation; therefore, the establishment of
suitable nodal point conditions turns out to be the crucial aspect of the
approach. The authors propose the following relationships to be applied at
the bifurcation:

i) water discharge balance

Qa = Qb +Qc; (5.1)

ii) sediment discharge balance

baqa = bbqb + bcqc; (5.2)

iii) constance of water level

Ha = Hb = Hc; (5.2a,b)

where Q is water discharge, q is sediment discharge per unit width, b is
channel width and H water level (figure 5.3). Subscript a, b and c denote
the different branches. Furthermore the authors introduce a so called nodal

point relation which takes the form

iv) nodal point relationship

bbqb
bcqc

=

(

Qb

Qc

)k (
bb
bc

)1−k

, (k > 1). (5.3)

The latter condition is somehow arbitrary but it satisfies the following re-
quirements
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Figure 5.2: Geometry of the network.

i) it is symmetric;

ii) it allows the model to represent all possible physically realistic situa-
tions (stable and unstable bifurcations);

iii) it allows only uniquely determined equilibrium conditions with both
branches open.

The coefficient k is unknown; the only estimates provided by the authors
give k = 2 and k = 6 for a real river and for a scale model of a bifurcation,
respectively.

The authors suggest that the only possible equilibrium conditions for the
network are the following

i) both branches are open, each branch transports a part of the water and
sediment;

ii) branch b is closed (Qb = qb = 0) and all water and sediment is trans-
ported through branch c;

iii) branch c is closed (Qc = qc = 0) and all water and sediment is trans-
ported through branch b.

In order to analyze the stability of the equilibrium state the morphological
development of the system far from the equilibrium is considered. To allow
an analytical treatment of the problem the bathymetry of each branch is
assumed to be represented by a single depth value. Furthermore the authors
assume the flow to be uniform, even if the system is not in equilibrium. The
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following relationships are used for water motion and sediment transport,
respectively

Qi = biCiD
3/2
i S

1/2
i , (5.4)

qi =M

(

Qi

biDi

)n

, (5.5)

where i denotes the branch (a, b or c), C is dimensionless Chezy coefficient,
D is water depth and S is channel slope.

Performing a linear stability analysis the authors determine the following
set of differential equations, governing the development in time of the network

dDb

dt
= φ1(Db, Dc), (5.6a)

dDc

dt
= φ2(Db, Dc), (5.6b)

where φ1 and φ2 are functions of the flow depths of the downstream channels.
Notice that at the equilibrium φ1 = φ2 = 0. The eigenvalues of the Jacobian
of the system govern the stability of the bifurcation. If the real parts of
the eigenvalues are negative, perturbations decay exponentially in time and
the equilibrium is stable; if one of the eigenvalues has positive real part,
the equilibrium is unstable. The results of the analysis suggest that the
bifurcation is stable, provided the following requirement be satisfied

k > n/3, (5.7)

where k is the exponent of the nodal point relationship (5.3) and n is the
exponent of the sediment transport law (5.5). On the other hand, if k < n/3
the configuration with both branches open is unstable.

In the following the results of Wang et al. (1995) will be tested under non
uniform flow conditions; then a physically based nodal point relation will be
proposed.
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5.3 Formulation of the problem

5.3.1 Problem for a single channel

The problem is formulated in the context of a one dimensional model, in
terms of dimensional variables D, H and Q which are water depth, free
surface elevation and water discharge, respectively (figure 5.3). Furthermore
we assume the cross section to be rectangular and infinitely wide.

The continuity and flow equations in one dimensional form read

bD,t +Q,x = 0, (5.8a)

Q,t +

(

Q2

Σ

)

,x

+ gΣH,x + gΣj = 0, (5.8b)

where b is channel width, g is gravity, Σ is cross section area and j is defined
as follows

j =
τ

ρgRh
, (5.9)

where τ is bed shear stress and Rh the hydraulic radius which coincides with
the flow depth D for wide channels.

The flow field equations are coupled with sediment continuity equation;
in the one-dimensional form it reads

(1− p)η,t + q,x = 0, (5.10)

where q is sediment transport per unit width, p is sediment porosity and η
is bed elevation, defined as

η = H −D. (5.11)

In order to complete the mathematical formulation of the problem we
need to introduce suitable closures to model j and the solid discharge q.
Using the relationship proposed by Gauckler and Strickler j is expressed in
terms of local values of flow characteristics in the form

j =
Q|Q|

k2sΣ
2D4/3

, (5.12)

where ks is Strickler coefficient.
Following a well established procedure originally introduced by Einstein

(1950) bedload transport per unit width can be written as follows

q = Φ(ϑ, ϑc)

√

ρs − ρ

ρ
gd3s, (5.13)
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Figure 5.3: Notation.

where Φ is the beload function given in terms of the local value of Shields
parameter ϑ. Furthermore, ϑc is the critical value of Shields stress below
which sediment does not move. In the following Φ is evaluated through
Meyer-Peter & Müller (1948) formula. Hence bed load function is written in
the form

Φ = 8(ϑ− ϑc)
3/2, (5.14)

and ϑc = 0.047.

In terms of the variables of the problem Shields parameter reads

ϑ =
Q2

(s− 1)dsk2sb
2D7/3

, (5.15)

where

s− 1 =
ρs − ρ

ρ
. (5.16)

Equation (5.15) implies that the bed load is a function of local values of
water depth and discharge

q = q(D,Q). (5.17)

The final form of the governing equations for constant width channels is
obtained in the form

bD,t +Q,x = 0, (5.18a)
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Q,t +
2Q

Σ
Q,x + gΣ (H,x + j)− b

Q2

Σ2
D,x = 0, (5.18b)

(1− p)bh,t + (1− p)Q,x + bq,ϑ (ϑDD,x + ϑQQ,x) = 0, (5.18c)

where the following coefficients have been defined

ϑQ =
∂ϑ

∂Q

∣

∣

∣

∣

D

=
2Q

(s− 1)dsk2sD
7/3b2

, (5.19a)

ϑD =
∂ϑ

∂D

∣

∣

∣

∣

Q

= − 7Q2

3(s− 1)dsk2sb
2D10/3

. (5.19b)

The system (5.18a-c) is hyperbolic and it is characterized by two charac-
teristic curves propagating downward and by one propagating upward, both
in the case of supercritical and subcritical flow.

As for the initial condition, we need to specify the value of the unknowns
D, H and Q along the spatial domain at the initial time t = 0. In general the
solution for the steady flow over the initial bed configuration is used for this
purpose, which is obtained solving system (5.18a-c) under steady conditions

Q,x = 0, (5.20a)

2Q

Σ
Q,x + gΣ (H,x + j)− b

Q2

Σ2
D,x = 0, (5.20b)

for given water discharge at the upstream section and given water level at
the upstream or downstream section depending on the flow be super-critical
or sub-critical. From (5.20a,b) D(x, 0) and H(x, 0) are computed once a
fixed bed level is given; water discharge at the initial time (t = 0) is constant
along the spatial domain, hence Q(x, 0) = Q(0, 0).

As for the boundary conditions, under unsteady flow, water and sediment
discharges are imposed at the upstream section as functions of time. Recall-
ing equation (5.17), setting the above conditions is equivalent to assign two
independent relationships of the type

F [Q(0, t), D(0, t)] = 0. (5.21)

In the present case the first condition sets the flow discharge Q(0, t) as a given
function of time, while the second condition implies a relationship between
Q and D which must reproduce the given sediment discharge.

At the downstream section water level H(L, t) is imposed or, a suit-
able stage-discharge relationship which involves Q(L, t), H(L, t) and D(L, t),
where L is the domain length.
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Figure 5.4: Sketch of the nodal point condition.

5.3.2 Problem for a channels network

In the following the stability of the simple channel network considered by
Wang et al. (1995) is investigated (figure 5.2); in particular, the downstream
branches have the same width, which is equal to the half width of the up-
stream branch (ba = 2bb = 2bc), and the initial slope is constant in all the
channels (Sa = Sb = Sc).

As showed in section 5.3.1, in order to solve the equations for each branch,
two boundary conditions are needed at the upstream section and one at the
downstream section. Water and sediment discharges are imposed at channel
a inlet while water level is set at channels b and c outlets. As underlined
by Wang et al. (1995) the most critical issue is to determine the five nodal
point conditions.

In the first attempt the nodal point relationships proposed by Wang et
al. (1995) have been used, which read

Qa = Qb +Qc, (5.22a)

baqa = bbqb + bcqc, (5.22b)
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Ha = Hb = Hc, (5.22c)

bbqb
bcqc

=

(

Qb

Qc

)k (
bb
bc

)1−k

, (k > 1). (5.22d)

Condition (5.22d) plays a crucial role in the analysis of river bifurcations.
The adoption of (5.22d) requires the introduction of a suitable value of k
which is a-priori unknown. Furthermore k may be a function of local flow
conditions and bed topography, which implies that k may change in time.

In order to overcome these difficulties a physically based nodal point
condition is proposed in the following. The new approach is based on the
recognition that, within the context of a two dimensional approach, a nodal
point condition is no longer required: with reference to figure 5.4 the solu-
tion is obtained by solving flow field and sediment continuity equations for
each computational cell. A similar approach has been followed in the present
analysis where a quasi two-dimensional model is introduced in the neighbor-
hood of the bifurcation. The last computational cell before the bifurcation,
with a length of αba, is split longitudinally into two subcells. Exner equation
is applied to both, assuming the incoming solid discharge to be uniformly
distributed at the upstream section and taking into account a transverse
component of bedload transport between the two cells. Sediment transport
leaving both cells is then fed as supply to the downstream branches of the
network. From physical point of view the coefficient α can be evaluated esti-
mating the upward distance from the nodal point at which the effect of the
bifurcation is felt.

Within a two dimensional approach, the transverse component of bedload
transport consists of two terms, the first being proportional to transverse
velocity and the second being dependent on transverse bed slope; following
Ikeda (1982) we write

qy = Φsinα, (5.23)

where Φ is the bed load function and

sinα = V
(

U2 + V 2
)

−1/2 − r

ϑ1/2
(H −D),y , (5.24)

where r is an empirical constant ranging between 0.3 and 0.6, (U, V ) are lon-
gitudinal and transverse velocity components, respectively and y is transverse
coordinate.

In the present case the transverse bedload component is treated in a
similar way, thus we write

qy = qa

[

QtDa

QaαDabc

− r√
ϑ

∂η

∂n

]

, (5.25)
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where

Qt =

Qb −Qc −Qa

(

bb − bc
ba

)

2
, Dabc =

1

2

(

Db +Dc

2
+Da

)

.

(5.26a,b)
In order to evaluate the transverse bed slope the difference between bot-

tom elevation at the inlet of the two downstream channels is considered,
divided by a fraction of the upstream branch width tbba; typically tb = 0.5 is
assumed.

It should be noticed that applying Exner equation to the two sections of
the last cell implies that the condition (5.22b) must not be accounted for:
depositions and scours are possible at the bifurcation.

The nodal point conditions then read

i) water discharge balance

Qa = Qb +Qc; (5.27)

ii) constance of water level

Ha = Hb = Hc; (5.28a,b)

iii) sediment continuity equation applied to the two sections of the last cell

1

2
(1− p)ηb,t +

qb − qa
αba

− qy
bb

= 0, (5.29a)

1

2
(1− p)ηc,t +

qc − qa
αba

+
qy
bc

= 0. (5.29b)

The influence of α and tb on the results will be discussed in section 5.5.2.
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5.4 Numerical scheme

In order to solve system (5.18a-c) a so called box scheme originally proposed
by Preissmann (1961) and Preissmann & Cunge (1961) is used, where a four
points rectangular mesh is adopted (figure 5.5). Time and space derivatives
are computed as weighted average of finite differences, evaluated in adjacent
points along the perimeter of the cell. Introducing the temporal and spatial
weight coefficients θ and ψ, ranging from 0 to 1, it follows that the derivatives
of the generic variable f read

∂f

∂t
= [(1− ψ)(fk+1

j − fk
j ) + ψ(fk+1

j+1 − fk
j+1)]

1

∆t
, (5.30a)

∂f

∂x
= [(1− θ)(fk

j+1 − fk
j ) + θ(fk+1

j+1 − fk+1
j )]

1

∆x
. (5.30b)

Usually ψ is equal to 0.5 while θ ranges from 0.5 to 1 to avoid numerical
instabilities; in the present case the value θ = 0.6 has been used. Hence,
the computational point is centered in space and shifted in time toward time
k + 1.

Substituting expressions (5.30a,b) into equations (5.18a-c) and assuming
a constant spatial step ∆x, we obtain

b

2∆t

(

Dk+1
j −Dk

j +Dk+1
j+1 −Dk

j+1

)

+

+
1

∆x

[

θ
(

Qk+1
j+1 −Qk+1

j

)

+ (1− θ)
(

Qk
j+1 −Qk

j

)]

= 0, (5.31a)

1

2∆t

(

Qk+1
j −Qk

j +Qk+1
j+1 −Qk

j+1

)

+

+
(S1)

k+θ
j+1/2

∆x

[

θ
(

Qk+1
j+1 −Qk+1

j

)

+ (1− θ)
(

Qk
j+1 −Qk

j

)]

+

+
(S2)

k+θ
j+1/2

∆x

[

θ
(

Hk+1
j+1 −Hk+1

j

)

+ (1− θ)
(

Hk
j+1 −Hk

j

)]

+

+
(S3)

k+θ
j+1/2

∆x

[

θ
(

Dk+1
j+1 −Dk+1

j

)

+ (1− θ)
(

Dk
j+1 −Dk

j

)]

+

+ (S4)
k+θ
j+1/2 = 0, (5.31b)
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Figure 5.5: Numerical cell.

(1− p)b

2∆t
[Hk+1

j −Hk
j +Hk+1

j+1 −Hk
j+1] +

+
(S5)

k+θ
j+1/2

∆x

[

θ
(

Qk+1
j+1 −Qk+1

j

)

+ (1− θ)
(

Qk
j+1 −Qk

j

)]

+

+
(S6)

k+θ
j+1/2

∆x

[

θ
(

Dk+1
j+1 −Dk+1

j

)

+ (1− θ)
(

Dk
j+1 −Dk

j

)]

= 0. (5.31c)

The coefficients Si, (i = 1, 6) are defined as follows

S1 = 2
Q

Σ
, (5.32a)

S2 = gΣ, (5.32b)

S3 = −bQ
2

Σ2
, (5.32c)

S4 = gΣj, (5.32d)

S5 = 1− p+ bq,ϑϑQ, (5.32e)

S6 = bq,ϑϑD (5.32f)
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and they are evaluated at the computational point using an weighted average
as follows

(Si)
k+θ
j+1/2 =

1

2

{

θ
[

(Si)
k+1
j + (Si)

k+1
j+1

]

+ (1− θ)
[

(Si)
k
j + (Si)

k1
j+1

]}

. (5.33)

5.4.1 Solution for a single channel

A useful technique for the solution of non linear algebraic systems is the
double sweep method introduced by Richtmyer & Morton (1967), which is an
adaptation of Gauss method. At each time step the solution requires the
preliminary linearization of system (5.31a-c), obtained imposing θ = 0 in the
coefficients (5.33).

If j = 0, 1, 2, ..., N , a system of equations of the type (5.31a-c) can be
written for each of the N sections. Hence, we have 3(N + 1) unknowns at
time k+1, and 3N equations. Three additional equations are obtained from
the boundary conditions. System (5.31a-c) can be written as follows

A1
jQ

k+1
j+1 +B1

jQ
k+1
j + C1

jH
k+1
j+1 +D1

jH
k+1
j + E1

jD
k+1
j+1 + F 1

j D
k+1
j = L1

j , (5.34a)

A2
jQ

k+1
j+1 +B2

jQ
k+1
j + C2

jH
k+1
j+1 +D2

jH
k+1
j + E2

jD
k+1
j+1 + F 2

j D
k+1
j = L2

j ,(5.34b)

A3
jQ

k+1
j+1 +B3

jQ
k+1
j + C3

jH
k+1
j+1 +D3

jH
k+1
j + E3

jD
k+1
j+1 + F 3

j D
k+1
j = L3

j , (5.34c)

where all the coefficients are defined in appendix B.
Imposing

Qj = GjHj + Lj , (j = 0, 1, 2, ..., N) (5.35)

and
Dj =MjHj +Nj, (j = 0, 1, 2, ..., N), (5.36)

from (5.34a-c) we obtain the following relationships

Gj+1 =
B′

jC
′′

j −B′′

jC
′

j

A′′

jC
′

j − A′

jC
′′

j

, Lj+1 =
C ′

jD
′′

j − C ′′

jD
′

j

A′′

jC
′

j −A′

jC
′′

j

,

Mj+1 =
B′

jA
′′

j − B′′

jA
′

j

C ′′

jA
′

j − C ′

jA
′′

j

, Nj+1 =
A′

jD
′′

j − A′′

jD
′

j

C ′′

jA
′

j − C ′

jA
′′

j

(5.37a-d)

and an expression for Hj which reads

Hj =
C̄j − A2

jQj+1 − C2
j hj+1 − E2

jDj+1

Āj

, (5.38)
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where all the coefficients are reported in appendix B.
Equations (5.35), (5.36) and (5.38) allow one to obtain three relationships

that can be solved recursively upward, once the coefficients Gj , Lj , Mj , Nj

(j = 1, 2, ..., N) and C̄j, A
2
j , C

2
j , E

2
j , Āj (j = 0, 1, ..., N − 1) are determined.

Provided the upstream boundary conditions be given in the form Q0 = Q(t)
and D0 = D(t), the solution proceeds through the following steps.

i) Setting of the upstream boundary conditions: from (5.37a-d) it follows

G0 = 0, L0 = Q(t), (5.39a,b)

M0 = 0, N0 = D(t), (5.40a,b)

with t = t0 + (k + 1)∆t.

ii) First sweep (downward): computation of the coefficients Gj , Lj , Mj ,
Nj , C̄j , A

2
j , C

2
j , E

2
j , Āj.

iii) Setting of the downstream boundary condition: evaluation of the un-
known values QN , DN , HN .

iv) Second sweep (upward, j runs from N − 1 to 0): Qj , Dj , Hj are de-
termined through the solution in section (j + 1), using equation (5.38)
to determine Hj and equations (5.35), (5.36) to determine Qj and Dj ,
respectively.

Once obtained a first approximation of the solution for Qk+1
j , Dk+1

j and

Hk+1
j the above procedure is iterated, the coefficients Sj are now evaluated

through equation (5.33) with θ 6= 0.

5.4.2 Solution for a channel network

The solution for a free surface channel network can be obtained splitting
the system into an appropriate number of subsystems and solving equations
(5.18a-c) for each of them. The technique used herein, originally proposed
by Shaffranek et al. (1981), allows one to solve a network under unsteady
conditions in a very efficient way. At first, the boundary values of each
unknown are computed for all the branches of the network; then the equations
are solved along each branch using the scheme presented in section 5.4.1.

System (5.18a-c) can be written in matrix form for a network as follows

αjWj+1 + βjWj = γj, (5.41)
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with

Wj =







Qj

Dj

Hj






, αj =







A1
j E1

j C1
j

A2
j E2

j C2
j

A3
j E3

j C3
j






,

βj =







B1
j F 1

j D1
j

B2
j F 2

j D2
j

B3
j F 3

j D3
j






, γj =







L1
j

L2
j

L3
j






. (5.42a-d)

It follows
Wj+1 = ζj Wj + ηj , (5.43)

where
ζj = α−1

j βj , ηj = α−1
j γj. (5.44a,b)

Applying recursively equation (5.43) Q0, D0 and H0 at the upstream end of
each branch can be related with QN , DN and HN at the downstream end of
the same branch. In fact

W1 = ζ0 W0 + η0, (5.45)

W2 = ζ1 W1 + η1 = ζ1 ζ0 W0 + ζ1 η0 + η1, (5.46)

from which
WN = ξ W0 + η̄, (5.47)

where

ξ =
N−1
∏

i=0

ζi, (5.48a)

η̄ = ηN−1 +

N−2
∑

k=0

(

N−1
∏

i=k+1

ζi

)

ηk. (5.48b)

A relationship like (5.47) which relates the values of the unknowns at
the upstream and the downstream end of each channel, can be written for
each branch of the network. Three algebraic equations are found, for the six
values Q0, D0, H0, QN , DN , HN . For a network of m branches 3m relations
are written, which, combined with the 3m boundary conditions (external and
internal), determine a system of 6m equations. The solution of this system
allows one to determine the 6m unknowns, i. e. the values of Q, D, and H
at the boundaries of each channel.
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In the present case we consider the network sketched in figure 5.2. Hence,
it is necessary to set nine conditions, three for each channel. The four external
boundary conditions have been described in section 5.3.1, the remaining five
conditions are imposed at the nodal point as discussed in section 5.3.2.

The resulting algebraic system involves 18 equations in the unknowns
(Qi0, Di0, hi0, QiN , DiN , hiN) with (i = a, b, c). Nine equations are obtained
from system (5.47), four are given by the external conditions and five arise
from the internal conditions at the nodal point. The system is solved using
the Newton method. Equations (5.31a-c) are then solved in each branch of
the network using the procedure described in section 5.4.1.
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5.5 Results

5.5.1 Single channel

In this section the numerical model has been tested in order to ascertain
its suitability to describe the development of natural channels. A single
branch has been considered: starting from initial uniform conditions the
system is perturbed by changing the boundary conditions. It is possible to
demonstrate that, within the context of a one dimensional model, the only
possible equilibrium configuration for the flow on movable bed with constant
width is the uniform flow. In fact, under such conditions, the governing
equations (5.18a-c) reduce to the simple form

Q,x = 0, (5.49a)

H,x = −S, (5.49b)

q,x = 0. (5.49c)

Hence, in the following examples, the final configuration achieved by the
system for given (steady) boundary conditions is readily analytically pre-
dictable.

The numerical tests have been carried out using the geometric and hy-
draulic characteristics of a laboratory scale model.

Increase of sediment discharge at the upstream section

The numerical experiment starts from an initial uniform configuration with
the following characteristics

- channel width: b=0.6m;

- channel length: L=18m;

- channel slope: S=0.008;

- Strickler coefficient: ks=70m1/3s−1;

- sediment diameter: ds=1.2mm.

The initial boundary conditions impose

- Q=20l/s at the upstream section;
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Figure 5.6: Bed profiles at different times; the sediment discharge has been
increased by 10%. The initial channel slope has been filtered out from bed
profile.

- D = Du at the upstream section;

- D = Du at the downstream,

where Du is the uniform flow depth.
The sediment discharge at the upstream section is increased by 10% in-

stantaneously and kept constant in time until a new equilibrium condition is
reached. For the numerical solution a spatial step ∆x =1m and a time step
∆t=10s have been adopted.

In figure 5.6 bed configurations at different times are showed: it appears
that the transient is characterized by an upstream deposition which gradu-
ally propagates downward. The final configuration reached by the channel
displays a constant slope which is in equilibrium with prescribed sediment
discharge, in agreement with theoretical predictions.

Increase of water level at the downstream section

Starting from the same uniform flow of the previous test, the water level at
the downstream section is raised instantaneously to a depth of two times the
initial one and it is kept constant in time since a new steady condition is
reached by the system. For the numerical solution a spatial step ∆x =0.4m
and a time step ∆t=10s have been adopted.

Notice that the flow is supercritical, the initial uniform configuration be-
ing characterized by a Froude number F = 1.13. In figure 5.7 bed and free
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Figure 5.7: Bed and water level profiles at different times; the water level
has been increased by 100%.

surface elevations are plotted at different times. The transient is character-
ized by the generation of a deposition at the channel outlet which propagates
upward until the initial given slope is re-established. The model seems able to
cope with relatively weak discontinuities; however, during the first part of the
transient, some numerical instabilities are generated as shown in figure 5.7.

5.5.2 Channel network

In the present section the stability of a bifurcation is investigated through the
numerical model which makes use of the nodal conditions (5.27), (5.28a,b)
and (5.29a,b) proposed in section 5.3.2.

Free instability

We now consider the problem of the free stability of a bifurcation. As for the
external boundary conditions we impose water and sediment discharge at the
upstream section of branch a and the uniform flow condition at the outlets
of channels b and c (see figure 5.2 for the geometry of the network). The
initial configuration is characterized by a unique slope in all the branches;
furthermore, water and sediment discharges are equally distributed in the
two downstream branches. The system is perturbed by the introduction of
a small bump of sediments in channel b. Depending upon the geometry of
the network and flow and sediment characteristics the model predicts both
situations of stable and unstable bifurcation.
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Figure 5.8: Bottom profile development under stable conditions. The initial
channel slope has been filtered out from bed profile.

In figure 5.8 the typical behavior under stable conditions is showed: the
sediment bump migrates upstream along channel b (the flow is supercritical)
and it is progressively damped and diffused. After some time deposition
occurs along the whole channel b, whose height slowly decays in time since the
unperturbed initial configuration is re-established by the system. Channel c
is almost unaffected by the presence of the sediment bump except for a small
erosion at the inlet which does not propagate along the channel. A relatively
small deposition is generated at the downstream end of branch a during the
initial stage of the process. In figure 5.9 the behavior of the network under
unstable conditions is reported. The initial phase does not differ significantly
from that of the stable case; however the deposition in branch b grows in time
and consequently in branch c undergoes an erosion process. The numerical
simulation ends when Shields stress in channel b falls below the critical value
for sediment motion.

Numerical results suggest that, given the geometry of the channel, it is
possible to find a threshold value of Shields parameter ϑ above which the
bifurcation is stable and below which it is unstable. Notice that braided
rivers, in which the bed configuration is strongly unstable, are characterized



106 CHAPTER 5. STABILITY OF BIFURCATIONS

-0.5

0

0.5

1

10 15 20 25 30

η 
[m

]

channel a channel b

t=0 m    
t=12 m  
t=100 m
t=133 h 
t=200 h 

-1.5

-1

-0.5

0

0.5

1

10 15 20 25 30

η 
[m

]

x [m]

channel a channel c

t=0 m    
t=12 m  
t=100 m
t=133 h 
t=200 h 

Figure 5.9: Bottom profile development under unstable conditions. The
initial channel slope has been filtered out from bed profile.

by values of Shields stress close to the critical conditions. In figure 5.10 the
threshold value of ϑ is plotted versus the width ratio of channel a for two
different values of Froude number, corresponding to subcritical and super-
critical flow. The plot shows that as the width ratio of the channel increases,
larger values of Shields stress are needed to ensure the stability of the bifur-
cation. It is worth pointing out that the threshold value of Shields parameter
seems to be weakly dependent on Froude number as appears from figure 5.11
in which the neutral stability curve is plotted versus Froude number.

Furthermore, we note that in the nodal conditions (5.29a,b) the coeffi-
cients α and tb appear, which are involved into the evaluation of the length
of the nodal cell and of the transverse bed slope, respectively. These pa-
rameters need a suitable tuning in order to describe the development of real
bifurcations. In figures 5.12 and 5.13 the dependence of the threshold value
of Shields stress on these parameters is shown, for given channels width and
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Figure 5.10: The critical Shields number θ is plotted versus the width ra-
tion β for different Froude numbers (channels width b=50m, channels slope
S=0.008).
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Figure 5.11: The critical Shields number θ is plotted versus the Froude num-
ber F (channels width b=50m, channels slope S=0.008).

slope. It appears that the solution is affected by the values of both the
parameters, however the dependence of the results on α and tb decreases in-
creasing their values. In all the numerical simulations the following choice
has been pursued: α=1.3, tb=0.5. The stabilizing role of the transverse slope
is found to be crucial to predict stable conditions: assuming tb → ∞ the
model always predicts instability, even for very large values of Shields stress.
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Figure 5.12: The critical Shields number θ is plotted versus the coefficient α
(channels width b=50m, channels slope S=0.008).
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Figure 5.13: The critical Shields number θ is plotted versus the coefficient tb
(channels width b=50m, channels slope S=0.008).

Forced instability

Let now consider the problem of the stability of a bifurcation subject to a
forcing effect induced by non uniform boundary conditions. This is typically
the situation characterizing braided rivers in which the branches are relatively
short due to the continuous interplay of channels. In the numerical simulation
the initial configuration is characterized by a unique slope in all the branches;
water and sediment discharges are equally distributed into branches b and c.
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Figure 5.14: Bottom and free surface profile development forced by raising
water level at the downstream end of channel b.

Water level at the downstream end of channel b is raised instantaneously to
a depth of two times the initial one and kept constant in time. Figure 5.14
shows the behavior in time of free surface and bed elevation. It appears
that a deposition occurs at channel b outlet, that propagates upward; at the
same time channel c is subject to an erosion process almost uniform along
all the branch. A step on bed elevation forms at the inlets of the two divided
channels, which rapidly grows in time. Starting form the downstream section,
the flow in channel b is no longer able to transport sediment; the numerical
run is stopped when Shields stress falls below the critical value for sediment
motion, along all the branch. Channel a is almost unaffected by this behavior.
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5.5.3 Comparison with the results of Wang et al. (1995)

In this section a comparison with the theoretical findings of Wang et al.
(1995) is presented: the nodal point conditions (5.22a-d) proposed by the
authors have been adopted for this purpose.

Wang et al. (1995) analysis predicts stability provided k > n/3, where
k and n are the exponents of the nodal point condition (5.22d) and of the
bedload transport law (5.5), respectively. In the present case sediment dis-
charge is described through Meyer-Peter and Müller formula which does not
imply a constant value of n; it is easy to demonstrate that for ϑ→ 0 we have
n→ ∞ while for ϑ→ ∞ we have n→ 0.9.

In figure 5.15 the threshold value of k above which the bifurcation is stable
is plotted versus Shields parameter for different values of Froude number: the
marginal stability curve agrees satisfactorily with the theoretical predictions
of Wang et al. (1995). It is worth pointing out that the threshold value of k
is completely independent on Froude number.

The imposition of the nodal conditions (5.27), (5.28a,b) and (5.29a,b)
described in section 5.3.2 allows one to determine water and sediment dis-
tribution into the two downstream branches; hence it is possible to evaluate
numerically the exponent k of the nodal point condition (5.22d). In fig-
ure 5.16 the value of k is plotted versus time for different values of Shields
parameter; both stable and unstable conditions are considered. It appears
that k is strongly dependent on time when the system is far from equilibrium
conditions. This result implies that the nodal point relationship proposed by
Wang et al. (1995) is not applicable to describe the development of a natural
bifurcation: the value of k is a function of the geometry of the bifurcation
and it can change in time depending on the topographic development of the
system.



5.5. RESULTS 111

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

k

θ

stable

unstable

0.047

Fr=0.38
Fr=0.52
Fr=0.72
Fr=1.08
Fr=1.46
Fr=1.77
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Appendix A

Experimental results

A.1 Series “a”

In the following plots the results of the Fourier analysis of the bed topog-
raphy are reported for each experiment of series “a”. The harmonics (i, 0)
correspond to purely longitudinal deformations of the bed while alternate
bars are represented by the harmonics (i, 1).
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A.2 Series “b”

In the following tables and plots the results of Fourier analyses of experimen-
tal bed configuration are reported along with a comparison with theoretical
findings. We denote with Aexp and Ath the experimental and theoretical am-
plitudes of each harmonic of bed profile, respectively. Harmonic 0 represents
the purely longitudinal component and harmonic 1 the central bar mode. In
the plots theoretical results are denoted with continuous lines.

run harmonic Ath [mm] Aexp [mm]
b3 0 6.75 5.65

1 3.49 3.44
2 0.81 0.84

b4 0 7.00 6.20
1 3.64 3.45
2 0.84 1.11

b5 0 7.28 6.40
1 3.80 3.15
2 0.87 0.97

b6 0 7.25 6.52
1 1.88 3.61
2 0.35 0.90

b7 0 5.61 4.04
1 2.71 3.11
2 0.68 0.85

b8 0 5.59 4.61
1 2.71 3.02
2 0.68 0.82

b9 0 5.59 4.84
1 2.71 3.21
2 0.68 0.93

b10 0 4.82 3.57
1 1.43 3.68
2 0.67 0.90
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run harmonic Ath [mm] Aexp [mm]
b12 0 6.67 5.75

1 3.50 3.54
2 0.81 0.83

b13 0 3.53 4.15
1 0.57 3.69
2 0.75 1.70

b15 0 5.07 4.61
1 2.57 2.50
2 0.65 1.39

b16 0 5.35 3.67
1 2.77 2.00
2 0.69 0.61

b17 0 4.03 1.62
1 1.52 1.78
2 0.58 0.69

b18 0 5.07 3.70
1 2.57 2.79
2 0.65 0.88

b19 0 2.97 2.91
1 0.09 3.51
2 0.18 1.89

b21 0 2.93 2.51
1 0.60 2.72
2 0.60 1.11

b22 0 3.89 4.43
1 1.67 2.90
2 0.54 1.20

b23 0 4.11 3.26
1 4.04 1.48
2 0.22 1.82

b24 0 5.00 5.32
1 2.24 1.69
2 0.25 0.43

b25 0 4.71 4.71
1 2.12 0.94
2 0.24 0.81
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run harmonic Ath [mm] Aexp [mm]
b26 0 3.18 3.38

1 3.97 1.24
2 0.21 0.63

b27 0 3.56 2.55
1 13.11 1.01
2 0.21 1.20

b29 0 5.68 6.39
1 3.88 2.46
2 0.32 0.57

b30 0 5.18 4.70
1 2.15 2.42
2 0.26 0.90

b31 0 4.97 4.78
1 4.73 2.40
2 0.27 0.89

b32 0 5.18 4.78
1 2.15 2.40
2 0.26 0.89

b33 0 3.52 3.25
1 1.24 1.20
2 0.18 0.73

b34 0 3.18 3.25
1 3.97 1.20
2 0.21 0.73

b35 0 3.33 2.95
1 1.93 3.10
2 0.38 1.18

b36 0 4.67 5.07
1 3.27 2.04
2 0.25 0.62

b37 0 4.19 3.23
1 9.68 2.44
2 0.24 1.47

b38 0 5.01 4.85
1 2.54 2.41
2 0.26 1.03
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run harmonic Ath [mm] Aexp [mm]
b39 0 5.60 5.98

1 2.06 3.10
2 0.28 0.87

b40 0 3.67 3.32
1 4.44 1.95
2 0.27 1.25

b41 0 6.53 6.73
1 1.93 1.68
2 0.33 0.98

b42 0 4.03 3.25
1 43.49 2.68
2 0.25 1.70

b43 0 5.34 5.35
1 2.22 3.17
2 0.27 1.23

b44 0 3.00 2.76
1 1.13 2.06
2 0.43 1.34

b45 0 4.44 3.55
1 4.26 3.39
2 0.39 1.70

b46 0 5.21 4.58
1 4.28 2.07
2 0.27 1.03

b47 0 6.69 6.20
1 1.97 2.94
2 0.32 0.70

b48 0 7.49 7.83
1 1.94 2.84
2 0.36 0.84

b49 0 4.93 4.18
1 11.18 3.85
2 0.28 1.97

b50 0 6.36 6.62
1 2.04 2.72
2 0.31 0.91



A.2. SERIES “B” 123

run harmonic Ath [mm] Aexp [mm]
b51 0 6.97 6.62

1 1.94 2.72
2 0.33 0.91

b52 0 6.82 6.72
1 1.95 1.67
2 0.33 0.50

b53 0 6.55 6.57
1 2.00 2.01
2 0.31 0.42

b54 0 6.62 6.72
1 1.99 1.67
2 0.32 0.70

b60 0 13.64 14.48
1 10.69 3.68
2 1.22 0.98

b61 0 15.05 17.27
1 9.01 3.76
2 0.69 1.58

b62 0 11.88 12.74
1 22.99 5.11
2 0.75 1.83

b63 0 10.47 13.19
1 8.55 2.67
2 0.55 0.93

b64 0 8.92 11.92
1 7.28 3.44
2 0.47 1.04

b65 0 7.43 10.56
1 4.25 4.76
2 1.17 2.33

b66 0 11.63 14.82
1 5.05 3.87
2 0.57 1.30

b67 0 14.98 18.34
1 3.87 3.88
2 0.72 2.00
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Appendix B

Stability of bifurcations

A1
j = −B1

j =
θ

∆x
, (B.1)

C1
j = D1

j = 0, (B.2)

E1
j = F 1

j =
b

2∆t
, (B.3)

L1
j =
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2∆t

(

Dk
j +Dk

j+1

)

+
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∆x
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j+1

)

, (B.4)
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θ
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2∆t
− θ
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k+θ
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j = −D2
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θ
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j = −F 2
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θ

∆x
(S3)

k+θ
j+1/2 , (B.8)

L2
j =

1

2∆t

(

Qk
j +Qk

j+1

)

+
(1− θ)

∆x
(S1)

k+θ
j+1/2

(

Qk
j −Qk

j+1

)

+

+
(1− θ)

∆x
(S2)

k+θ
j+1/2

(

Hk
j −Hk

j+1

)

− (S4)
k+θ
j+1/2 +

131



132 APPENDIX B. STABILITY OF BIFURCATIONS

+
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C̄j = L2
j − B2

jLj − F 2
j Nj , (B.24)

D̄j = L3
j −B3

jLj − F 3
j Nj, (B.25)

Ēj = B1
jGj + F 1

j Mj , (B.26)

F̄j = H1
j − B1

jLj − F 1
j Nj. (B.27)
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